Study on the model fitting of moisture desorption isotherm and absorption isotherm of rice starch
-
摘要: 根据吸附原理,在环境温度25℃下,水分活度0.11~0.90范围内,采用重量法对大米淀粉的吸附/解吸等温线进行测定。用7个非线性回归方程对吸附及解吸等温线进行描述,以决定系数(R2)、残差平方和(RSS)、平均相对误差(MRD)和均方根误差(RMSE)为评价指标,确定最佳拟合模型及其参数。结果表明,根据国际理论和应用化学联合会(IUPAC)的分类,大米淀粉的吸附和解吸等温线都属于第Ⅱ种类型,在实验水分活度范围内等温线存在一个明显的滞后现象,该滞后现象属于H3型。Henderson模型、Oswin模型、GAB模型均适合描述大米淀粉的吸湿等温线,其中GAB模型为最佳模型。GAB拟合解吸等温线的参数X0、C、K分别为0.0800、36.43、0.7646,拟合吸附等温线的参数分别为0.0743、26.87、0.7842。Abstract: Desorption and adsorption isotherms of rice starch powders were determined by gravimetric method and water activity ranging from 0.11 to 0.90 at 25℃ based on adsorption theory. Seven models were used to fit experimental data by linear regression analysis method to ascertain the best of fit. Comparisons were evaluated with the coefficient of determination (R2) , residual sum of squares (RSS) , mean relative percentage error (MRD) and root mean square error (RMSE) . Results indicated that desorption and adsorption isotherms were belong to type II behavior and the hysteresis loop was of type H3according to the classification of IUPAC. Henderson model, Oswin model and GAB model were suitable for fitting the moisture sorption isotherm of rice starch, but GAB model was the best fitted.The parameters X0, C and K of GAB fitting desorption isotherm of rice starch were 0.0800, 36.43 and 0.7646 respectively, and those for adsorption isotherm were 0.0743, 26.87 and 0.7842.
-
Keywords:
- rice starch /
- adsorption isotherm /
- desorption isotherm /
- fitting model
-
[1] Bahloul N, Boudhrioua N, Kechaou N, et al.Moisture desorption-adsorption isotherms and isosteric heats of sorption of Tunisian olive leaves (Olea europaea L.) [J].Industrial Crops and Products, 2008, 28 (2) :162-176.
[2] Erbas M, Ertugay M F, Certel M.Moisture adsorption behavior of semolina and farina[J].Journal of Food Engineering, 2004, 69:191-198.
[3] Iguaz A, Virseda P.Moisture desorption isotherms of rough rice at high temperatures[J].Journal of Food Engineering, 2007, 79:794-802.
[4] Peng G L, Chen X G, Wu W F, et al.Modeling of water sorption isotherm for corn starch[J].Journal of Food Engineering, 2007, 80:562-567.
[5] 李兴军, 王双林, 张元娣, 等.玉米吸湿特性及其等温线类型研究[J].中国粮油学报, 2012, 27 (1) :80-86. [6] Wang X H, Shi Q L, Zhao Y, et al.Moisture adsorption isotherms and heat of sorption of agaricus bisporus[J].Journal of Food Processing and Preservation, 2013, 37 (4) :299-305.
[7] 刘焕龙.饲料的吸湿解吸平衡规律和颗粒饲料冷却的模型拟合[D].无锡:江南大学, 2010. [8] 王明洁, 吴小丽, 袁建, 等.小麦粉水分的吸附与解吸特性[J].食品科学, 2012, 33 (19) :45-51. [9] Al-MUHTASEB A H, McMinn W A M, Magee T R A.Water sorption isotherms of starch powders Part 1:mathematical description of experimental data[J].Journal of Food Engineering, 2004, 61:297-307.
[10] Miranda M, Vege-Galvez A, Sanders M, et al.Modeling the water sorption isotherms of quinoa seeds (Chenopodium quinoa Willd) and determination of sorption heats[J].Food Bioprocess Technology, 2012, 5:1686-1693.
[11] 朱恩龙, 杨昭, 尹海蛟, 等.基于MATLAB的青豆等温线模型[J].食品工业科技, 2011, 33 (14) :100-103. [12] Yang Z, Zhu E L, Zhu Z S.Moisture sorption isotherms and net isosteric heats of sorption of green soybean[J].International Journal of Food Engineering, 2012, 8 (3) :1-16.
[13] 彭桂兰, 程晓光, 吴文福, 等.玉米淀粉水分吸附等温线的研究及模型建立[J].农业工程学报, 2006, 22 (5) :176-178. [14] 王云阳, 张丽, 王绍金, 等.澳洲坚果果壳解吸等温线与吸附等温线拟合模型[J].农业机械学报, 2012, 43 (5) :103-107. [15] 兰景波, 康志茹.固态食品吸湿滞后现象的形成机理[J].食品科学, 1992 (3) :1-4. [16] Sopade P A, Ajisegeri E S.Moisture sorption study on Nigerian foods maize and sorghum[J].Journal of Food Process Engineering, 1994, 17:33-56.
[17] [18] McMinn W A M, Magee T R A.Studies on the effect of temperature on the moisture sorption characteristics of potatoes[J].Journal of Food Process Engineering, 1999, 22:113-128.
[19] 王云阳, 张丽, 王绍金, 等.澳洲坚果果仁粉水分解吸-吸附等温线的测定与分析[J].农业工程学报, 2012, 28 (22) :288-292. [20] Chenlo F, Moreira R, Prieto D M, et al.Desorption isotherms and net isosteric heat of chestnut flour and starch[J].Food and Bioprocess Technology, 2011, 4:1497-1504.
[21] 韩婵, 钱和, 汪何雅.绿茶吸附特性及单层水分吸附含量研究[J].江苏农业科学, 2011 (1) :351-353. -
期刊类型引用(8)
1. 付元哲,黄雅玲,冯涛,孙敏,姚凌云,王化田,宋诗清. 馒头挥发性风味物质研究进展. 食品科学. 2024(08): 312-320 . 百度学术
2. 邓晓茜,符漫,杨甜甜,张彦,郭壮,王玉荣. 大竹米酒真菌群落研究及酵母菌分离鉴定. 中国酿造. 2023(03): 78-83 . 百度学术
3. 王乐惠,张继宁,周化岚,张建国. 用于米酒酿造的酵母菌的研究进展. 工业微生物. 2022(06): 49-54 . 百度学术
4. 刘梦琦,朱媛媛,倪慧,王玉荣,郭壮. 荆州地区霉豆渣真菌多样性研究. 食品与发酵工业. 2021(06): 241-246 . 百度学术
5. 张苗苗,蔡文超,旦巴达贡,单春会,李宝坤,肖石高,郭壮. 哈密地区奶疙瘩微生物多样性研究. 食品研究与开发. 2021(17): 176-182 . 百度学术
6. 冯洁雅,张桂容,蔡吉,刘军,温雪瓶,刘雪娇,附俊杰,李丽. 基于高通量测序解析四川晒醋固态发酵过程中细菌群落变化. 食品工业科技. 2021(19): 135-143 . 本站查看
7. 向凡舒,刘雪婷,代程洋,张振东,郭壮. 基于MiSeq高通量测序技术宣恩地区米酒微生物多样性解析. 食品工业科技. 2020(21): 128-132+138 . 本站查看
8. 赵馨馨,崔梦君,董蕴,倪慧,单春会,郭壮. 应用Illumina MiSeq高通量测序技术分析巴东地区豆瓣酱中微生物多样性. 现代食品科技. 2019(09): 297-303 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 141
- HTML全文浏览量: 15
- PDF下载量: 526
- 被引次数: 12