Study on the Stability of (-)-Epigallocatechin-3-gallate
-
摘要: 目的:解析表没食子儿茶素没食子酸酯((-)-epigallocatechin-3-gallate,EGCG)氧化聚合的环境条件,及其稳定性变化对体外培养细胞系氧化还原平衡的影响,为深入探讨EGCG在细胞培养体系及活体中的作用机制奠定基础。方法:在无细胞体系中,设置不同的环境条件,溶液环境(H2O、RPMI1640、DMEM)、温度(37和74℃)、EGCG浓度(0、20、40、80、320 μmol/L)、反应时间(3、6、12、24 h)、pH (5和9)等,通过检测OD578值变化评估EGCG在不同条件下氧化聚合的差异;分析EGCG氧化聚合变化对受试细胞内外H2O2水平的影响。结果:发现RPMI1640和DMEM培养液较H2O更利于EGCG的氧化聚合,高温高EGCG浓度及碱性条件促进EGCG氧化聚合,同时EGCG的氧化聚合随反应时间延长而加剧。在含有细胞的培养体系中EGCG也会发生自动氧化聚合并产生H2O2,导致细胞内外的H2O2浓度升高,但胞内H2O2浓度呈现先上升后下降的趋势。结论:溶液环境和pH变化是引起EGCG氧化聚合的关键因素,在细胞培养中20 μmol/L的EGCG可通过氧化聚合效应发挥更好的抗氧化活性。Abstract: Objective: To analyze the environmental conditions of(-)-epigallocatechin-3-gallate(EGCG)oxidative polymerization and the effects of changes in its stability on the redox balance of the test cells,and to lay the foundation for an in-depth study of the role of EGCG in cell culture systems and living organisms. Methods: The research set different conditions of solution environment,EGCG concentration,temperature,time,pH,to evaluate the difference of EGCG oxidative polymerization under different conditions by detecting the change of OD578 value. Result: The results showed that RPMI1640 and DMEM medium were more favorable for EGCG oxidation polymerization than H2O. High temperature and high EGCG concentration and alkaline conditions promoted EGCG oxidation polymerization. At the same time,the oxidative polymerization of EGCG intensified with the extension of the reaction time. In a cell-containing culture system,EGCG also underwent auto-oxidative polymerization and produced H2O2,which increased the H2O2 concentration inside and outside the cell. However,the intracellular H2O2 concentration showed a trend of first increase and then decrease. Conclusion: Solution environment and pH changes are the key factors that cause EGCG oxidative polymerization. 20 μmol/L EGCG is more conducive to exert antioxidant activity through oxidative polymerization effect in cell culture.
-
Keywords:
- (-)-epigallocatechin-3-gallate /
- stability /
- oxidation /
- anti-oxidation
-
[1] Khan N,Mukhtar H.Tea polyphenols for health promotion[J].Life Sciences,2007,81(7):519-533.
[2] Singh B N,Shankar S,Srivastava R K.Green tea catechin,epigallocatechin-3-gallate(EGCG):Mechanisms,perspectives and clinical applications[J].Biochemical Pharmacology,2011,82(12):1807-1821.
[3] Nagle D G,Ferreira D,Zhou Y D.Epigallocatechin-3-gallate(EGCG):Chemical and biomedical perspectives[J]. Phytochemistry,2006,67(17):1849-1855.
[4] Arafa M H,Atteia H H.Protective role of epigallocatechin gallate in a rat model of cisplatin-induced cerebral inflammation and oxidative damage:Impact of modulating NF-κB and Nrf2[J].Neurotoxicity Research,2020,37(2):380-396.
[5] Kim H S,Quon M J,Kim J A. New insights into the mechanisms of polyphenols beyond antioxidant properties;lessons from the green tea polyphenol, epigallocatechin 3-gallate[J]. Redox Biology,2014,2:187-195.
[7] Krupkova O,Ferguson S J,Wuertz-Kozak K.Stability of(-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems[J].The Journal of Nutritional Biochemistry,2016,37:1-12.
[8] Oliveira M R D,Nabavi S F,Daglia M,et al.Epigallocatechin gallate and mitochondria-a story of life and death[J]. Pharmacological Research,2016,104:70-85.
[9] Sheng R,Gu Z L,Xie M L,et al.Epigallocatechin gallate protects H9c2 cardiomyoblasts against hydrogen dioxides-induced apoptosis and telomere attrition[J].European Journal of Pharmacology,2010,641(2/3):199-206.
[10] Wang S,Moustaid-Moussa N,Chen L X,et al.Novel insights of dietary polyphenols and obesity[J].The Journal of Nutritional Biochemistry,2014,25(1):1-18.
[11] Khurana S,Venkataraman K,Hollingsworth A,et al. Polyphenols:Benefits to the cardiovascular system in health and in aging[J].Nutrients,2013,5(10):3779-3827.
[12] Teshima Y,Takahashi N,Nishio S,et al. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase[J]. Circ J,2014,78:300-306.
[13] Thangapandiyan S,Miltonprabu S.Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats[J].Canadian Journal of Physiology and Pharmacology,2013,91(7):528-537.
[14] Isbrucker R A,Edwards J A,Wolz E,et al.Safety studies on epigallocatechin gallate(EGCG)preparations.Part 2:Dermal,acute and short-term toxicity studies[J].Food and Chemical Toxicology,2006,44(5):636-650.
[15] Wei Y Q,Chen P P,Ling T J,et al.Certain(-)-epigallocatechin-3-gallate(EGCG)auto-oxidation products(EAOPs)retain the cytotoxic activities of EGCG[J].Food Chemistry,2016,204:218-226.
[16] Frasheri L,Schielein M C,Tizek L,et al. Great green tea ingredient? A narrative literature review on epigallocatechin gallate and its biophysical properties for topical use in dermatology[J]. Phytother Res,2020,34(9):2170-2179.
[17] Sang S M,Lee M J,Hou Z,et al.Stability of tea polyphenol(-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions[J].Journal of Agricultural and Food Chemistry,2005,53(24):9478-9484.
[18] Zeng L,Ma M J,Li C,et al.Stability of tea polyphenols solution with different pH at different temperatures[J]. International Journal of Food Properties,2017,20(1):1-18.
[19] Sneideris T,Sakalauskas A,Sternke-Hoffmann R,et al.The environment is a key factor in determining the anti-amyloid efficacy of EGCG[J].Biomolecules,2019,9(12):855.
[20] Elbling L,Herbacek I,Weiss R M,et al.EGCG-meditated cyto-and genotoxicity in HaCat keratinocytes is impaired by cell-mediated clearance of auto-oxidation-derived H2O2:An algorithm for experimental setting correction[J].Toxicology Letters,2011,205(2):173-182.
[21] Kanlaya R,Khamchun S,Kapincharanon C,et al.Protective effect of epigallocatechin-3-gallate(EGCG)via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition(EMT)of renal tubular cells[J].Scientific Reports,2016,6:30233.
[22] Han X D,Zhang Y Y,Wang K L,et al.The involvement of Nrf2 in the protective effects of (-)-epigallocatechin-3-gallate(EGCG)on NaAsO2-induced hepatotoxicity[J].Oncotarget,2017,8(39):65302-65312.
[23] Tsai C Y,Chen C Y,Chiou Y H,et al.Epigallocatechin-3-gallate suppresses human herpesvirus 8 replication and induces ROS leading to apoptosis and autophagy in primary effusion lymphoma cells[J].International Journal of Molecular Sciences,2017,19(1):E16.
-
期刊类型引用(14)
1. 杨庆雄,李欣. 林下经济作物黄精的研究进展. 贵州师范大学学报(自然科学版). 2024(06): 1-34+140 . 百度学术
2. 张瑞平,任昭辉,张皓楠,张晓平,刘鹏飞,王小莉. 香加皮多糖的分离纯化、单糖组成及其抗氧化活性研究. 食品工业科技. 2023(13): 71-78 . 本站查看
3. 胡积东,王海瑞. 植物化妆品的研究进展. 香料香精化妆品. 2023(03): 121-124 . 百度学术
4. 史瑞武,张素芳,牛丽娜,苏田,赵晓茜,那冬晨,陈伟. 忍冬叶多糖提取工艺优化及抗菌活性分析. 中国农业科技导报. 2023(11): 218-226 . 百度学术
5. 祝媛媛,曾卫娣,游瑜,莫溶溶,龚语微,钱俊鹏,杨泽凡. 英红九号红茶乳液的性能研究. 化学世界. 2022(02): 117-122 . 百度学术
6. 翁露,苏娟,赵艳娟,王晓,李靖瑞,岳健. 药用黄精的栽培和产品开发研究进展. 安徽农业科学. 2022(11): 8-10 . 百度学术
7. 吴也,刘中正,宋见喜,姜贵全. 响应面法优化微波萃取血红铆钉菇多糖及抗氧化活性研究. 吉林化工学院学报. 2021(01): 4-12 . 百度学术
8. 陈斌. 植物多糖在化妆品中的应用研究进展. 中国野生植物资源. 2020(04): 44-47 . 百度学术
9. 姜小天,孙志双,施溯筠. 中草药保湿成分在肤用化妆品中的应用和研究进展. 香料香精化妆品. 2020(02): 66-69 . 百度学术
10. 潘婷婷,张昊,姬小明,冯雪妍. 响应面法优化烟叶多糖乙酰化工艺研究. 香料香精化妆品. 2020(04): 15-20 . 百度学术
11. 刘欢,楚桂林,何力,胡婕伦,罗海涛. 多糖的热裂解性质分析及其在卷烟中的应用. 食品与机械. 2020(11): 217-222 . 百度学术
12. 张翼飞,刘志凯,林雨晟,刘鹏飞. 香加皮精多糖的单糖组成、热重和热裂解分析. 食品工业科技. 2019(06): 256-262+272 . 本站查看
13. 雷声,刘秀明,李源栋,蒋举兴,曾熠程,王慧娟,林钞,汪雪娇,杨乾栩. 不同植物多糖对烟丝吸湿性和保润性的影响及其作用机制. 食品与机械. 2019(08): 49-54 . 百度学术
14. 贾宇涵,吴澎,郗良卿,李晓彤. 黄精多糖提取工艺及功能作用研究进展. 中国调味品. 2018(11): 157-161 . 百度学术
其他类型引用(11)
计量
- 文章访问数: 639
- HTML全文浏览量: 74
- PDF下载量: 60
- 被引次数: 25