Preparation of succinyl xanthan oligosaccharides and its antibacterial activities against Xanthomonas campestris
-
摘要: 将碱性条件下制备的黄原胶寡糖与琥珀酸酐进行反应,得到三种不同取代度的黄原胶寡糖琥珀酸酯衍生物(SA-XG-1、SA-XG-2、SA-XG-3),凝胶渗透色谱(GPC)法测定产物分子量分别为7560、6400和7430u。三种衍生物的取代度分别为0.18、0.32和0.43。采用琼脂平板打孔法、最低抑菌浓度以及生长曲线法,考察了三种衍生物对野油菜黄单胞菌的抑菌能力;检测了三种衍生物对野油菜黄单胞菌细胞膜通透性影响。结果表明,随取代度的上升,抑菌圈缩小,最小抑菌浓度升高,对野油菜黄单胞菌细胞膜破坏能力减弱。当分子量相仿、丙酮酸和还原糖含量相近时,衍生物的抑菌性能可能与其取代度有关;但取代度上升,衍生物对野油菜黄单胞菌细胞膜破坏减弱,表明破坏细胞膜通透性是抑菌主要机理之一。Abstract: Three succinyl xanthan oligosaccharides with different substituting degrees (SA-XG-1, SA-XG-2 and SA-XG-3) were prepared. Their molecular weights determined by GPC method were 7560, 6400 and 7430 u, respectively. Their substituting degree was 0.18, 0.32 and 0.43, respectively. The antibacterial activities of three succinyl xanthan oligosaccharides against Xanthomonas campestris (X. campestris) were investigated by the inhibition zone, minimal inhibitory concentration (MIC) and the influence on the growth of X. campestris. The influence of three succinyl xanthan oligosaccharides on electric conductivity of X. campestris was also determined. The results showed that the inhibition zone was decreased, the MIC was increased, but the damage capability to cell membrane of X. campestris was decreased with the increasing of the substituting degrees, in other words, the SA-XG-1 possessed the best antibacterial activity. The results showed that the antibacterial activity of succinyl xanthan oligosaccharides may be related to the substituting degrees, and the damage capability to cell membrane of X. campestris may be the one of the main antibacterial mechanism of succinyl xanthan oligosaccharides.
-
[1] 黄成栋, 白雪芳, 杜昱光.黄原胶 (Xanthan Gum) 的特性、生产及应用[J].微生物学通报, 2005, 32 (2) :91-98. [2] 郭瑞, 丁恩勇.黄原胶的结构、性能与应用[J].日用化学工业, 2006, 36 (1) :42-45. [3] 韩冠英, 凌沛学, 王凤山.黄原胶的特性及其在医学领域的应用[J].生物医学工程研究, 2010, 29 (4) :277-281. [4] 孙涛, 朱云, 卫颖隽, 等.不同取代度马来酰κ-卡拉胶的抗氧化活性研究[J].上海海洋大学学报, 2011, 23 (1) :144-148. [5] 熊小英.黄原胶的化学改性及其衍生物抗氧化活性[D].上海:上海海洋大学, 2013. [6] 江丽丽, 张庆, 徐世艾.黄原胶降解的研究进展[J].微生物学通报, 2008, 35 (8) :1292-1296. [7] 孙涛, 熊小英, 魏颖隽, 等.黄原胶降解及其抗氧化性能研究[J].天然产物研究与开发, 2012, 24 (1) :102-104, 113. [8] 楼良旺, 高年发.紫外分光光度法测定丙酮酸[J].分析实验室, 2005, 24 (4) :11-13. [9] Miller G.Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar[J].Analytical Chemistry, 1959, 31 (3) :426-436.
[10] Siggia S.Quantitative Organic Analysis via Functional Groups[J].New York:John Wiley Inc, 1954:45.
[11] Fernandes JC, Tavaria FK.Antimicrobial Effect of Chitosans and Chitooligosaccharides upon Staphylococcus aureus and Escherichia coli, in Food Model Systems[J].Food Microbiology, 2009, 25:922-928.
[12] Jeon YJ.Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor[J].Carbohydrate Polymers, 2001, 44:71-76.
[13] Hong KN, Na YP, Shin HL, et al.Antibacterial Activity of Chitosan and Chitosan Oligomers with Different Molecular Weights[J].International Journal of Food Microbiology, 2002, 74:65-72.
[14] 侯伟峰, 谢晶, 蓝蔚青, 等.植酸对大肠杆菌抑菌机理的研究[J].江苏农业学报, 2012, 28 (2) :443-447. [15] 陈晶晶, 赵辉, 方波, 等.羧甲基降解黄原胶选择性清除血浆LDL/Fib的研究[J].中国血液流变学杂志, 2008, 18 (4) :476-480. [16] 何晓燕, 张利英, 白雪芳, 等.黄原胶寡糖生物活性的研究[J].微生物学通报, 2005, 32 (3) :87-90. -
期刊类型引用(6)
1. 葛增跃. 绿茶多酚的提取工艺研究进展. 食品安全导刊. 2025(03): 165-168+172 . 百度学术
2. 徐锦添,张晨曦,张宇. 茶多酚的提取分离技术与其体外抗氧化活性研究. 农产品加工. 2024(06): 78-85 . 百度学术
3. 龙娇,王铭海,李丹,孙育,汪建超. 茶多酚提取工艺研究进展. 食品安全导刊. 2024(10): 187-189 . 百度学术
4. 张文婷,孙健,徐飞,朱红,岳瑞雪,张毅,马晨,钮福祥. 超声辅助离子液体混合溶剂提取甘薯叶片多酚物质. 浙江农业科学. 2022(01): 16-19 . 百度学术
5. 吕子瀚,扈本荃,唐一梅,钟兰,郑立昊,赵祺祺. 烷基咪唑溴盐对金银花酚酸类成分提取的影响. 化工科技. 2022(06): 52-57 . 百度学术
6. 魏梓晴,王阿利,黄桂东,黄珍金,王子谦,蒋木培,钟先锋. 茶多酚活性膜的制备及应用进展. 食品研究与开发. 2021(24): 193-199 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 153
- HTML全文浏览量: 23
- PDF下载量: 148
- 被引次数: 9