JI Dengjie, XU Yineng, YANG Wei, et al. Preparation and Properties of Modified Scallop Shell Powder and Chitosan Composite Film[J]. Science and Technology of Food Industry, 2022, 43(14): 268−275. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110118.
Citation: JI Dengjie, XU Yineng, YANG Wei, et al. Preparation and Properties of Modified Scallop Shell Powder and Chitosan Composite Film[J]. Science and Technology of Food Industry, 2022, 43(14): 268−275. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110118.

Preparation and Properties of Modified Scallop Shell Powder and Chitosan Composite Film

More Information
  • Received Date: November 11, 2021
  • Available Online: May 04, 2022
  • Using scallop as raw material and sodium stearate as modifier, the modified scallop powder was prepared by wet modification. Using single factor and response surface experiments to explore the effects of modification temperature, modifier dosage, and modification time on the modification effect of scallop shell powder. The scallop shell powder was characterized by Fourier infrared spectrometer, scanning electron microscope and X-ray diffractometer. The modified scallop shell powder and chitosan were made into a composite film, and the influence of the mass fraction of the modified scallop shell powder on the properties of the composite film was investigated. The experimental results showed that the best modification conditions of scallop shell powder were: Sodium stearate addition amount 2.53%, modification temperature 80.70 ℃, modification time 43.19 min. The activation of the fan shellshell powder produced under these conditions could reach up to 76.41%. Combined with characterization mapping analysis, sodium stearate was successfully incorporated onto the surface of shell powder, and the inter particle agglomeration of shell powder was weakened, and the prepared modified scallop shell powder showed good dispersion. Adding modified scallop shell powder could effectively improve the mechanical properties, light transmittance and water vapor barrier properties of the chitosan film. When the mass fraction of modified scallop powder was 1%, the performance of the composite film of modified scallop powder and chitosan was the best. At this time, the tensile strength of the film was 30.19 MPa, the elongation at break was 10.2%, the water vapor transmission rate was 35.1 g·h−1·m−2, and the light transmittance was 2.9 mm·%.
  • [1]
    徐庭巧, 罗自生, 徐晓铃, 等. 纳米碳酸钙改性壳聚糖涂膜对鲜切茄子生理生化指标的影响[J]. 食品科学,2009,30(4):264−267. [XU T Q, LUO Z S, XU X L, et al. Effects of chitosan coating modified by nano calcium carbonate on physiological and biochemical indexes of fresh cut eggplant[J]. Food Science,2009,30(4):264−267. doi: 10.3321/j.issn:1002-6630.2009.04.060

    XU T Q, LUO Z S, XU X L, et al. Effects of chitosan coating modified by nano calcium carbonate on physiological and biochemical indexes of fresh cut eggplant[J]. Food Science, 2009, 30(4): 264-267. doi: 10.3321/j.issn:1002-6630.2009.04.060
    [2]
    顾凤兰, 章建浩, 马磊, 等. 不同涂膜材料对清洁鸡蛋的保鲜效果[J]. 农业工程学报,2015,31(1):303−310. [GU F L, ZHANG H J, MA L, et al. Preservation effect of different coating materials on clean eggs[J]. Journal of Agricultural Engineering,2015,31(1):303−310. doi: 10.3969/j.issn.1002-6819.2015.01.040

    GU F L, ZHANG H J, MA L, et al. Preservation effect of different coating materials on clean eggs[J]. Journal of Agricultural Engineering, 2015, 31(1): 303-310. doi: 10.3969/j.issn.1002-6819.2015.01.040
    [3]
    欧阳锐, 盛潇潇, 王燕珈, 等. 生物可降解壳聚糖复合膜的制备及其在鸡胸肉中的保鲜应用[J]. 食品研究与开发,2020,41(21):123−128. [OU Y R, SHENG X X, WANG Y J, et al. Preparation of biodegradable chitosan composite membrane and its application in chicken breast meat preservation[J]. Food Research and Development,2020,41(21):123−128.

    OU Y R, SHENG X X, WANG Y J, et al. Preparation of biodegradable chitosan composite membrane and its application in chicken breast meat preservation[J]. Food Research and Development, 2020, 41(21): 123-128.
    [4]
    CONG H, ZUO J H, WANG Q, et al. Effects of chitosan coating on postharvest quality and shelf life of sponge gourd (Luffa cylindrica) during storage[J]. Scientia Horticulturae,2014,166:1−8. doi: 10.1016/j.scienta.2013.09.007
    [5]
    ZHANG H Y, LIANG Y, LI X L, et al. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices[J]. Meat Science,2020,166:53−79.
    [6]
    QIAN T T, SU H J, TAN T W. The bactericidal and mildew-proof activity of a TiO2–chitosan composite[J]. Journal of Photochemistry & Photobiology, A:Chemistry,2011,218(1):130−136.
    [7]
    ELENA L K, ROMAN A S. Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale[J]. Journal of Molecular Modeling,2016,22(4):75. doi: 10.1007/s00894-016-2942-z
    [8]
    郑优, 贾亮, 段蓉, 等. 响应面法优化壳聚糖/核桃蛋白复合膜的制备工艺[J]. 食品工业科技,2016,37(21):274−279, 290. [ZHEN Y, JIA L, DUAN R, et al. Optimization of preparation process of chitosan/walnut protein composite membrane by response surface methodology[J]. Science and Technology of Food Industry,2016,37(21):274−279, 290.

    ZHEN Y, JIA L, DUAN R, et al. Optimization of preparation process of chitosan/walnut protein composite membrane by response surface methodology[J]. Science and Technology of Food Industry, 2016, 37(21): 274-279, 290.
    [9]
    李金星, 沈春红, 黎先发. 改性壳聚糖复合膜的制备及优化[J]. 食品工业科技,2021,42(8):144−151. [LI J X, SHEN C H, LI X F. Preparation and optimization of modified chitosan composite membrane[J]. Science and Technology of Food Industry,2021,42(8):144−151.

    LI J X, SHEN C H, LI X F. Preparation and optimization of modified chitosan composite membrane[J]. Science and Technology of Food Industry, 2021, 42(8): 144-151.
    [10]
    FU R R, JI X J, REN Y F, et al. Antibacterial blend films of cellulose and chitosan prepared from binary ionic liquid system[J]. Fibers and Polymers,2017,18(5):852−858. doi: 10.1007/s12221-017-1130-9
    [11]
    MOUSA S, ELAHEH H, KAMALADIN G. Treating wool fibers with chitosan-based nano-composites for enhancing the antimicrobial properties[J]. Applied Nanoscience,2020,10(4):1219−1229. doi: 10.1007/s13204-019-01203-1
    [12]
    代银平, 王雪莹, 叶炜宗, 等. 贝壳废弃物的资源化利用研究[J]. 资源开发与市场,2017,33(2):203−208. [DAI Y P, WANG X Y, YE W Z, et al. Research on resource utilization of shell waste[J]. Resource Development and Market,2017,33(2):203−208. doi: 10.3969/j.issn.1005-8141.2017.02.016

    DAI Y P, WANG X Y, YE W Z, et al. Research on resource utilization of shell waste[J]. Resource Development and Market, 2017, 33(2): 203-208. doi: 10.3969/j.issn.1005-8141.2017.02.016
    [13]
    张东洋. 改性纳米碳酸钙对PP的增韧研究[D]. 吉林: 吉林大学, 2020.

    ZHANG D Y. Study on Toughening of PP by modified nano calcium carbonate[D]. Jilin: Jilin University, 2020.
    [14]
    王明, 郝文婷, 杨丽丽, 等. 壳聚糖分子质量对原位改性纳米CaCO3-壳聚糖涂膜食品保鲜性能的影响[J]. 中国食品学报,2020,20(8):191−200. [WANG M, HAO W T, YANG L L, et al. Effect of molecular weight of chitosan on in situ modified nano CaCO3 -chitosan coating on food preservation[J]. Chinese Journal of Food,2020,20(8):191−200.

    WANG M, HAO W T, YANG L L, et al. Effect of molecular weight of chitosan on in situ modified nano CaCO3 -chitosan coating on food preservation[J]. Chinese Journal of Food, 2020, 20(8): 191-200.
    [15]
    孙红娟, 彭同江, 马国华, 等. 纳米碳酸钙合成-改性一体化工艺研究[J]. 非金属矿,2007(3):12−14. [SUN H J, PENG T J, MA G H, et al. Study on synthesis modification integrated process of nano calcium carbonate[J]. Nonmetallicore,2007(3):12−14. doi: 10.3969/j.issn.1000-8098.2007.03.005

    SUN H J, PENG T J, MA G H, et al. Study on synthesis modification integrated process of nano calcium carbonate[J]. Nonmetallicore, 2007(3): 12-14. doi: 10.3969/j.issn.1000-8098.2007.03.005
    [16]
    苑永伟. 活性纳米碳酸钙改性剂的合成及碳酸钙改性研究[D]. 杭州: 浙江大学, 2013.

    YUAN Y W. Synthesis of active nano calcium carbonate modifier and its modification[D]. Hangzhou: Zhejiang University, 2013.
    [17]
    赵鲁苹, 徐焕志, 陈东, 等. 厚壳贻贝贝壳的微结构及光谱分析[J]. 浙江大学学报(理学版),2015,42(3):339−346. [ZHAO L P, XU H Z, CHEN D, et al. Microstructure and spectral analysis of mussel shells[J]. Journal of Zhejiang University (Science Edition),2015,42(3):339−346.

    ZHAO L P, XU H Z, CHEN D, et al. Microstructure and spectral analysis of mussel shells[J]. Journal of Zhejiang University (Science Edition), 2015, 42(3): 339-346.
    [18]
    郝文婷, 郝晗, 孙彤, 等. 纳米CaCO3原位改性对壳聚糖复合涂膜性能的影响[J]. 现代食品科技,2015,31(1):71−76. [HAO W T, HAO H, SUN T, et al. Nano CaCO3 effect of in-situ modification on properties of chitosan composite coating[J]. Modern Food Technology,2015,31(1):71−76.

    HAO W T, HAO H, SUN T, et al. Nano CaCO3 effect of in-situ modification on properties of chitosan composite coating[J]. Modern Food Technology, 2015, 31(1): 71-76.
    [19]
    王赢, 牛广财, 张东杰, 等. 壳聚糖基抗菌保鲜膜制备工艺的优化[J]. 保鲜与加工,2020,20(2):22−27,34. [WANG Y, NIU G C, ZHANG D J, et al. Optimization of preparation process of chitosan based antibacterial fresh-keeping film[J]. Storage and Process,2020,20(2):22−27,34. doi: 10.3969/j.issn.1009-6221.2020.02.004

    WANG Y, NIU G C, ZHANG D J, et al. Optimization of preparation process of chitosan based antibacterial fresh-keeping film[J]. Storage and Process, 2020, 20(2): 22-27, 34. doi: 10.3969/j.issn.1009-6221.2020.02.004
    [20]
    刘可, 高锋, 刘佳豪, 等. 响应面法优化羧甲基壳聚糖——纳米银凝胶工艺研究[J]. 中国食品工业,2021(20):122−127. [LIU K, GAO F, LIU J H, et al. Response surface methodology to optimize carboxymethyl chitosan nano silver gel technology[J]. China Food Industry,2021(20):122−127.

    LIU K, GAO F, LIU J H, et al. Response surface methodology to optimize carboxymethyl chitosan nano silver gel technology[J]. China Food Industry, 2021(20): 122-127.
    [21]
    郭睿, 张瑶, 韩双, 等. 响应面法优化羟丙基壳聚糖的合成工艺[J]. 生物质化学工程,2019,53(1):25−32. [GOU R, ZHANG Y, HAN S, et al. Optimization of synthesis process of hydroxypropyl chitosan by response surface methodology[J]. Biomass Chemical Engineering,2019,53(1):25−32. doi: 10.3969/j.issn.1673-5854.2019.01.004

    GOU R, ZHANG Y, HAN S, et al. Optimization of synthesis process of hydroxypropyl chitosan by response surface methodology[J]. Biomass Chemical Engineering, 2019, 53(1): 25-32. doi: 10.3969/j.issn.1673-5854.2019.01.004
    [22]
    雷鹏飞. 碳酸钙涂层填充剂的表面改性及应用研究[D]. 杭州: 浙江理工大学, 2019.

    LEI P F. Study on surface modification and application of calcium carbonate coating filler[D]. Hangzhou: Zhejiang University of Technology, 2019.
    [23]
    覃筱燕. 贝壳粉负载型抗菌材料及抗菌涂料的研究[D]. 南宁: 广西大学, 2017.

    QIN X Y. Research on shell powder-loaded antibacterial materials and antibacterial coatings[D]. Nanning: Guangxi University, 2017.
    [24]
    胡应模, 于梦兰. 硬脂酸钠对电气石的表面改性及其结构表征[J]. 中国非金属矿工业导刊,2013(1):27−29. [HU Y M, YU M L. Surface modification and structural characterization of tourmaline by sodium stearate[J]. China Nonmetallic Mineral Industry Guide,2013(1):27−29. doi: 10.3969/j.issn.1007-9386.2013.01.008

    HU Y M, YU M L. Surface modification and structural characterization of tourmaline by sodium stearate[J]. China Nonmetallic Mineral Industry Guide, 2013(1): 27-29. doi: 10.3969/j.issn.1007-9386.2013.01.008
    [25]
    DING H, LU S C, DENG Y X, et al. Mechano-activated surface modification of calcium carbonate in wet stirred mill and its properties[J]. Transactions of Nonferrous Metals Society of China,2007,17(5):1100−1104. doi: 10.1016/S1003-6326(07)60232-5
    [26]
    陈列列. 贝壳粉基光催化环保涂料的制备与研究[D]. 广州: 华南理工大学, 2020.

    CHEN L L. Preparation and research of shell powder based photocatalytic environmental protection coating[D]. Guangzhou: South China University of Technology, 2020.
    [27]
    雷鹏飞, 黄亚伟, 袁森浩, 等. 油酸原位合成碳酸钙及其在聚酰胺湿法涂层中的应用[J]. 纺织学报,2019,40(5):70−77. [LEI P F, HUANG Y W, YUAN S H, et al. In situ synthesis of calcium carbonate from oleic acid and its application in polyamide wet coating[J]. Journal of Textiles,2019,40(5):70−77.

    LEI P F, HUANG Y W, YUAN S H, et al. In situ synthesis of calcium carbonate from oleic acid and its application in polyamide wet coating[J]. Journal of Textiles, 2019, 40(5): 70-77.
    [28]
    唐强. 贝壳粉改性及在隔热涂料中的应用研究[D]. 南京: 东南大学, 2018.

    TANG Q. Study on modification of shell powder and its application in thermal insulation coatings[D]. Nanjing: Southeast University, 2018.
    [29]
    ZHI C, MICHAEL D, LOPEZ C, et al. Chemical surface modification of calcium carbonate particles with stearic acid using different treating methods[J]. Applied Surface Science,2016,378:320−329. doi: 10.1016/j.apsusc.2016.03.205
    [30]
    李金星. 改性壳聚糖复合膜的制备及水果保鲜研究[D]. 绵阳: 西南科技大学, 2021.

    LI J X. Preparation of modified chitosan composite film and fruit preservation[D]. Mianyang: Southwest University of Science and Technology, 2021.
    [31]
    韩英, 郝文婷, 魏旭青, 等. CaCO3添加量对原位改性纳米CaCO3/壳聚糖复合涂膜理化性能的影响[J]. 现代化工,2018,38(9):77−80. [HAN Y, HAO W T, WEI X Q, et al. Effect of addition amount on in-situ modified nano CaCO3/effect of chitosan composite coating on physical and chemical properties[J]. Modern Chemical Industry,2018,38(9):77−80.

    HAN Y, HAO W T, WEI X Q, et al. Effect of addition amount on in-situ modified nano CaCO3/effect of chitosan composite coating on physical and chemical properties[J]. Modern Chemical Industry, 2018, 38(9): 77-80.
  • Cited by

    Periodical cited type(5)

    1. 胡烘陶,王晶,字成庭,孙培元. 天然化合物基于Notch通路抑制肿瘤的研究进展. 食品安全质量检测学报. 2024(05): 138-146 .
    2. 刘馨颐,梁晓杰,马静阁,魏峰. 香菇多糖的生物活性及在鸡、猪养殖中的应用研究进展. 中国畜牧杂志. 2024(04): 64-69 .
    3. 李俊生,管丽,李嘉慧,夏至,谭冲,左金龙. 香菇多糖提取、结构特征及生物活性研究进展. 中国调味品. 2024(09): 208-214 .
    4. 王大军,徐红伟,王亮,彭亚南. 增强CT对胰腺癌的周围血管侵犯的评估价值分析. 中国CT和MRI杂志. 2024(11): 106-108 .
    5. 刘俊杰,梁家,庞天舒,薛佳龙,刘德纯. 香菇多糖通过IL-6/STAT3通路对AOM/DSS诱导结肠炎相关结直肠癌的抑制作用及机制. 肿瘤防治研究. 2024(11): 908-912 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (189) PDF downloads (25) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return