Citation: | MA Ke, CHENG Yuanhang. Solid Phase Extraction of Pyrroloquinoline Quinone by Surface Modified Magnetic Nano Materials[J]. Science and Technology of Food Industry, 2023, 44(16): 34−40. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090129. |
[1] |
MISRA H S, RAJPUROHIT Y S, KHAIRNAR N P, et al. Pyrroloquinoline quinone and its versatile in biological processes[J]. Journal of Biosciences,2012,37:313−325. doi: 10.1007/s12038-012-9195-5
|
[2] |
SALLSBURY S, FORREST H, CRUSE W, et al. A novel coenzyme from bacterial primary alcohol dehydrogenases[J]. Nature,1979,280:843−844. doi: 10.1038/280843a0
|
[3] |
VARNAI A, UMEZAWA K, YOSHIDA M, et al. The pyrroloquinoline-quinone-dependent pyranose dehydrogenase from coprinopsis cinerea drives lytic polysaccharide monooxygenase action[J]. Applied and Environmental Microbiology, 2018, 84(11): e00156-18.
|
[4] |
BORU Z, CHEN X. Transcriptome analysis of the effect of pyrroloquinoline quinone disodium (PQQ·Na2) on reproductive performance in sows during gestation and lactation[J]. Journal of Animal Science and Biotechnology,2019,10(4):210−224.
|
[5] |
AZIZI A, AZIZI S, HESHMATIAN B, et al. Improvement of functional recovery of transected peripheral nerve by means of chitosan grafts filled with vitamin E, pyrroloquinoline quinone and their combination[J]. International Journal of Surgery,2014,12:76−82. doi: 10.1016/j.ijsu.2013.10.002
|
[6] |
YAMADA Y, NISHII K, KUWATA K, et al. Effects of pyrroloquinoline quinone and imidazole pyrroloquinoline on biological activities and neural functions[J]. Heliyon,2020,6(1):e03240. doi: 10.1016/j.heliyon.2020.e03240
|
[7] |
AKAGAWA M, NAKANO M, IKEMOTO K, et al. Recent progress in studies on the health benefits of pyrroloquinoline quinone[J]. Bioscience Biotechnology and Biochemistry,2016,80:13−22. doi: 10.1080/09168451.2015.1062715
|
[8] |
HARRIS CB, CHOWANADISAI W, MISHCHUK DO. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects[J]. Journal of Nutritional Biochemistry,2013,24:2076−2084.
|
[9] |
HUANG C Y, FAN Z J, HAN D D, et al. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway[J]. Journal of Animal Science and Biotechnology,2021,12(4):1451−1467.
|
[10] |
林心慧. 吡咯喹啉醌对RAW 264.7细胞和小鼠的免疫调节作用研究[D]. 舟山: 浙江海洋大学, 2021.
LIN X H. Study on the immunomodulatory effects of pyrroliquinoline quinone on RAW 264.7 cells and mice[D]. Zhoushan: Zhejiang Ocean University, 2021.
|
[11] |
食品安全标准与监测评估司. 关于关山樱花等32种“三新食品”的公告[EB/OL]. (2022-02-24) [2022-09-07]. http: //www. nhc. gov. cn/ sps/s7892/202203/edcfce214e74438cb44ad94d64967b0c.shtml.
Department of Food Safety Standards, Monitoring and Evaluation. Guanshan cherry blossom and other 32 kinds of "three new food" announcement[EB/OL]. (2022-02-24)[2022-09-07]. http://www.nhc.gov.cn/sps/s7892/202203/edcfce214e74438cb44ad94d64967b0c.shtml
|
[12] |
李盼盼. 氧化葡萄糖酸杆菌合成吡咯喹啉醌的研究[D]. 郑州: 郑州轻工业学院, 2016.
LI P P. Synthesis of pyrroliquinoline quinone by Gluconobacter oxidans[D]. Zhengzhou: Zhengzhou Institute of Light Industry, 2016.
|
[13] |
MA K, WU Z Z, WANG G L, et al. Separation and purification of pyrroloquinoline quinone from gluconobacter oxydans fermentation broth using supramolecular solvent complex extraction[J]. Food Chemistry,2021,361(1):130067.
|
[14] |
郑州轻工业大学. 采用分子印迹固相萃取法分离纯化发酵液中吡咯喹啉醌的方法: 中国, 201610515247.6[P]. ( 2018-01-05 ) [2022-09-07].
Zhengzhou University of Light Industry. Separation and purification of pyrroliquinoline quinone from fermentation liquid by molecular imprinting solid phase extraction: China, 201610515247.6[P]. ( 2018-01-05 ) [2022-09-07].
|
[15] |
郑州轻工业大学. 络合萃取法分离纯化吡咯喹啉醌: 中国, 201510244788.5[P]. ( 2016-05-05 ) [2022-09-07].
Zhengzhou University of Light Industry. Separation and purification of pyrroliquinoline quinone by complex extraction: China, 201510244788.5[P]. ( 2016-05-05 ) [2022-09-07].
|
[16] |
郑州轻工业大学. 离子对双水相萃取分离吡咯喹啉醌的方法: 中国, 201510872229.9[P]. ( 2016-09-01 ) [2022-09-07].
Zhengzhou University of Light Industry. Separation of pyrroliquinoline quinone by ion pair Two-phase aqueous extraction: China, 201510872229.9[P]. ( 2016-09-01 ) [2022-09-07].
|
[17] |
樊轻亚, 许卫军. 固相萃取-超高效液相色谱-串联质谱法测定飞燕草中7种生物碱[J]. 分析科学学报,2022,38(4):426−432. [FAN Q Y, XU W J. Determination of seven alkaloids in delphinium delphiniae by solid phase extrusion-ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Sciences,2022,38(4):426−432.
FAN Q Y, XU W J. Determination of seven alkaloids in delphinium delphiniae by solid phase extrusion-ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Sciences, 2022, 38(4): 426-432.
|
[18] |
李慧, 任耿標, 李慧娟, 等. 亚胺连接的多孔共价有机骨架材料结合固相萃取-液相色谱-串联质谱检测蜂蜜中雌激素[J]. 色谱,2022,40(8):704−711. [LI H, REN G P, LI H J, et al. Determination of estrogens in honey by imine-linked porous covalent organic skeleton materials combined with solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2022,40(8):704−711. doi: 10.3724/SP.J.1123.2022.03017
LI H, REN G P, LI H J, et al. Determination of estrogens in honey by imine-linked porous covalent organic skeleton materials combined with solid phase extraction-liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2022, 40(8): 704-711. doi: 10.3724/SP.J.1123.2022.03017
|
[19] |
廖杰, 李青松. 测定13种抗生素的固相萃取-高效液相色谱串联质谱法优化与应用[J]. 环境化学,2002,41(5):1538−1547. [LIAO J, LI Q S. Optimization and application of solid phase extraction-high performance liquid chromatography-tandem mass spectrometry for determination of 13 antibiotics[J]. Environmental Chemistry,2002,41(5):1538−1547.
LIAO J, LI Q S. Optimization and application of solid phase extraction-high performance liquid chromatography-tandem mass spectrometry for determination of 13 antibiotics[J]. Environmental Chemistry, 2002, 41(5): 1538-1547.
|
[20] |
罗维, 郭茹瑶, 薛冰纯, 等. Fe3O4磁性纳米材料在水处理中的应用研究进展[J]. 分析科学学报,2020,36(5):690−694. [LUO W, GUO R Y, XUE B C, et al. Research progress of Fe3O4 magnetic nanomaterials in water treatment[J]. Chinese Journal of Analytical Science,2020,36(5):690−694.
LUO W, GUO R Y, XUE B C, et al. Research progress of Fe3O4 magnetic nanomaterials in water treatment[J]. Chinese Journal of Analytical Science, 2020, 36(5): 690-694.
|
[21] |
万伟. 功能化磁性纳米材料在MALDI-TOF MS分析中的应用[D]. 北京: 清华大学, 2017.
WAN W. Application of functionalized magnetic nanomaterials in MALDI-TOF MS analysis[D]. Beijing: Tsinghua University, 2017.
|
[22] |
窦鹏, 向玉苗, 梁靓, 等. 用于富集低分子量糖蛋白的多功能磁性纳米材料的制备[J]. 色谱,2021,39(10):9. [DOU P, XIANG Y M, LIANG L, et al. Preparation of multi-functional magnetic nanomaterials for enrichment of low molecular weight glycoproteins[J]. Chinese Journal of Chromatography,2021,39(10):9.
DOU P, XIANG Y M, LIANG L, et al. Preparation of multi-functional magnetic nanomaterials for enrichment of low molecular weight glycoproteins[J]. Chinese Journal of Chromatography, 2021, 39(10): 9.
|
[23] |
袁勇勇. 功能化磁性纳米材料的合成及其在环境检测中的应用[D]. 北京: 中国石油大学, 2020.
YUAN Y Y. Synthesis of functional magnetic nanomaterials and its application in environmental detection[D]. Beijing: China University of Petroleum, 2020.
|
[24] |
苗青山. 基于功能磁性材料对胃蛋白酶选择性分离研究[D]. 天津: 天津科技大学, 2019.
MIAO Q S. Selective separation of pepsin based on functional magnetic materials[D]. Tianjin: Tianjin University of Science and Technology, 2019.
|
[25] |
王帮进. 功能化磁性纳米材料及多孔材料的合成与应用研究[D]. 昆明: 云南大学, 2020.
WANG B J, Synthesis and application of functional magnetic nanomaterials and porous materials[D]. Kunming: Yunnan University, 2020.
|
[26] |
张华. 磁性-介孔氧化硅胶体分子的可控制备及其重金属离子吸附行为研究[D]. 杭州: 浙江理工大学, 2021.
ZHANG H. Controllable preparation of magnetic-mesoporous oxidized silica gel and its adsorption behavior of heavy metal ions[D]. Hangzhou: Zhejiang University of Science and Technology, 2021.
|
[27] |
席得圣. 氨基功能化磁性复合材料的制备及其吸附性能研究[D]. 天津: 天津大学, 2016.
XI D S. Preparation and adsorption properties of amino functionalized magnetic composites[D]. Tianjin: Tianjin University, 2016
|
[28] |
黄斌艳. 磁性纳米复合材料的制备及其对水中污染物的吸附机理研究[D]. 长沙: 湖南大学, 2018.
HUANG B Y. Preparation of magnetic nanocomposites and their adsorption mechanism for pollutants in water[D]. Changsha: Hunan University, 2018.
|
[29] |
YANG X P, LI P P. UPLC-DAD-MS/MS method for analysis of PQQ in fermentation broth[J]. Chromatographia,2015,78(6):1185−1189.
|
[30] |
刘军. 木质素基黄酮类分子印迹聚合物的制备、应用及机理解析[D]. 北京: 北京林业大学, 2020.
LIU J. Preparation, application and mechanism analysis of lignin based flavonoids molecularly imprinted polymers[D]. Beijing: Beijing Forestry University, 2020.
|
[31] |
王伟周. 几种典型体系分子间相互作用的理论研究[D]. 成都: 四川大学, 2004.
WANG W Z. Theoretical studies on the intermolecular interactions for some typical systems[D]. Chengdu: Sichuan University, 2004.
|
[32] |
周盼盼. 分子间弱相互作用体系的理论研究: 氢键、范德华相互作用和卤键[D]. 兰州: 兰州大学, 2005.
ZHOU P P. Theoretical studies of intermolecular interactions: Hydrogen Bond, Van Der Waals Contact and Halogen Bond [D]. Lanzhou: Lanzhou University, 2005.
|
1. |
高紫珊,杨意,李军,谢镇蔚,萧雅泳,敬思群,华军利,康会茹,肖志平,杨柳斌. 马蹄三部位生物活性初筛. 中国果菜. 2024(05): 40-47 .
![]() |