HU Wanting, LUO Man, LU Jieyi, et al. Preparation and Properties of Agar/Konjac Glucomannan/Ethyl Cellulose Composite Film[J]. Science and Technology of Food Industry, 2022, 43(11): 260−266. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090150.
Citation: HU Wanting, LUO Man, LU Jieyi, et al. Preparation and Properties of Agar/Konjac Glucomannan/Ethyl Cellulose Composite Film[J]. Science and Technology of Food Industry, 2022, 43(11): 260−266. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090150.

Preparation and Properties of Agar/Konjac Glucomannan/Ethyl Cellulose Composite Film

More Information
  • Received Date: September 12, 2021
  • Available Online: April 15, 2022
  • To develop a kind of food packaging material with good hydrophobicity, agar/konjac glucomannan (AK) composite film incorporated with ethyl cellulose (EC) was developed. The effect of the addition of EC on the microstructure, mechanical properties and water resistance ability (swelling rate, dissolution rate and water vapor transmittance) of the composite film were explored by scanning electron microscopy (SEM), Fourier infrared spectroscopy (FTIR), X-ray diffraction (XRD), and texture analyzer. The results showed that the EC molecular chain in AKE composite film was not completely extended, and the addition of EC inhibited the crystallization of agar. Compared with AK composite film, the AKE-25% composite film had the highest elongation at break (15.08%) and water vapor transmittance (9.88×10−12·g·cm/(cm2·s·Pa)). The dissolution rate decreased from 40.70% to 25.64%. Therefore, the inclusion of EC improved the ductility and water resistance for Agar/KGM/EC composites.
  • [1]
    RODRIGUES M O, ABRANTES N, GONCALVES F J M, et al. Impacts of plastic products used in daily life on the environment and human health: What is known?[J]. Environ Toxicol Pharmacol,2019,72:103239. doi: 10.1016/j.etap.2019.103239
    [2]
    AMIN U, KHAN M U, MAJEED Y, et al. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications[J]. International Journal of Biological Macromolecules,2021,183:2184−2198. doi: 10.1016/j.ijbiomac.2021.05.182
    [3]
    LIU Z, LIN D, LOPEZ-SANCHEZ P, et al. Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan[J]. International Journal of Biological Macromolecules,2020,145:634−645. doi: 10.1016/j.ijbiomac.2019.12.109
    [4]
    ZOU Y, YUAN C, CUI B, et al. Formation of high amylose corn starch/konjac glucomannan composite film with improved mechanical and barrier properties[J]. Carbohydr Polym,2021,251:117039. doi: 10.1016/j.carbpol.2020.117039
    [5]
    LI C, XIANG F, WU K, et al. Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying[J]. Carbohydr Polym,2020,250:116840. doi: 10.1016/j.carbpol.2020.116840
    [6]
    XU X Q, SU B M, XIE J S, et al. Preparation of bioactive neoagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis agar: A comparative study[J]. Food Chemistry,2018,240:330−337. doi: 10.1016/j.foodchem.2017.07.036
    [7]
    LEMUS L M R, AZAMAR-BARRIOS J A, ORTIZ-VAZQUEZ E, et al. Development and physical characterization of novel bio-nanocomposite films based on reduced graphene oxide, agar and melipona honey[J]. Carbohydrate Polymer Technologies and Applications,2021,2:10013.
    [8]
    QIAO D, TU W, ZHONG L, et al. Microstructure and mechanical/hydrophilic features of agar-based films incorporated with konjac glucomannan[J]. Polymers (Basel),2019,11(12):1955. doi: 10.3390/polym11121955
    [9]
    LI M, XIA J, DING C, et al. Development and characterization of ricinoleic acid-based sulfhydryl thiol and ethyl cellulose blended membranes[J]. Carbohydr Polym,2017,175:131−140. doi: 10.1016/j.carbpol.2017.07.069
    [10]
    LI X, JIANG F, NI X, et al. Preparation and characterization of konjac glucomannan and ethyl cellulose blend films[J]. Food Hydrocolloids,2015,44:229−236. doi: 10.1016/j.foodhyd.2014.09.027
    [11]
    WU K, ZHU Q, QIAN H, et al. Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films[J]. Food Hydrocolloids,2018,79:301−309. doi: 10.1016/j.foodhyd.2017.12.034
    [12]
    YAN Z, ZHAO B, WEI B, et al. Enhanced compatibility between poly (lactic acid) and poly (butylene adipate-co-terephthalate) by incorporation of N-halamine epoxy precursor[J]. International Journal of Biological Macromolecules,2020,165:460−471. doi: 10.1016/j.ijbiomac.2020.09.142
    [13]
    WU K, WAN Y, LI X, et al. Impact of heating and drying temperatures on the properties of konjac glucomannan/curdlan blend films[J]. International Journal of Biological Macromolecules,2021,167:1544−1551. doi: 10.1016/j.ijbiomac.2020.11.108
    [14]
    LI C, WU K, SU Y, et al. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films[J]. International Journal of Biological Macromolecules,2019,138:135−143. doi: 10.1016/j.ijbiomac.2019.07.007
    [15]
    YAN Y, DUAN S, ZHANG H, et al. Preparation and characterization of konjac glucomannan and pullulan composite films for strawberry preservation[J]. Carbohydr Polym,2020,243:116446. doi: 10.1016/j.carbpol.2020.116446
    [16]
    SHANKAR S, RHIM J W. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films[J]. Carbohydr Polym,2016,135:18−26. doi: 10.1016/j.carbpol.2015.08.082
    [17]
    ZHANG R, WANG W, ZHANG H, et al. Effects of preparation conditions on the properties of agar/maltodextrin-beeswax pseudo-bilayer films[J]. Carbohydr Polym,2020,236:116029. doi: 10.1016/j.carbpol.2020.116029
    [18]
    ATEF M, REZAEI M, BEHROOZ R. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose[J]. International Journal of Biological Macromolecules,2014,70:537−544. doi: 10.1016/j.ijbiomac.2014.07.013
    [19]
    王中, 李好, 石文娟, 等. 淀粉链支比对淀粉/琼脂复合膜微结构及性能的影响[J]. 科技导报, 2021, 39(5): 141−147

    WANG Z, LI H, SHI W J, et al. Effect of amylobranched ratio on microstructure and properties of starch/agar composite membrane[J]. Science & Technology Review, 201, 39(5): 141−147.
    [20]
    EL SEOUD O A, BIONI T A, DIGNANI M T. Understanding cellulose dissolution in ionic liquid-dimethyl sulfoxide binary mixtures: Quantification of the relative importance of hydrogen bonding and hydrophobic interactions[J]. Journal of Molecular Liquids,2021,322:114848. doi: 10.1016/j.molliq.2020.114848
    [21]
    刘雨雨. ZnO-乙基纤维素/明胶复合纳米纤维膜的制备及性质探究[D]. 杭州: 浙江大学, 2019

    LIU Y Y. Preparation and properties of ZnO-ethyl cellulose/gelatin composite nanofiber membrane[D]. Hangzhou: Zhejiang University, 2019.
    [22]
    CAMPA-SIQUEIROS P I, VARGAS-ARISPURO I, QUINTANA-OWEN P, et al. Physicochemical and transport properties of biodegradable agar films impregnated with natural semiochemical based on hydroalcoholic garlic extract[J]. International Journal of Biological Macromolecules,2020,151:27−35. doi: 10.1016/j.ijbiomac.2020.02.158
    [23]
    WANG L, LIN L, GUO Y, et al. Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging[J]. Food Hydrocolloids,2020,108:105863. doi: 10.1016/j.foodhyd.2020.105863
    [24]
    SHI P, LI Y, ZHANG L. Fabrication and property of chitosan film carrying ethyl cellulose microspheres[J]. Carbohydrate Polymers,2008,72(3):490−499. doi: 10.1016/j.carbpol.2007.09.021
    [25]
    WANG L, LIN L, CHEN X, et al. Synthesis and characteristics of konjac glucomannan films incorporated with functionalized microcrystalline cellulose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,563:237−245.
    [26]
    RUKMANIKRISHNAN B, RAJASEKHARAN S K, LEE J, et al. K-Carrageenan/lignin composite films: Biofilm inhibition, antioxidant activity, cytocompatibility, UV and water barrier properties[J]. Materials Today Communications,2020,24:101346. doi: 10.1016/j.mtcomm.2020.101346
    [27]
    KUSMONO, WILDAN M W, LUBIS F I. Fabrication and characterization of chitosan/cellulose nanocrystal/glycerol bio-composite films[J]. Polymers (Basel),2021,13(7):1096. doi: 10.3390/polym13071096
    [28]
    TAVARES K, CAMPOS A, MITSUYUKI M, et al. Corn and cassava starch with carboxymethyl cellulose films and its mechanical and hydrophobic properties[J]. Carbohydrate Polymers,2019,223:115055. doi: 10.1016/j.carbpol.2019.115055
    [29]
    FEKETE E, BELLA É, CSISZÁR E, et al. Improving physical properties and retrogradation of thermoplastic starch by incorporating agar[J]. International Journal of Biological Macromolecules,2019,136:1026−1033. doi: 10.1016/j.ijbiomac.2019.06.109
  • Related Articles

    [1]WANG Xiaoyu, WANG Zhenzhen, HU Mengya, DAI Jing, SHA Ruyi, MAO Jianwei. Metabolomics Analysis of Five Types of Wangdu Chili Peppers Based on HPLC and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(20): 14-22. DOI: 10.13386/j.issn1002-0306.2024010245
    [2]HUANG Chen, GUO Dejun, YOU Gang, QIN Ningjing. Effect of Different Baking Degrees of Oak on Lychee Brandy Volatility Flavor Based on Electronic Nose and GC-MS[J]. Science and Technology of Food Industry, 2024, 45(2): 252-259. DOI: 10.13386/j.issn1002-0306.2023030239
    [3]SUN Xiao-jian, YU Peng-fei, LI Chen-chen, LIU Chang-jin. Analysis of Volatile Components in Vacuum Freeze-dried Toona sinensis by HS-SPME Combined with GC-MS[J]. Science and Technology of Food Industry, 2019, 40(16): 196-200. DOI: 10.13386/j.issn1002-0306.2019.16.033
    [4]BAI Xue, YANG Shuang, MENG Xin. Effect of Microbial Lipase on the Flavor of Dairy Products by GC-MS Combined with Electronic Nose[J]. Science and Technology of Food Industry, 2018, 39(14): 209-212,218. DOI: 10.13386/j.issn1002-0306.2018.14.039
    [5]YANG Shuang, BAI Xue, MENG Xin. Effect of Chicken Protease on Chicken Flavor by Electronic Nose Combined with GC-MS Detection[J]. Science and Technology of Food Industry, 2018, 39(13): 252-256. DOI: 10.13386/j.issn1002-0306.2018.13.046
    [6]ZHANG Di-ya, XIE Dan-ting, LI Ye. Comparison of volatile components in different parts of beef by electronic nose and GC-MS[J]. Science and Technology of Food Industry, 2017, (21): 241-246. DOI: 10.13386/j.issn1002-0306.2017.21.048
    [7]ZHANG Wen-jie, LIU Cong, YAN Liang, ZHENG Ting-ting, MA Li, ZHAO Miao-miao. Analysis of aroma components in pu-erh tea flower and flower powder by headspace solid-phase microextraction coupled with GC-MS[J]. Science and Technology of Food Industry, 2017, (16): 257-262. DOI: 10.13386/j.issn1002-0306.2017.16.049
    [8]FUN Qin-bao, CAI Wei-rong, XIE Liang-liang, PAN Hui, CAO Xue, ZENG Heng. Characterisation of volatile components of Lotus leaves by HS-SPME and SDE coupled to GC-MS[J]. Science and Technology of Food Industry, 2017, (15): 253-258. DOI: 10.13386/j.issn1002-0306.2017.15.047
    [9]YANG Ying-chun, WANG Qiang, YANG Jie. Fatty acid composition of Portulaca oleracea seeds oil with GC-MS[J]. Science and Technology of Food Industry, 2014, (14): 147-150. DOI: 10.13386/j.issn1002-0306.2014.14.024
    [10]ZHAO Lin-min, QI Cheng-mei, LIU Xiao-wen, LUO Ying, YUAN Zhi-hui, ZHANG Zu-jiao, WANG Zong-cheng. Analysis of ginger oleoresin in Jiangyong fragrant-ginger by GC-MS[J]. Science and Technology of Food Industry, 2014, (06): 78-80. DOI: 10.13386/j.issn1002-0306.2014.06.005
  • Cited by

    Periodical cited type(10)

    1. 刘毕琴,陈骏飞,罗义勇,赵勇,万幸,蔡英丽,唐蓉,史巧,李宏. 发酵蔬菜来源具抑菌活性明串珠菌的筛选及其细菌素基因簇挖掘. 食品工业科技. 2024(11): 142-150 . 本站查看
    2. 孙淑倩,徐凤娟,王磊,赵彦翠. 乳酸菌细菌素的研究与应用. 食品科技. 2024(09): 12-18 .
    3. 潘果,王云飞,钟忻桐,苏惠,马明瑞,董文龙,李国江,尹柏双. 抗鼠伤寒沙门氏菌的乳酸菌细菌素生物学特性及其抑菌机制初步研究. 饲料研究. 2024(17): 115-120 .
    4. 陈淑钧,刘亚楠,翁佩芳,吴祖芳,刘连亮. 乳酸菌接种发酵对腌制雪菜挥发性风味的影响. 中国食品学报. 2024(11): 310-324 .
    5. 白霞,崔梦含,朱鹏程,苏雅航,刘爽,王金丽,李东亮,唐俊妮. 3株魏斯氏菌的分离鉴定与生物学特性研究. 食品安全质量检测学报. 2023(09): 59-69 .
    6. 李厚强. 具有抑菌作用乳酸菌筛选及其在红酸汤生产中的应用. 食品安全质量检测学报. 2023(11): 164-170 .
    7. 焦明,罗玉霞,陈亚男,舒伦,吉林台,金山. 乳酸片球菌R-4细菌素PA-1原核表达及其理化特性. 食品与生物技术学报. 2023(11): 98-105 .
    8. 张建飞. 一株产细菌素粪链球菌N9301的分离鉴定及生物学特性研究. 饲料研究. 2022(08): 78-82 .
    9. 许晓燕,彭珍,熊世进,肖沐岩,黄涛,熊涛. 乳酸乳球菌乳亚种NCU036018细菌素的分离纯化及其抗菌机制. 食品科学. 2022(16): 209-216 .
    10. 秦雅莉,于福田,赵笑颍,沈圆圆,董诗瑜,刘小玲. 发酵乳杆菌SS-31培养基及发酵条件的优化. 食品与生物技术学报. 2022(12): 48-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (300) PDF downloads (57) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return