• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

酿酒酵母育种技术的研究进展

酿酒酵母育种技术的研究进展[J]. 食品工业科技, 2013, (16): 372-375. DOI: 10.13386/j.issn1002-0306.2013.16.055
引用本文: 酿酒酵母育种技术的研究进展[J]. 食品工业科技, 2013, (16): 372-375. DOI: 10.13386/j.issn1002-0306.2013.16.055
Research progress in the technique of the Saccharomyces cerevisiae breeding[J]. Science and Technology of Food Industry, 2013, (16): 372-375. DOI: 10.13386/j.issn1002-0306.2013.16.055
Citation: Research progress in the technique of the Saccharomyces cerevisiae breeding[J]. Science and Technology of Food Industry, 2013, (16): 372-375. DOI: 10.13386/j.issn1002-0306.2013.16.055

酿酒酵母育种技术的研究进展

基金项目: 

现代农业产业技术体系建设专项资金(CARS-20-4-4);

详细信息
  • 中图分类号: TS261.11

Research progress in the technique of the Saccharomyces cerevisiae breeding

  • 摘要: 由于酿酒酵母(Sacchromyces cerevisiae)具有发酵速度快和乙醇产量高等特性,所以一直是生物乙醇和酿酒业主要的发酵菌株,本文归纳总结了酿酒酵母育种技术的研究进展,重点介绍了基因工程育种技术,并对其应用前景进行了展望。 
    Abstract: Due to its high ethanol yield and fermentation rate, the Sacchromyces cerevisiae is most widely used for producing bioethanol in alcoholic industry. In this paper, the research progress of Saccharomyces cerevisiae breeding was illustrated, especially the technology of genetic engineering brewing was introduced and its application prospect was forecasted.
  • [1] 郭玲霞, 黄朝禧, 彭开丽.从中国玉米生物乙醇发展分析生物能源对粮食安全的影响[J].中国科技论坛, 2011 (9) :139-145.
    [2] 石元春.生物能源担纲是世界主流[N].中国联合商报, 2011-01-14.
    [3] 陈辉, 陆善祥.生物质制燃料乙醇[J].石油化工, 2007, 36 (2) :107-117.
    [4] 孙清.燃料乙醇技术讲座 (二) ——燃料乙醇及其发展概况[J].可再生能源, 2010, 28 (1) :154-156.
    [5] 刘擎, 余龙.一种模式生物[J].生命的化学, 2000, 20 (2) :61-65.
    [6]

    Rappleye C A EJT, Goldman W E.RNA interference in histoplasma capsulatum demonstrates a role for alpha- (1, 3) -glucan in virulence[J].Mol Microbiol, 2004, 53 (1) :2811-2817.

    [7]

    Steen EJ, Chan R, Prasad N, et al.Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol[J].Microb Cell Fact, 2008, 7 (8) :1-8.

    [8]

    Pickering BM, Willis AE.The implications of structured5’untranslated regions on translation and disease[Z].Elsevier, 2005:39-47.

    [9] 雷娟娟, 李力, 施巧琴, 等.酿酒酵母SNF1基因缺失突变株的构建及生物学特性研究[J].2009年学术交流会论文摘要汇编, 2009.
    [10] 俞志敏, 徐凯, 徐鹏, 等.高产谷胱甘肽酵母菌株的选育及其代谢通量分析[J].中国生物工程杂志, 2008, 28 (7) :110-115.
    [11]

    Ma K, Wakisaka M, Sakai K, et al.Flocculation characteristics of an isolated mutant flocculent Saccharomyces cerevisiae strain and its application for fuel ethanol production from kitchen refuse[J].Bioresource Technology, 2009, 100 (7) :2289-2292.

    [12]

    Kiransree N SM RLV.Characterisation of ther-Motolerant, ethanol tolerant fermentative Saccharomyces cerevisiae for ethanol production[J].Bioprocess and Bio-systems Engineering, 2000, 22 (3) :243-244.

    [13] 解蕙铭, 闵伟红, 张丹.发酵木糖高产乙醇酵母菌株的选育[J].农产品加工·学刊, 2011 (5) :32-35.
    [14] 王风芹, 周丽娟, 谢慧, 等.耐高温酒精酵母诱变育种研究[J].中国酿造, 2011 (4) :28-30.
    [15] 刘超, 袁建国, 王元秀, 等.高产谷胱甘肽酵母菌株的选育[J].山东食品发酵, 2011 (2) :3-7.
    [16]

    Choi GW, Um HJ, Kang HW, et al.Bioethanol production by a flocculent hybrid, CHFY0321obtained by protoplast fusion between Saccharomyces cerevisiae and Saccharomyces bayanus[J].Biomass and Bioenergy, 2010, 34 (8) :1232-1242.

    [17] 张琸, 王永娟, 马爱瑛, 等.灵武长枣果酒酿酒酵母与红酵母原生质体融合的研究[J].西北农业学报, 2011, 20 (6) :164-167.
    [18] 陈武军, 包伟霞, 许旭萍, 等.酵母菌属间杂交融合子筛选及其特性研究[J].安徽农学通报, 2010, 16 (14) :48-50.
    [19]

    Jie Li XZ, Chenguang Liu, Fan Li, et al.Construction of yeaststrains for efficientethanolfermentation from xylose by protoplastfusion[J].Biotechnology, 2008, 136:S421.

    [20]

    Bro C, Regenberg B, Forster J, et al.In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production[J].Metabolic Engineering, 2006, 8 (2) :102-111.

    [21] Jeppsson M, Johansson B, Hahn-H覿gerdal B, et al.Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose[J].Applied and Environmental Microbiology, 2002, 68 (4) :1604-1609.
    [22] Karhumaa K, Fromanger R, Hahn-H覿gerdal B, et al.High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology, 2007, 73 (5) :1039-1046.
    [23]

    Kuyper M, Hartog MMP, Toirkens MJ, et al.Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation[J].FEMS Yeast Research, 2005, 45 (5) :399-409.

    [24]

    Watanabe S, Saleh AA, Pack SP, et al.Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase[J].Journal of Biotechnology, 2007, 130 (3) :316-319.

    [25]

    Gueldener U, Heinisch J, Koehler G, et al.A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast[J].Nucleic Acids Research, 2002, 30 (6) :e23.

    [26] 林晓华, 柯崇榕, 吴毕莎, 等.酿酒酵母SNF4基因敲除缺失菌株的构建[J].生物工程学报, 2011, 27 (4) :572-578.
    [27] 薛亮.GPD1缺失型酿酒酵母的构建[D].福州:福建师范大学, 2009.
    [28] 张一心, 李崎, 沈微, 等.啤酒酵母ECM25/YJL201W基因敲除对啤酒风味稳定性的影响[J].生物工程学报, 2008, 24 (8) :1420-1427.
    [29] Saint-Prix F, B觟nquist L, Dequin S.Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose:the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation[J].Microbiology, 2004, 150 (7) :2209.
    [30]

    Camblong J, Iglesias N, Fickentscher C, et al.Antisense RNA stabilization induces transcriptional gene silencing viahistone deacetylation in S.cerevisiae[J].Cell, 2007, 131 (4) :706-717.

    [31]

    Nevoigt E.Progress in metabolic engineering of Saccharomyces cerevisiae[J].Microbiology and Molecular Biology Reviews, 2008, 72 (3) :379.

    [32]

    Park HD, Shin MC, Woo IS.Antisense-mediated inhibition of arginase (CAR1) gene expression in Saccharomyces cerevisiae[J].Journal of Bioscience and Bioengineering, 2001, 92 (5) :481-484.

    [33]

    Jung YJ, Park HD.Antisense-mediated inhibition of acidtrehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae[J].Biotechnology Letters, 2005, 27 (23) :1855-1859.

    [34]

    Bonoli M, Graziola M, Poggi V, et al.RNA complementary to the5’UTR of mRNA triggers effective silencing in Saccharomyces cerevisiae[J].Biochemical and Biophysical Research Communications, 2006, 339 (4) :1224-1231.

    [35] 曹罗元.酿酒酵母ALD4基因敲除与GPD1基因沉默研究[D].福州:福建师范大学, 2010.
  • 期刊类型引用(5)

    1. 张凤丽,彭培植,李静茹,黄文琪,赵立娜. 菌草灵芝醇提物的体外抗氧化和免疫活性. 福建农林大学学报(自然科学版). 2023(01): 76-82 . 百度学术
    2. 胡浪,施巍巍,周亚杰,王颖,冯鹏,郭原. 灵芝子实体醇提物抗缺血性脑卒中研究. 特产研究. 2023(01): 1-5+13 . 百度学术
    3. 林香,任天宇,周梅兰,高瑞丽,邹雄,刘忠群,肖晔,谢曦,王蓉,宋彦廷,胡文婷. 长茎葡萄蕨藻水提物体外抗氧化活性和对人肝细胞L02氧化损伤的保护作用. 现代食品科技. 2023(08): 1-9 . 百度学术
    4. 陈天赐 ,武少兰 ,杨国辉 ,江丹霞 ,江玉姬 ,陈炳智 . 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响. 生物技术通报. 2022(08): 225-232 . 百度学术
    5. 徐树来,徐瑶,尤婷婷,刘志彬,祝嗣臣. 超高压辅助提取灵芝三萜的工艺优化及抗氧化活性评价. 食品工业科技. 2022(20): 274-280 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  362
  • HTML全文浏览量:  63
  • PDF下载量:  641
  • 被引次数: 6
出版历程
  • 收稿日期:  2013-05-27

目录

    /

    返回文章
    返回
    x 关闭 永久关闭