NIU Tingli, TIAN Yuan, ZHANG Liguo, et al. Production of Cannabidiol Acid Synthase by Chassis Pichia pastoris and of Its Catalytic Activity Analysis[J]. Science and Technology of Food Industry, 2023, 44(20): 135−142. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120201.
Citation: NIU Tingli, TIAN Yuan, ZHANG Liguo, et al. Production of Cannabidiol Acid Synthase by Chassis Pichia pastoris and of Its Catalytic Activity Analysis[J]. Science and Technology of Food Industry, 2023, 44(20): 135−142. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120201.

Production of Cannabidiol Acid Synthase by Chassis Pichia pastoris and of Its Catalytic Activity Analysis

More Information
  • Received Date: December 25, 2022
  • Available Online: August 02, 2023
  • In order to obtain the higher expression of cannabinoid acid synthase (CBDAS) through the microbial chassis, the recombinant enzyme for the in vitro synthesis of cannabinoid (CBD) was studied. The CBDAS gene was firstly cloned from cannabis leaves with higher content of CBD, its basic physicochemical properties of proteins were then analyzed by bioinformatics methods. After construction of the recombinant plasmid pPIC9K-CBDAS and transformation into Pichia pastoris, conditions of the recombinant protein CBDAS were optimized and its catalytic activities were finally analyzed. The results indicated that the constructed pPIC9K-CBDAS fusion protein expression system could be successfully expressed in P. pastoris. Under conditions of 1% of methanol addition, pH6.0 of medium, 48 h of induction, the maximum expression was obtained. At 4 h reaction, the product of cannabigerol acid (CBGA) was significantly increased, in which attributed to catalysis of substrate CBGA by the recombinant CBDAS. In the following, contents of CBD were significantly increased at 8 h (P<0.05) and those of CBDA and CBD were reached to the maximum at 12 h. After reactions at 12 h in the crude extract of cannabis leaf and the standardized CBGA, CBDAS could catalyze to product 60.64 and 20.12 ng/mL of CBDA, 128.01 and 207.87 ng/mL of CBD, respectively, in which CBDAS indicated a stronger catalytic activity. In conclusion, heterologous recombinant expression of cannabis CBDAS was achieved through yeast chassis, which provided active enzymes for the efficient synthesis of CBDA and CBD.
  • [1]
    ANDRE C M, HAUSMAN J F, GUERRIERO G. Cannabis sativa: The plant of the thousand and one molecules[J]. Frontiers in Plant Science,2016,7:19.
    [2]
    BONINI S A, PREMOLI M, TAMBARO S, et al. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history[J]. Journal of Ethnopharmacology,2018,227:300−315. doi: 10.1016/j.jep.2018.09.004
    [3]
    ROSENBERG, E C, PATRA, P H, WHALLEY, B J. Therapeutic effects of cannabinoids in animal models of seizures, epilepsy, epileptogenesis, and epilepsy-related neuroprotection[J]. Epilepsy and Behavior, 2017, 70(Pt B): 319-327.
    [4]
    CROMBIE L, PONSFORD R, SHANI A, et al. Photochemical production of cannabicyclol from cannabichromene[J]. Tetrahedron Letters,1968,55:5771−5772.
    [5]
    MORIMOTO S, KOMATSU K, TAURA F, et al. Purification and characterization of cannabichromenic acid synthase from Cannabis sativa[J]. Phytochemistry,1998,49(6):1525−1529. doi: 10.1016/S0031-9422(98)00278-7
    [6]
    AMIN M R, ALI D W. Pharmacology of medical cannabis[J]. Advances in Experimental Medicine and Biology,2019,1162:151−165.
    [7]
    RUSSO E, GUY G W. A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol[J]. Medical Hypotheses,2006,66(2):234−246. doi: 10.1016/j.mehy.2005.08.026
    [8]
    LI H, LIU Y, TIAN D, et al. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer's disease[J]. European Journal of Medicinal Chemistry,2020,192:112−163.
    [9]
    NACHNANI R, RAUP-KONSAVAGE W M, VRANA K E. The pharmacological case for cannabigerol[J]. Journal of Pharmacology and Experimental Therapeutics,2021,376(2):204−212. doi: 10.1124/jpet.120.000340
    [10]
    GASTON T E, FRIEDMAN D. Pharmacology of cannabinoids in the treatment of epilepsy[J]. Epilepsy and Behavior,2017,70:313−318. doi: 10.1016/j.yebeh.2016.11.016
    [11]
    PISANTI S, MALFITANO A M, CIAGLIA E, et al. Cannabidiol: State of the art and new challenges for therapeutic applications[J]. Pharmacology and Therapeutics,2017,175:133−150. doi: 10.1016/j.pharmthera.2017.02.041
    [12]
    宁康, 董林林, 李孟芝, 等. 非精神活性药用大麻的应用及开发[J]. 中国实验方剂学杂志,2020,26(8):228−240. [NING K, DONG L L, LI M Z, et al. Application and development of non-psychoactive medicinal cannabis[J]. Chinese Journal of Experimental Formulary,2020,26(8):228−240.

    [NING K, DONG L L, LI M Z, et al. Application and development of non-psychoactive medicinal cannabis[J]. Chinese Journal of Experimental Formulary, 2020, 26(8): 228-240.
    [13]
    常丽, 李建军, 黄思齐, 等. 植物大麻活性成分及其药用研究概况[J]. 生命的化学,2018,38(2):273−280. [CHANG L, LI J J, HUANG S Q, et al. Overview of research on the active ingredients of plant cannabis and their medicinal uses[J]. The Chemistry of Life,2018,38(2):273−280.

    [CHANG L, LI J J, HUANG S Q, et al. Overview of research on the active ingredients of plant cannabis and their medicinal uses[J]. The Chemistry of Life, 2018, 38(2): 273-280.
    [14]
    MOHAMMADZADEH R, KARBALAEI M, SOLEIMANPOUR S, et al. Practical methods for expression of recombinant protein in the Pichia pastoris system[J]. Current Protocols,2021,1(6):155−161.
    [15]
    RASCHMANOVÁ H, WENINGER A, KNEJZLÍK Z, et al. Engineering of the unfolded protein response pathway in Pichia pastoris: Enhancing production of secreted recombinant proteins[J]. Applied Microbiology and Biotechnology,2021,5(11):4397−4414.
    [16]
    TÜRKANOĞLU Ö A, YıLMAZ S, INAN M. Pichia pastoris promoters[J]. Methods in Molecular Biology,2019,1923:97−112.
    [17]
    MASTROPIETRO G, AW R, POLIZZI K M. Expression of proteins in Pichia pastoris[J]. Methods in Enzymology,2021,660:53−80.
    [18]
    DALY R, HEARN M T. Expression of heterologous proteins in Pichia pastoris: A useful experimental tool in protein engineering and production[J]. Journal of Molecular Recognition,2005,18(2):119−138. doi: 10.1002/jmr.687
    [19]
    KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins[J]. Journal of Cellular Physiology,2020,235(9):5867−5881. doi: 10.1002/jcp.29583
    [20]
    ZHENG X, ZHANG Y, ZHANG X, et al. Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins[J]. Microbial Cell Factories,2019,18(207):1−12.
    [21]
    THOMAS V, LEIGH G, ROBIN W, et al. Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris[J]. Applied and Environmental Microbiology,2018,84(6):2712−2717.
    [22]
    LI J S, CHEN L, SUN L, et al. Optimization of the secretory expression of recombinant human C-reactive protein in Pichia pastoris[J]. 3 Biotech,2017,7(5):1−8.
    [23]
    ELLIS S B, BRUST P F, KOUTZ P J, et al. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris[J]. Molecular and Cellular Biology,1985,5(5):1111−1121.
    [24]
    赵明明, 李星颖, 江文康, 等. 猫血清白蛋白在毕赤酵母中的分泌表达[J]. 中国畜牧兽医,2022,49(3):897−903. [ZHAO M M, LI X Y, JIANG W K, et al. Secretory expression of feline serum albumin in Pichia pastoris[J]. China Veterinary Animal Husbandry,2022,49(3):897−903.

    ZHAO M M, LI X Y, JIANG W K, et al. Secretory expression of feline serum albumin in Pichia pastoris[J]. China Veterinary Animal Husbandry, 2022, 49(3): 897-903.
    [25]
    刘微, 戴凌燕, 苗青, 等. 一种经济高效的酵母菌落PCR模板DNA制备方法的建立[J]. 中国生物制品学杂志,2022,35(7):848−852. [LIU W, DAI L Y, MIAO Q, et al. Establishment of an economical and efficient method for preparing yeast colony PCR template DNA[J]. Chinese Journal of Biological Products,2022,35(7):848−852.

    LIU W, DAI L Y, MIAO Q, et al. Establishment of an economical and efficient method for preparing yeast colony PCR template DNA[J]. Chinese Journal of Biological Products, 2022, 35(7): 848-852.
    [26]
    卢可心. 产5-氨基乙酰丙酸重组毕赤酵母的构建及发酵研究[D]. 杭州: 浙江大学, 2022

    LU K X. Studies on construction and fermentation of a recombinant Pichia pastoris 5-aminolevulinic acid[D]. Hangzhou: Zhejiang University, 2022.
    [27]
    蔡欣月. 转录因子AtVIP1介导IAA与ABA信号途径调控高粱侧根发育的分子机制初探[D]. 大庆: 黑龙江八一农垦大学, 2020

    CAI X Y. The molecular mechanism of AtVIP1 mediates IAA and ABA signaling pathways to regulate lateral root development in sorghum-preliminary study[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020.
    [28]
    TAURA F, SIRIKANTARAMAS S, SHOYAMA Y, et al. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa[J]. FEBS Letters,2007,581(16):2929−2934. doi: 10.1016/j.febslet.2007.05.043
    [29]
    常丽, 唐慧娟, 李建军, 等. 大麻CBDA1基因的生物信息学分析[J]. 安徽农业科学,2017,45(29):144−148. [CHANG L, TANG H J, LI J J, et al. Bioinformatics analysis of CBDA1 gene in Cannabis sativa[J]. Anhui Agricultural Science,2017,45(29):144−148.

    CHANG L, TANG H J, LI J J, et al. Bioinformatics analysis of CBDA1gene in Cannabis sativa[J]. Anhui Agricultural Science, 2017, 45(29): 144-148.
    [30]
    姚昌阳, 谢兴欢, 蒋思婧, 等. 裂解多糖单加氧酶在毕赤酵母中的异源表达[J]. 湖北大学学报(自然科学版),2019,41(6):561−566. [YAO C Y, XIE X H, JIANG S J, et al. Heterologous expression of lysolysaccharide monooxygenase in Pichia pastoris[J]. Journal of Hubei University (Natural Science Edition),2019,41(6):561−566.

    YAO C Y, XIE X H, JIANG S J, et al. Heterologous expression of lysolysaccharide monooxygenase in Pichia pastoris[J]. Journal of Hubei University (Natural Science Edition), 2019, 41(6): 561-566.
    [31]
    关波, 金坚, 李华钟. 改良毕赤酵母分泌表达外源蛋白能力的研究进展[J]. 微生物学报,2011,51(7):851−857. [GUAN B, JIN J, LI H Z. Research progress on the ability of improved Pichia pastoris to secrete and express foreign proteins[J]. Journal of Microbiology,2011,51(7):851−857.

    GUAN B, JIN J, LI H Z. Research progress on the ability of improved Pichia pastoris to secrete and express foreign proteins[J]. Journal of Microbiology, 2011, 51(7): 851-857.
  • Related Articles

    [1]YE Jiafeng, MA Jingjing, ZHANG Yurui, GAO Xia, LI Yangchen, WANG Chunli, GUO Meizhu. Purification Process and Antioxidant, Anti-inflammatory Activities of Total Flavonoids from Camellia oleifera with Macroporous Adsorption Resin[J]. Science and Technology of Food Industry, 2025, 46(7): 178-186. DOI: 10.13386/j.issn1002-0306.2024040151
    [2]LIU Heng, ZHANG Xiuling, LI Kun, BO Yanqiu, LI Jiaxu. Extraction, Purification, Structural Characterization and Antioxidant Activity of Polysaccharides from Bracken[J]. Science and Technology of Food Industry, 2023, 44(17): 51-58. DOI: 10.13386/j.issn1002-0306.2022090327
    [3]Xiaojie LI, Jinxin LIU, Jianhua LI, Yali TAN, Weili DU, Xiao LI. Optimization of Purification of Tea Polyphenols with Macroporous Adsorption Resin and Research of Their Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(13): 214-223. DOI: 10.13386/j.issn1002-0306.2022090164
    [4]LV Jiawei, WANG Jie, LIU Yaqiong, SUN Jianfeng, WANG Wenxiu, GONG Hui, MU Jianlou. Study on Extraction and Purification Process of Sea buckthorn Polyphenols[J]. Science and Technology of Food Industry, 2021, 42(3): 108-114. DOI: 10.13386/j.issn1002-0306.2020030331
    [5]ZHU Jia-qing, TANG Ting-fan, LIU Xin-mei, Tian Yu-hong, HUANG Fang-li, CHENG Hao, LI Xiao-hui, LI Rong-bin, LIANG Jie-ting. Purification Technology of Pueraria lobata Polysaccharide and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2020, 41(24): 131-136. DOI: 10.13386/j.issn1002-0306.2020030122
    [6]DUAN Zhou-wei, CHEN Ting, HE Ai, FANG Zong-zhuang, WANG Shi-ping, XIE Hui. Optimization of Purification of Flavonoids from Aloes Leaves with Macroporous Resin and Comparison of Antioxidant Capacity of Crude and Purified Flavonoids[J]. Science and Technology of Food Industry, 2020, 41(17): 161-166. DOI: 10.13386/j.issn1002-0306.2020.17.027
    [7]CAI Tian-jiao, LEI Hong-jie, WANG Rui-zhen, XU Ya-fei, XU Huai-de. Study on triterpenic acids purification from jujube by macroporous resins and its antioxidant activity[J]. Science and Technology of Food Industry, 2017, (20): 159-165. DOI: 10.13386/j.issn1002-0306.2017.20.029
    [8]WAN Liang-yu, WANG Ming-li, LUO Guang-li, RAN Ji-ping. Effect of processing of grading shelling on quality and antioxidation of barley[J]. Science and Technology of Food Industry, 2017, (17): 33-37. DOI: 10.13386/j.issn1002-0306.2017.17.007
    [9]MAO Di-rui, JIANG Gui-quan, ZHANG Shi-meng, SUN Ji-wei, CAO Jia-shuo. Separation, purification and antioxidant activity of polyphenols from Sanguisorba officinalis[J]. Science and Technology of Food Industry, 2015, (21): 68-72. DOI: 10.13386/j.issn1002-0306.2015.21.005
    [10]WU Qiu-min, SU Ping, LIU Yun. The development of the antioxidant and prooxidant activities of flavonoids[J]. Science and Technology of Food Industry, 2014, (24): 379-383. DOI: 10.13386/j.issn1002-0306.2014.24.071
  • Cited by

    Periodical cited type(9)

    1. 张明赞,贺彪,田辉,王媛. 酱香型白酒生产过程中微生物对白酒风味物质影响的研究进展. 农产品加工. 2024(06): 108-111 .
    2. 高兴. 白酒品质的分析方法及质量安全控制策略. 食品安全导刊. 2024(28): 38-41 .
    3. 马裕清,段万里,彭蕾,耿丙杰,唐凌瑄,王浩能,高方圆. 食品包装材料中双酚A检测方法的研究进展. 上海预防医学. 2023(06): 604-612 .
    4. 孙震,郭铮蕾,刘莉,万晓楠,韩深,张朝晖,杨宇. 双酚A国内外管控法规和检测方法研究进展. 中国口岸科学技术. 2022(02): 38-44 .
    5. 任媛媛,王超,谢勇,郭光鹏,黄勤挽,王瑾. 基于UPLC-Q-Orbitrap HRMS和网络药理学分析五味子治疗非酒精性脂肪肝的物质基础及作用机制. 食品工业科技. 2022(05): 21-33 . 本站查看
    6. 周勇,高卓瑶,蒋玲波,贺文韬,汤海凤,陈毅洛,许景景,周小涵. 超高效液相色谱–串联质谱法同时测定化妆品中7种双酚类化合物及其衍生物. 化学分析计量. 2022(03): 73-77 .
    7. 黄煜,李杰. 高效液相色谱法测定工业双酚A中的微量杂质. 化学试剂. 2022(08): 1213-1217 .
    8. 张慧,曹慧,姜侃,肖功年,王瑾,周学军,厉小燕. 高效液相色谱-三重四极杆串联质谱法研究塑料接触材料中酚类化合物向奶油中的迁移. 食品科学. 2022(18): 339-345 .
    9. 王庆亮. 白酒品质分析及质量安全控制研究进展. 酿酒科技. 2021(08): 97-101 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (133) PDF downloads (12) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return