Drying characteristics,drying kinetics and product quality of Flos lonicerae during infrared-forced air drying
-
摘要: 目的:研究金银花的红外鼓风干燥特性及其动力学模型。方法:金银花在不同温度(35、45、55℃)条件下进行红外鼓风干燥,计算水分比、干燥速率等参数,拟合建立干燥动力学数学模型,并测定干制品的色泽、主要成分等干燥特性。结果:金银花在红外鼓风干燥过程中,干燥温度越高,用时越短,降速阶段为其干燥的主要阶段。干燥的动力学模型拟合结果表明Page模型的预测值与实验值吻合性好,可以用来预测和描述金银花红外鼓风干燥的失水过程。费克第二定律求得干燥过程中的水分有效扩散系数(Deff)在5.06606×10-97.59909×10-8m2/s内,且随温度的升高而增大;阿伦尼乌斯方程计算得出金银花红外鼓风干燥平均活化能为113.569 k J/mol。35℃时金银花的色差值ΔE最小,有效成分含量最高,与阴干相比可提高效率并保证产品质量。结论:金银花红外鼓风干燥的主要阶段为降速阶段,Page模型适于预测和描述其失水过程,35℃红外干燥与阴干相比可提高效率,且产品品质更优。Abstract: Objective: To study the infrared- forced air drying characteristics and drying kinetics mathematical model of Flos lonicerae.Methods: The experiment was carried out at different infrared radiation drying temperatures( 35,45,55 ℃).The drying characteristics were detected and the drying kinetics mathematical model was established.Meanwhile,the value of colour and effective constituents were detected. Results: The drying time decreased with the increase of the drying temperature.According to statistical parameters,the Page model predicts and describes the drying process more accurately than others. There was a good agreement between the experimental and predicted values.Since the drying process occurred in falling rate periods,the Fick's second law of diffusion was employed to calculate the value of moisture effective diffusivity( Deff),which ranged from 5.06606 × 10- 9~7.59909 ×10- 8m2/ s,and increased with the increasing of drying temperature. The value of ΔE was least and the effective constituent was maximum at 35 ℃ of Flos lonicerae.The activation energy determined from Arrhenius equation was113.569 k J / mol. Conclusion: The drying process of Flos lonicerae only contained deceleration stage.The Page model was the best suitable for predicting moisture ratio.The infrared drying at 35 ℃ compared with drying in the shade was more efficient.
-
[1] 国家药典委员会.中华人民共和国药典(一部)[S].2015年版.北京:中国医药科技出版社,2015:221. [2] 夏远,李弟灶,裴振昭,等.金银花化学成分的研究进展[J].中国现代中药,2013,14(4):26-32. [3] 赵琰玲,尹莲.金银花化学成分与有效成分提取研究进展[J].医药导报,2007,26(5):521-523. [4] 陈继明,洪超群.金银花药理作用分析[J].亚太传统医药,2015(5):43-44. [5] 徐晖.金银花药理作用研究进展[J].湖南中医杂志,2013,29(9):148-150. [6] 徐之平,赵贤良.物料的干燥特性研究[J].上海机械学院学报,1994,16(3):45-52. [7] 宋健,张会敏,石俊英.金银花最佳产地加工方法---杀青烘干干燥法[J].中药材,2008,31(4):489-491. [8] 熊艳,高慧敏,王智民,等.金银花不同干燥技术HPLC指纹图谱研究[J].中国中药杂志,2009,34(8):1015-1017. [9] 肖宏儒,王立富,吴家兵.微波干燥技术在金银花烘干中的应用研究[J].食品科学,2001,22(5):41-43. [10] 彭菊艳,龚月桦,王俊儒,等.不同干燥技术对金银花药用品质的影响[J].西北植物学报,2006,26(10):2044-2050. [11] 刘云宏,朱文学,刘建学.金银花真空干燥工艺优化[J].食品科学,2011(10):75-78. [12] 吉永奇,朱文学.金银花干燥工艺实验研究[J].食品科技,2008(6):79-82. [13] Midilli A.Determination of pistachio drying behaviour and conditions in a solar drying system[J].International Journal Energy Research,2001,25:715-725.
[14] 天津大学化工原理教研室.化工原理(下册)[M].天津:天津科学技术出版社,1983:254-259. [15] Akgun N A,Doymaz I.Modeling of olive cake thin-layer drying process[J].Journal of Food Engineering,2005,68:455-461.
[16] Thakor N J,Sokhansanj S,Sosulski F W.Mass and dimensional changes of single canola kernels during drying[J].Journal of Food Engineering,1999,40:153-160.
[17] Falade K O,Abbo E S.Air-drying and rehydration characteristics of date palm(Phoenix dactylifera L.)fruits[J].Journal of Food Engineering,2007,79(2):724-730.
[18] Doungporn S,Poomsa-ad N,Wiset L.Drying equations of Thai Hom Mali paddy by using hot air,carbon dioxide and nitrogen gases as drying media[J].Food Bioprod Process,2012,90,187-198.
[19] Wang Zhengfu,Sun Junhong,Liao Xiaojun,et al.Mathematical modeling on hot air drying of thin layer apple pomace[J].Food Research International,2007,40(1):39-46.
[20] Hawlader M N A,Perera C O,Tian M,et al.Drying of guava and papaya:Impact of different drying methods[J].Drying Technology,2006,24(1):77-87.
[21] Wang Z,Sun J,Chen L F,et al.Mathematical modeling on hot air drying of thin layer apple pomace[J].Food Research International,2007,40(1):39-46.
[22] 刘云宏,朱文学,马海乐.金银花真空远红外辐射干燥动力学模型[J].农业机械学报,2010,41(5):105-109. -
期刊类型引用(14)
1. 袁朔,李芹,王萌,赵晓燕,李成泰,朱运平. 响应面优化超声辅助酸法提取核桃雄花果胶的工艺. 食品工业. 2025(01): 8-11 . 百度学术
2. 张兴明. 百香果果皮的综合利用研究进展. 食品工业. 2025(01): 142-147 . 百度学术
3. 陈安,杨柳,王思雨,余邦良. 响应面法优化超声波辅助酸法提取菠萝蜜果皮果胶工艺及理化性质研究. 广东化工. 2025(05): 50-54+69 . 百度学术
4. 吴丽丽,陈江龙,李莎. 水翁花蕾多酚的提取及其抗氧化、抑菌活性研究. 食品工业. 2024(01): 66-70 . 百度学术
5. 王崑仑,管立军,高扬,严松,李家磊,季妮娜,李波,周野. 裂褶菌发酵西洋参工艺优化及体外抗氧化能力研究. 食品工业科技. 2024(07): 142-151 . 本站查看
6. 黄海东,杨宁线,吴洪丽,谢霆霆,吕巩固,刘淼,张明生. 狐臭柴叶果胶的酸法提取工艺优化及其理化性质、抗氧化性和结构研究. 食品安全质量检测学报. 2024(13): 309-317 . 百度学术
7. 周清鹭,李燕,晏和滇,卢仕修,李舷绫,张涛,杨希,杨德龙. 果胶分离提取技术研究进展. 农产品加工. 2024(21): 115-119+124 . 百度学术
8. 刘芸,魏宗敏,陈忠铃,孙宝山,李灵犀. 辣木叶多酚的超声提取及抗氧化活性分析. 中国食品添加剂. 2023(02): 52-60 . 百度学术
9. 郑茜,邹严俊杰,周米亚,任旭. 草酸法提取柠檬果胶工艺优化及品质评价. 食品与机械. 2023(02): 182-187 . 百度学术
10. 宋青云,李玟君,庞子皓,肖一郎,汪海燕,李玉蝶,刘运,汪超,李玮. 花生根白藜芦醇的超声辅助提取工艺优化及分离提纯. 食品工业科技. 2023(16): 228-235 . 本站查看
11. 李澄,黄文婧,廖强,郭振旺. Box-Behnken响应面法优化壮药三角泡中黄酮成分提取工艺及抗氧化作用研究. 中医药导报. 2022(07): 50-54 . 百度学术
12. 杜超,刘佳慈,曹漫钰,左锋,臧延青. 赣州脐橙皮果胶的提取工艺优化及其改性前后理化性质和生物活性的研究. 食品工业科技. 2022(21): 235-244 . 本站查看
13. 王锦秀,郑明锋,李灼坤,陈清西. 基于百香果果皮果胶的可食性薄膜制备与保鲜性能研究. 当代化工研究. 2022(24): 1-5 . 百度学术
14. 林敏,陈妮娜. 微波辅助提取葡萄柚皮果胶的工艺优化. 食品安全导刊. 2022(33): 155-158+163 . 百度学术
其他类型引用(9)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 23