Optimization of ultrasonic extraction process for lutein from pumpkin peel by response surface methodology
-
摘要: 本实验以南瓜皮为原料,采用超声波辅助溶剂法提取其中的叶黄素,考察提取溶剂类型及比例、超声功率、液固比和超声提取时间对南瓜皮中反式叶黄素及其顺式异构体提取量的影响。在单因素实验基础上,通过响应面法优化工艺条件。结果表明:南瓜皮叶黄素提取的最佳溶剂为乙醇-石油醚(2:1,V/V),南瓜皮叶黄素提取物中共鉴定出1种反式叶黄素和4种叶黄素顺式异构体(9-顺式叶黄素,9'-顺式叶黄素,13/13'-顺式叶黄素,15-顺式-叶黄素)。此外,超声波提取南瓜皮反式叶黄素最佳的工艺条件为:乙醇/石油醚体积比2:1、液固比40:1 (mL/g)、超声功率210 W、提取时间30 min。验证优化工艺得到反式叶黄素的实际提取量为(229.7±9.1) μg/g dw,叶黄素顺式异构体实际提取量为(9.4±0.2) μg/g dw,与预测值相近。研究结果为叶黄素的高效提取及南瓜皮的综合利用提供了参考。Abstract: Ultrasonic wave was applied for extraction of lutein from pumpkin peel. First of all, the effects of main parameters including extraction solvent type, solvent volume ratio, ultrasonic power, liquid to solid ratio and extraction time on extraction yields of lutein and its cis isomers from pumpkin peel were studied. Based on the single factor experimental analysis, through the response surface, the optimization parameters were established. The results indicated that the ethanol petroleum ether(2:1, V/V)is the best solvent for the extraction of lutein pumpkin peel. One trans-lutein and four cis-isomers(15-cis lutein, 13/13'-cis lutein, 9-cis lutein, 9'-cis lutein)were identified in the extract of lutein from pumpkin peel. Furthermore, the optimum technological conditions were extraction solvent ratio of 2:1(ethanol/petroleum ether, v/v), liquid to solid ratio of 40:1 mL/g, ultrasonic power of 210 W and extraction time of 30 min. The yields of lutein and its cis isomers under the conditions were(229.7±9.1) μg/g dw and(9.4±0.2) μg/g dw, respectively, which was in good agreement with the predicted value. This study provided a reference for the efficient extraction of lutein and the comprehensive utilization of pumpkin peel.
-
[1] Paris H S,Brown R N. The genes of pumpkin and squash[J]. Hortscience A Publication of the American Society for Horticultural Science,2005,40(6):1620-1630.
[2] 付莉,王歆姬.南瓜皮类胡萝卜素的提取工艺研究[J].中国农学通报,2012,28(36):295-299. [3] Koushan K,Rusovici R,Li W,et al. The role of lutein in eye-related disease[J]. Nutrients,2013,5(5):1823-1839.
[4] Arnal E,Miranda M,Johnsensoriano S,et al. Beneficial effect of docosahexanoic acid and lutein on retinal structural,metabolic,and functional abnormalities in diabetic rats[J]. Current Eye Research,2009,34(11):928-938.
[5] 惠伯棣.类胡萝卜素化学及生物化学[M].北京:中国轻工业出版社,2005. [6] Yue X,Xu Z,Prinyawiwatkul W,et al. Improving extraction of lutein from egg yolk using an ultrasound-assisted solvent method[J]. Journal of Food Science,2006,71(4):239-241.
[7] Dey S,Rathod V K Ultrasound assisted extraction of β-carotene from spirulina platensis[J]. Ultrasonics Sonochemistry,2013,20(1):271-276.
[8] 李茉,倪元颖,彭郁,等.超声辅助提取辣椒籽蛋白工艺优化[J].农业工程学报,2016,32(24):309-314. [9] Ye J,Feng L,Xiong J,et al. Ultrasound-assisted extraction of corn carotenoids in ethanol[J]. International Journal of Food Science and Technology,2011,46(10):2131-2136.
[10] Patist A,Bates D. Ultrasonic innovations in the food industry:from the laboratory to commercial production[J]. Innovative Food Science and Emerging Technologies,2008,9(2):147-154.
[11] Song J F,Li D J,Pang H L,et al. Effect of ultrasonic waves on the stability of all-trans lutein and its degradation kinetics[J].Ultrasonics Sonochemistry,2015,27:602-608
[12] 王彦博,石燕,唐慧安.超声波提取莴苣叶中叶黄素的工艺研究[J].中国酿造,2012,31(1):50-53. [13] 胡建中,王可兴,潘思轶.高效液相色谱法测定柑橘汁中类胡萝卜素[J].食品科学,2006,27(12):634-636. [14] Kurz C,Carle R,Schieber A. HPLC-DAD-MS n characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity[J]. Food Chemistry,2008,110(2):522-530.
[15] Li D,Xiao Y,Zhang Z,et al. Analysis of (all-E)-lutein and its (Z)-isomers during illumination in a model system[J]. Journal of Pharmaceutical and Biomedical Analysis,2014,100(21):33-39.
[16] 李大婧,刘春菊,肖亚冬,等.叶黄素及其顺式异构体的快速检测[J].食品科学,2016(04):206-211. [17] 张志强,凡前峰,李佳佳,等.万寿菊叶黄素的提取与皂化条件的研究[J].青海大学学报,2013,31(5):39-43. [18] Prabhu A,Abdul K S,Rekha P D. Isolation and purification of lutein from indian spinach basella alba[J]. Research Journal of Pharmacy&Technology,2015,8(10):1379-1392.
[19] Yu Y,Yao Y. Effect of nano materials on lutein extraction from collard using ethanol assisted with ultrasonic[J]. Scholars Journal of Engineering and Technology,2015,3(7):651-654.
[20] 崔震海,孙海蛟,高翠玲,等.万寿菊叶黄素提取工艺的研究[J].辽宁化工,2008,37(4):234-235. [21] 杨云裳,张海霞,李春雷,等.万寿菊叶黄素的超声提取工艺研究[J].食品研究与开发,2007,28(1):97-99. [22] 肖亚冬.含氧类胡萝卜素异构和氧化产物的形成及其稳定性研究[D].南京农业大学,2014. [23] Rosso V V,Mercadante A Z. HPLC-PDA-MS/MS of anthocyanins and carotenoids from dovyalis and tamarillo fruits[J]. Journal of Agricultural and Food Chemistry,2007,55(22):9135-9141.
[24] Sathiskumar P S,Madras G. Ultrasonic degradation of butadiene,styrene and their copolymers[J]. Ultrasonics Sonochemistry,2012,19(3):503-508.
[25] 李刚刚.万寿菊中叶黄素及黄酮的提取与纯化工艺研究[D].兰州理工大学,2010. [26] Vijayalakshmi S P,Madras G. Effect of initial molecular weight and solvents on the ultrasonic degradation of poly (ethylene oxide)[J]. Polymer Degradation&Stability,2015,90(1):116-122.
[27] Altemimi A,Lightfoot D A,Kinsel M,et al. Employing response surface methodology for the optimization of ultrasound assisted extraction of lutein and β-carotene from spinach[J]. Molecules,2015,20(4):6611-6625.
[28] Winslow R L,Greenstein J L. Progress in biophysics and molecular biology[J]. Progress in Biophysics&Molecular Biology,2011,107(1):48-59.
[29] 马空军,吴晓霞,张华余,等.超声空化引起界面湍动促进的传质机理[J].应用声学,2013,32(5):348-353. .
[30] Zhang Z S,Wang L J,Li D,et al. Ultrasound-assisted extraction of oil from flaxseed[J]. Separation&Purification Technology,2008,62(1):192-198.
[31] 李大婧,方桂珍,刘春泉.超声波强化有机溶剂提取万寿菊中叶黄素的研究[J].林产化学与工业,2006,26(3):127-130. [32] 谢翎,陈红梅,杨吉彬,等.卷心菜中叶黄素提取工艺研究[J].食品工业科技,2012,33(5):269-272. -
期刊类型引用(14)
1. 陈碧,王忠东,郭松,郭倩妙,王小明. 原材料和烘焙方式对饼干品质影响的综合试验教学设计. 食品工业. 2024(02): 121-126 . 百度学术
2. 翁霞,李悦悦. 大孔树脂分离纯化毛酸浆叶黄素及其抗氧化活性评价. 中国野生植物资源. 2024(09): 16-23 . 百度学术
3. 刘书伟,沈梦霞,王燕,张田田,武天明. 海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析. 食品工业科技. 2023(09): 236-243 . 本站查看
4. 罗维巍,李双,刁全平,吕琳琳,郭华,李铁纯. 响应面法优化超声提取酸浆宿萼中叶黄素的工艺及抗氧化活性研究. 中国食品添加剂. 2022(01): 62-68 . 百度学术
5. 唐世明. 甘草碱溶性多糖超声提取工艺的均匀设计法优选. 中阿科技论坛(中英文). 2022(01): 127-130 . 百度学术
6. 张雯,张禧庆,董淑君,王丹,马越,郑振佳. 南瓜皮多糖铬的制备与体外消化的分析. 食品工业科技. 2022(17): 223-229 . 本站查看
7. 陈家兰,林芳花,曹泽粼,方家祺,张晓营,迟玉广,刘军民,肖凤霞. 羊栖菜多糖提取工艺的均匀设计法优选及含量测定. 时珍国医国药. 2021(01): 54-57 . 百度学术
8. 田泽群,王辉,王佩,梅文莉,丁立新. 响应曲面法优化桂枝中桂皮醛的超声提取工艺. 热带生物学报. 2020(01): 105-110 . 百度学术
9. 杨正锋,陈薪宇,崔一丹,杨金清,汤丹瑜,赵正雄,保志娟. 烤烟粗脂肪提取工艺优化及光谱测定方法研究. 食品工业科技. 2020(24): 219-225 . 本站查看
10. 陈莹,张巧云,任丽,王文义,黄锦芳,张雪,吴水生. 金线莲总黄酮提取工艺优化及不同月龄、品系金线莲黄酮含量比较. 食品工业科技. 2019(08): 184-189 . 本站查看
11. 焦岩,李大婧,刘春泉,宋江峰,肖亚冬. 纳米脂质体提高叶黄素的稳定性. 食品工业. 2019(04): 24-27 . 百度学术
12. 郭艳萍,许冲,吴云海. 响应面法优化微波提取南瓜皮叶黄素的工艺研究. 山西化工. 2019(05): 7-9+16 . 百度学术
13. 毛峰,黄荣. 表面活性剂辅助——微波法提取金盏花中叶黄素的工艺研究. 广东化工. 2019(21): 28-31 . 百度学术
14. 顾佳缘,王琰,胡慧敏,杨恒,陈银基. 基于HPLC-DAD法及响应曲面法的稻谷叶黄素含量测定方法研究. 粮食科技与经济. 2018(08): 52-59 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 148
- HTML全文浏览量: 25
- PDF下载量: 7
- 被引次数: 17