MA Ke, CHENG Yuanhang. Solid Phase Extraction of Pyrroloquinoline Quinone by Surface Modified Magnetic Nano Materials[J]. Science and Technology of Food Industry, 2023, 44(16): 34−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090129.
Citation: MA Ke, CHENG Yuanhang. Solid Phase Extraction of Pyrroloquinoline Quinone by Surface Modified Magnetic Nano Materials[J]. Science and Technology of Food Industry, 2023, 44(16): 34−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090129.

Solid Phase Extraction of Pyrroloquinoline Quinone by Surface Modified Magnetic Nano Materials

More Information
  • Received Date: September 12, 2022
  • Available Online: June 19, 2023
  • In this study, three kinds of nanomaterials with silanized or ion pair silanized surface modifications were synthesized, and the extraction and adsorption properties of these three materials for pyrroloquinoline quinone were studied. Results showed that the adsorption capacity of surface modified magnetic nanomaterials for pyrroloquinoline quinone was positively correlated with the intermolecular interaction force between surface active groups and adsorption targets, and the intermolecular interaction force between surface active groups of ion pair silanized Fe3O4 materials and adsorption targets was the strongest. Its adsorption capacity to pyrroloquinoline quinone was the strongest. The maximum adsorption capacity can reach 160.81 mg·g−1. The adsorption kinetics of the nanomaterial was explored. The adsorption of pyrroloquinoline quinone on the nanomaterial was divided into two processes. The first adsorption process occurred at 0~30 min, which was a fast adsorption process. With the decrease of adsorption sites, the adsorption came into the second stage, and pyrroloquinoline quinone molecules diffused inside the surface layer of the nanomaterial. The adsorption of pyrroloquinoline quinone on magnetic nanomaterials was more suitable for the Lgangmuir model, indicating that the adsorption of pyrroloquinoline quinone on magnetic nanomaterials was suitable for single-layer adsorption, and the adsorption binding sites on the adsorbent surface were uniform. The desorption agent was 0.05% sodium hydroxide, and the desorption time was 3 h, and the resolution rate was 87.00%. The material had a good reusability for solid phase extraction, and the adsorption capacity decreases by only 9.23% after continuous use for more than 5 times. These results showed that the ion pair silylated nanomaterial with good adsorption and release properties for pyrroloquinoline quinone could be used as a candidate magnetic solid phase extraction material.
  • [1]
    MISRA H S, RAJPUROHIT Y S, KHAIRNAR N P, et al. Pyrroloquinoline quinone and its versatile in biological processes[J]. Journal of Biosciences,2012,37:313−325. doi: 10.1007/s12038-012-9195-5
    [2]
    SALLSBURY S, FORREST H, CRUSE W, et al. A novel coenzyme from bacterial primary alcohol dehydrogenases[J]. Nature,1979,280:843−844. doi: 10.1038/280843a0
    [3]
    VARNAI A, UMEZAWA K, YOSHIDA M, et al. The pyrroloquinoline-quinone-dependent pyranose dehydrogenase from coprinopsis cinerea drives lytic polysaccharide monooxygenase action[J]. Applied and Environmental Microbiology, 2018, 84(11): e00156-18.
    [4]
    BORU Z, CHEN X. Transcriptome analysis of the effect of pyrroloquinoline quinone disodium (PQQ·Na2) on reproductive performance in sows during gestation and lactation[J]. Journal of Animal Science and Biotechnology,2019,10(4):210−224.
    [5]
    AZIZI A, AZIZI S, HESHMATIAN B, et al. Improvement of functional recovery of transected peripheral nerve by means of chitosan grafts filled with vitamin E, pyrroloquinoline quinone and their combination[J]. International Journal of Surgery,2014,12:76−82. doi: 10.1016/j.ijsu.2013.10.002
    [6]
    YAMADA Y, NISHII K, KUWATA K, et al. Effects of pyrroloquinoline quinone and imidazole pyrroloquinoline on biological activities and neural functions[J]. Heliyon,2020,6(1):e03240. doi: 10.1016/j.heliyon.2020.e03240
    [7]
    AKAGAWA M, NAKANO M, IKEMOTO K, et al. Recent progress in studies on the health benefits of pyrroloquinoline quinone[J]. Bioscience Biotechnology and Biochemistry,2016,80:13−22. doi: 10.1080/09168451.2015.1062715
    [8]
    HARRIS CB, CHOWANADISAI W, MISHCHUK DO. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects[J]. Journal of Nutritional Biochemistry,2013,24:2076−2084.
    [9]
    HUANG C Y, FAN Z J, HAN D D, et al. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway[J]. Journal of Animal Science and Biotechnology,2021,12(4):1451−1467.
    [10]
    林心慧. 吡咯喹啉醌对RAW 264.7细胞和小鼠的免疫调节作用研究[D]. 舟山: 浙江海洋大学, 2021.

    LIN X H. Study on the immunomodulatory effects of pyrroliquinoline quinone on RAW 264.7 cells and mice[D]. Zhoushan: Zhejiang Ocean University, 2021.
    [11]
    食品安全标准与监测评估司. 关于关山樱花等32种“三新食品”的公告[EB/OL]. (2022-02-24) [2022-09-07]. http: //www. nhc. gov. cn/ sps/s7892/202203/edcfce214e74438cb44ad94d64967b0c.shtml.

    Department of Food Safety Standards, Monitoring and Evaluation. Guanshan cherry blossom and other 32 kinds of "three new food" announcement[EB/OL]. (2022-02-24)[2022-09-07]. http://www.nhc.gov.cn/sps/s7892/202203/edcfce214e74438cb44ad94d64967b0c.shtml
    [12]
    李盼盼. 氧化葡萄糖酸杆菌合成吡咯喹啉醌的研究[D]. 郑州: 郑州轻工业学院, 2016.

    LI P P. Synthesis of pyrroliquinoline quinone by Gluconobacter oxidans[D]. Zhengzhou: Zhengzhou Institute of Light Industry, 2016.
    [13]
    MA K, WU Z Z, WANG G L, et al. Separation and purification of pyrroloquinoline quinone from gluconobacter oxydans fermentation broth using supramolecular solvent complex extraction[J]. Food Chemistry,2021,361(1):130067.
    [14]
    郑州轻工业大学. 采用分子印迹固相萃取法分离纯化发酵液中吡咯喹啉醌的方法: 中国, 201610515247.6[P]. ( 2018-01-05 ) [2022-09-07].

    Zhengzhou University of Light Industry. Separation and purification of pyrroliquinoline quinone from fermentation liquid by molecular imprinting solid phase extraction: China, 201610515247.6[P]. ( 2018-01-05 ) [2022-09-07].
    [15]
    郑州轻工业大学. 络合萃取法分离纯化吡咯喹啉醌: 中国, 201510244788.5[P]. ( 2016-05-05 ) [2022-09-07].

    Zhengzhou University of Light Industry. Separation and purification of pyrroliquinoline quinone by complex extraction: China, 201510244788.5[P]. ( 2016-05-05 ) [2022-09-07].
    [16]
    郑州轻工业大学. 离子对双水相萃取分离吡咯喹啉醌的方法: 中国, 201510872229.9[P]. ( 2016-09-01 ) [2022-09-07].

    Zhengzhou University of Light Industry. Separation of pyrroliquinoline quinone by ion pair Two-phase aqueous extraction: China, 201510872229.9[P]. ( 2016-09-01 ) [2022-09-07].
    [17]
    樊轻亚, 许卫军. 固相萃取-超高效液相色谱-串联质谱法测定飞燕草中7种生物碱[J]. 分析科学学报,2022,38(4):426−432. [FAN Q Y, XU W J. Determination of seven alkaloids in delphinium delphiniae by solid phase extrusion-ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Sciences,2022,38(4):426−432.

    FAN Q Y, XU W J. Determination of seven alkaloids in delphinium delphiniae by solid phase extrusion-ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Sciences, 2022, 38(4): 426-432.
    [18]
    李慧, 任耿標, 李慧娟, 等. 亚胺连接的多孔共价有机骨架材料结合固相萃取-液相色谱-串联质谱检测蜂蜜中雌激素[J]. 色谱,2022,40(8):704−711. [LI H, REN G P, LI H J, et al. Determination of estrogens in honey by imine-linked porous covalent organic skeleton materials combined with solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2022,40(8):704−711. doi: 10.3724/SP.J.1123.2022.03017

    LI H, REN G P, LI H J, et al. Determination of estrogens in honey by imine-linked porous covalent organic skeleton materials combined with solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40(8): 704-711. doi: 10.3724/SP.J.1123.2022.03017
    [19]
    廖杰, 李青松. 测定13种抗生素的固相萃取-高效液相色谱串联质谱法优化与应用[J]. 环境化学,2002,41(5):1538−1547. [LIAO J, LI Q S. Optimization and application of solid phase extraction-high performance liquid chromatography-tandem mass spectrometry for determination of 13 antibiotics[J]. Environmental Chemistry,2002,41(5):1538−1547.

    LIAO J, LI Q S. Optimization and application of solid phase extraction-high performance liquid chromatography-tandem mass spectrometry for determination of 13 antibiotics[J]. Environmental Chemistry, 2002, 41(5): 1538-1547.
    [20]
    罗维, 郭茹瑶, 薛冰纯, 等. Fe3O4磁性纳米材料在水处理中的应用研究进展[J]. 分析科学学报,2020,36(5):690−694. [LUO W, GUO R Y, XUE B C, et al. Research progress of Fe3O4 magnetic nanomaterials in water treatment[J]. Chinese Journal of Analytical Science,2020,36(5):690−694.

    LUO W, GUO R Y, XUE B C, et al. Research progress of Fe3O4 magnetic nanomaterials in water treatment[J]. Chinese Journal of Analytical Science, 2020, 36(5): 690-694.
    [21]
    万伟. 功能化磁性纳米材料在MALDI-TOF MS分析中的应用[D]. 北京: 清华大学, 2017.

    WAN W. Application of functionalized magnetic nanomaterials in MALDI-TOF MS analysis[D]. Beijing: Tsinghua University, 2017.
    [22]
    窦鹏, 向玉苗, 梁靓, 等. 用于富集低分子量糖蛋白的多功能磁性纳米材料的制备[J]. 色谱,2021,39(10):9. [DOU P, XIANG Y M, LIANG L, et al. Preparation of multi-functional magnetic nanomaterials for enrichment of low molecular weight glycoproteins[J]. Chinese Journal of Chromatography,2021,39(10):9.

    DOU P, XIANG Y M, LIANG L, et al. Preparation of multi-functional magnetic nanomaterials for enrichment of low molecular weight glycoproteins[J]. Chinese Journal of Chromatography, 2021, 39(10): 9.
    [23]
    袁勇勇. 功能化磁性纳米材料的合成及其在环境检测中的应用[D]. 北京: 中国石油大学, 2020.

    YUAN Y Y. Synthesis of functional magnetic nanomaterials and its application in environmental detection[D]. Beijing: China University of Petroleum, 2020.
    [24]
    苗青山. 基于功能磁性材料对胃蛋白酶选择性分离研究[D]. 天津: 天津科技大学, 2019.

    MIAO Q S. Selective separation of pepsin based on functional magnetic materials[D]. Tianjin: Tianjin University of Science and Technology, 2019.
    [25]
    王帮进. 功能化磁性纳米材料及多孔材料的合成与应用研究[D]. 昆明: 云南大学, 2020.

    WANG B J, Synthesis and application of functional magnetic nanomaterials and porous materials[D]. Kunming: Yunnan University, 2020.
    [26]
    张华. 磁性-介孔氧化硅胶体分子的可控制备及其重金属离子吸附行为研究[D]. 杭州: 浙江理工大学, 2021.

    ZHANG H. Controllable preparation of magnetic-mesoporous oxidized silica gel and its adsorption behavior of heavy metal ions[D]. Hangzhou: Zhejiang University of Science and Technology, 2021.
    [27]
    席得圣. 氨基功能化磁性复合材料的制备及其吸附性能研究[D]. 天津: 天津大学, 2016.

    XI D S. Preparation and adsorption properties of amino functionalized magnetic composites[D]. Tianjin: Tianjin University, 2016
    [28]
    黄斌艳. 磁性纳米复合材料的制备及其对水中污染物的吸附机理研究[D]. 长沙: 湖南大学, 2018.

    HUANG B Y. Preparation of magnetic nanocomposites and their adsorption mechanism for pollutants in water[D]. Changsha: Hunan University, 2018.
    [29]
    YANG X P, LI P P. UPLC-DAD-MS/MS method for analysis of PQQ in fermentation broth[J]. Chromatographia,2015,78(6):1185−1189.
    [30]
    刘军. 木质素基黄酮类分子印迹聚合物的制备、应用及机理解析[D]. 北京: 北京林业大学, 2020.

    LIU J. Preparation, application and mechanism analysis of lignin based flavonoids molecularly imprinted polymers[D]. Beijing: Beijing Forestry University, 2020.
    [31]
    王伟周. 几种典型体系分子间相互作用的理论研究[D]. 成都: 四川大学, 2004.

    WANG W Z. Theoretical studies on the intermolecular interactions for some typical systems[D]. Chengdu: Sichuan University, 2004.
    [32]
    周盼盼. 分子间弱相互作用体系的理论研究: 氢键、范德华相互作用和卤键[D]. 兰州: 兰州大学, 2005.

    ZHOU P P. Theoretical studies of intermolecular interactions: Hydrogen Bond, Van Der Waals Contact and Halogen Bond [D]. Lanzhou: Lanzhou University, 2005.
  • Cited by

    Periodical cited type(1)

    1. 高紫珊,杨意,李军,谢镇蔚,萧雅泳,敬思群,华军利,康会茹,肖志平,杨柳斌. 马蹄三部位生物活性初筛. 中国果菜. 2024(05): 40-47 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (114) PDF downloads (15) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return