• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王赋腾, 孙晓荣, 刘翠玲, 徐莹莹, 尹唯佳. 光谱预处理对便携式近红外光谱仪快速检测小麦粉灰分含量的影响[J]. 食品工业科技, 2017, (10): 58-61. DOI: 10.13386/j.issn1002-0306.2017.10.003
引用本文: 王赋腾, 孙晓荣, 刘翠玲, 徐莹莹, 尹唯佳. 光谱预处理对便携式近红外光谱仪快速检测小麦粉灰分含量的影响[J]. 食品工业科技, 2017, (10): 58-61. DOI: 10.13386/j.issn1002-0306.2017.10.003
WANG Fu-teng, SUN Xiao-rong, LIU Cui-ling, XU Ying-ying, YIN Wei-jia. Effect of spectrum preprocessing methods on the rapid detection of ash content in flour by the portable NIR spectrometer[J]. Science and Technology of Food Industry, 2017, (10): 58-61. DOI: 10.13386/j.issn1002-0306.2017.10.003
Citation: WANG Fu-teng, SUN Xiao-rong, LIU Cui-ling, XU Ying-ying, YIN Wei-jia. Effect of spectrum preprocessing methods on the rapid detection of ash content in flour by the portable NIR spectrometer[J]. Science and Technology of Food Industry, 2017, (10): 58-61. DOI: 10.13386/j.issn1002-0306.2017.10.003

光谱预处理对便携式近红外光谱仪快速检测小麦粉灰分含量的影响

Effect of spectrum preprocessing methods on the rapid detection of ash content in flour by the portable NIR spectrometer

  • 摘要: 为了实现便携式近红外光谱仪现场快速分析小麦粉中灰分的含量,对125个小麦粉样本扫描并进行多种预处理后,建立了基于偏最小二乘(PLS)的定量分析模型。探讨了基线校正(Baseline)、矢量归一化(Normalize)、SavitskyGolay卷积平滑法、导数、标准正态变量变换(Standard Normal Variate Correction,SNV)以及多元散射校正(Multiplicative Scatter Correction,MSC)这六种预处理方法及其组合方式对建模的影响。结果表明:矢量归一化+Savitsky-Golay滤波平滑法是最佳预处理方法,相应建立的小麦粉灰分含量最佳模型的校正决定系数Rc2为0.947,交叉验证决定系数R2v为0.896,校正均方根误差(RMSEC)为0.026,交叉验证均方根误差(RMSECV)为0.037,预测均方根误差(RMSEP)为0.026。无预处理模型的校正决定系数为0.873,交叉验证决定系数为0.832,校正均方根误差为0.044,交叉验证均方根误差0.051,预测均方根误差为0.056;相较于无预处理模型,最佳模型的预测精度和稳健性有了很大的提高。 

     

    Abstract: In order to carry out the spot rapid analysis of ash content in flour which based on the portable NIR spectrometer, 125 samples of flour was scanned and some quantitative analytical modelswas built which based on the partial least squares ( PLS) analysis after various spectrum preprocessing methods. The experiment discussed the effect of six spectrum preprocessing methods including baseline, normalize, Savitsky-Golay convolution smoothing method, derivation, standard normal variate correction and multiplicative scatter correction and their combination on modeling, and analyzed various influencing factors in the process of experiment.The results showed that the best spectrum preprocessing method was the combination of normalize and Savitsky-Golay convolution smoothing method. The correlation coefficient of calibration ( Rc2) of the best corresponding model was 0.947.The Cross validation coefficient R2 vwas 0.896. The root mean square error RMSEC was 0.026. The root mean square error RMSECV was 0.037.The root mean square error of prediction set model RMSEP was 0.026. The correlation coefficient of calibration ( Rc2) of the model without spectrum preprocessing method was 0.873.The Cross validation coefficient R2 vwas 0.832.The root mean square error RMSEC was 0.044.The root mean square error RMSECV was 0.051.The root mean square error of prediction set model RMSEP was 0.056.Compared with the model without spectrum preprocessing methods, the best model strongly improves the prediction accuracy and the robustness of the model.

     

/

返回文章
返回