CUI Baocheng, HUANG Jiao, LI Jiaxin, et al. Modification of Substrate Affinity of Nitrile Hydratase Based on Amino Acid Hotspot Mutation[J]. Science and Technology of Food Industry, 2022, 43(7): 148−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080147.
Citation: CUI Baocheng, HUANG Jiao, LI Jiaxin, et al. Modification of Substrate Affinity of Nitrile Hydratase Based on Amino Acid Hotspot Mutation[J]. Science and Technology of Food Industry, 2022, 43(7): 148−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080147.

Modification of Substrate Affinity of Nitrile Hydratase Based on Amino Acid Hotspot Mutation

More Information
  • Received Date: August 15, 2021
  • Available Online: February 09, 2022
  • Objective: A semi-rational design was used to increase the affinity of the nitrile hydratase (ReNHase) derived from Rhodococcus erythropolis CCM2595 with the substrate nicotinonitrile. Methods: The 1AHJ protein with high homology was found through sequence comparison and evaluated by software Swiss-Model and iTASSER. The molecular docking of nicotinonitrile with 1AHJ was then performed with Discovery Studio 2016 (DS), which aimed to obtain the virtual amino acid mutations with significantly improved affinity. The mutant recombinant plasmid was then constructed and transformed into E. coli expression competent cells for heterologous expression. After the purification of mutant ReNHase from the recombined E. coli, the biotransformation of nicotinonitrile was detected and analyzed by high performance liquid chromatography. Results: According to predicting the calculate mutation energy (Binding) of nicotinonitrile with ReNHase, CYS113 and CYS115 of αsubunit were mutated to TYR (C113Y) and ASN (C115N), VAL52 of βsubunit was mutated to ARG (V52R). According to the kinetic parameters of the reaction by the purified ReNHase followed the Michaelis–Menten model, the Km value of mutant ReNHase C113Y /C115N/ V52R decreased from 16.78 mmol/L to 12.69 mmol/L when compared with wild ReNHase, the enzyme activity increased from 12.14 U/mL to 15.15 U/mL. Conclusion: Compared with wild ReNHase, the substrate affinity of nicotinitrile with mutant ReNHase C113Y /C115N/ V52R increased by 24.37%, the enzyme activity increased by 24.79%. The above results provided a new theoretical basis for the industrial application of nicotinonitrile.
  • [1]
    徐兆瑜. 烟酸和烟酰胺的合成和应用[J]. 精细化工原料及中间体,2003,9:6−9. [XU Z Y. Synthesis and application of niacin and nicotinamide[J]. Journal of Fine Chemical Materials and Intermediates,2003,9:6−9.
    [2]
    ZHANG Z J, PAN J, LI C X, et al. Efficient production of (R)-(-)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase[J]. Bioprocess Biosyst Eng,2014,37(7):1241−1248. doi: 10.1007/s00449-013-1096-y
    [3]
    PRASAD S, MISRA A, JANGIR V P, et al. A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis[J]. World Journal of Microbiology and Biotechnology,2006,23(3):345−353.
    [4]
    ULLAH A, ZHAO T, MUHAMMAD M T, et al. Synthesis of novel nicotinamide susbstituted phthalocyanine and photodynamic antomicrobial chemotherapy evaluation potentiated by potassium iodide against the gram positive S. aureus and gram negative E. coli[J]. Biotechnol Lett,2021,43(4):781−790. doi: 10.1007/s10529-020-03071-0
    [5]
    BORLONGAN C V, GRIFFIN S M, PICKARD M R, et al. Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells[J]. Plos One,2020,15(9):e0233477. doi: 10.1371/journal.pone.0233477
    [6]
    YANG Z, PEI X, XU G, et al. Efficient production of 2, 6-difluorobenzamide by recombinant Escherichia coli expressing the Aurantimonas manganoxydans nitrile hydratase[J]. Appl Biochem Biotechnol,2019,187(2):439−449. doi: 10.1007/s12010-018-2823-2
    [7]
    BHALLA T C, KUMAR V, THAKUR N, et al. Nitrile metabolizing enzymes in biocatalysis and biotransformation[J]. Appl Biochem Biotechnol,2018,185(4):925−946. doi: 10.1007/s12010-018-2705-7
    [8]
    MASHWEU A R, CHHIBA-GOVINDJEE V P, BODE M L, et al. Substrate profiling of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA870[J]. Molecules,2020,25(1):238. doi: 10.3390/molecules25010238
    [9]
    VESELA A B, RUCKA L, KAPLAN O, et al. Bringing nitrilase sequences from databases to life: The search for novel substrate specificities with a focus on dinitriles[J]. Appl Microbiol Biotechnol,2016,100(5):2193−2202. doi: 10.1007/s00253-015-7023-1
    [10]
    XIA Y, PEPLOWSKI L, CHENG Z, et al. Metallochaperone function of the self-subunit swapping chaperone involved in the maturation of subunit-fused cobalt-type nitrile hydratase[J]. Biotechnol Bioeng,2019,116(3):481−489. doi: 10.1002/bit.26865
    [11]
    SUN J, YU H, CHEN J, et al. Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase[J]. J Ind Microbiol Biotechnol,2016,43(12):1631−1639. doi: 10.1007/s10295-016-1840-9
    [12]
    WANG L, LIU S X, DU W J, et al. High Regioselectivity production of 5-cyanovaleramide from adiponitrile by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595[J]. ACS Omega,2020,5(29):18397−18402. doi: 10.1021/acsomega.0c02188
    [13]
    DU W J, HUANG J, CUI B C, et al. Efficient biodegradation of nitriles by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595[J]. Biotechnology, Biotechnological Equipment,2021,35(1):1127−1135. doi: 10.1080/13102818.2021.1941253
    [14]
    CHEN Q M, XIAO Y Q, SHAKHNOVICH E I, et al. Semi-rational design and molecular dynamics simulations study of the thermostability enhancement of cellobiose 2-epimerases[J]. International Journal of Biological Macromolecules,2020,154:1356−1365. doi: 10.1016/j.ijbiomac.2019.11.015
    [15]
    SCHWEDE T, KOPP J, GUEX N, et al. SWISS-MODEL: An automated protein homology-modeling server[J]. Nucleic Acids Res,2003,31(13):3381−3385. doi: 10.1093/nar/gkg520
    [16]
    WU S, SKOLNICK J, ZHANG Y. Ab initio modeling of small proteins by iterative TASSER simulations[J]. BMC Biol,2007,5:17. doi: 10.1186/1741-7007-5-17
    [17]
    ESWAR N, WEBB B, MARTI-RENOM M A, et al. Comparative protein structure modeling using Modeller [J]. Curr Protoc Bioinformatics, 2006, Chapter 5: Unit-5 6.
    [18]
    PEIWEN F E I, DEIRY E L, WAFIK S. P53 and radiation responses[J]. Oncogene,2003,22(37):5774−5783. doi: 10.1038/sj.onc.1206677
    [19]
    EISENTHAL R, DANSON M J, HOUGH DW. Catalytic efficiency and kcat/KM: A useful comparator?[J]. Trends Biotechnol,2007,25(6):247−249. doi: 10.1016/j.tibtech.2007.03.010
    [20]
    BREVERN A, BORNOT A, CRAVEUR P, et al. PredyFlexy: Flexibility and local structure prediction from sequence[J]. Nucleic Acids Research,2012,40(W1):W317−W322. doi: 10.1093/nar/gks482
    [21]
    YANG J, YAN R, ROY A, et al. The I-TASSER Suite: Protein structure and function prediction[J]. Nat Methods,2015,12(1):7−8. doi: 10.1038/nmeth.3213
    [22]
    ROBUSTELLI P, PIANA S, SHAW D E. Developing a molecular dynamics force field for both folded and disordered protein states[J]. Proceedings of the National Academy of Sciences,2018,115(21):E4758−E4766. doi: 10.1073/pnas.1800690115
    [23]
    ZONG Z Y, GAO L, CAI W S, et al. Computer-assisted rational modifications to improve the thermostability of β-glucosidase from Penicillium piceum H16[J]. BioEnergy Research,2015,8(3):1384−1390. doi: 10.1007/s12155-015-9603-4
    [24]
    RAMOS R M, MOREIRA I S. Computational alanine scanning mutagenesis-an improved methodological approach for protein-DNA complexes[J]. J Chem Theory Comput,2013,9(9):4243−4256. doi: 10.1021/ct400387r
    [25]
    GILEADI O. Recombinant protein expression in E. coli: A historical perspective[J]. Methods Mol Biol,2017,1586:3−10.
  • Related Articles

    [1]FAN Wenguang, ZHENG Haijun, TIAN Hui, REN Haiwei, TIAN Yaqin, PAN Lichao, YANG Weixia. Research Progress on the Application of Nano-TiO2 Composite Film in Food Packaging[J]. Science and Technology of Food Industry, 2025, 46(7): 425-434. DOI: 10.13386/j.issn1002-0306.2024040508
    [2]WU Shuangjie, ZHI Jinjin, WANG Dehua, REN Pengfei, LI Zhaojie, XUE Changhu, TANG Qingjuan. Application of Photosensitive Chitosan-based Composite Films in the Preservation of Litopenaeus vannamei[J]. Science and Technology of Food Industry, 2023, 44(21): 367-372. DOI: 10.13386/j.issn1002-0306.2023020016
    [3]JI Dengjie, XU Yineng, YANG Wei, MA Jie, WANG Lei, CHEN Li. Preparation and Properties of Modified Scallop Shell Powder and Chitosan Composite Film[J]. Science and Technology of Food Industry, 2022, 43(14): 268-275. DOI: 10.13386/j.issn1002-0306.2021110118
    [4]HU Wanting, LUO Man, LU Jieyi, HUANG Yuchun, QIAO Dongling. Preparation and Properties of Agar/Konjac Glucomannan/Ethyl Cellulose Composite Film[J]. Science and Technology of Food Industry, 2022, 43(11): 260-266. DOI: 10.13386/j.issn1002-0306.2021090150
    [5]LI Ying, YANG Xinyue, WANG Xueyu, ZHAO Mengna, FENG Jia, XIA Xiufang. Research Progress on the Film-forming Mechanism and Characteristics of Chitosan-based Composite Membranes[J]. Science and Technology of Food Industry, 2022, 43(7): 430-438. DOI: 10.13386/j.issn1002-0306.2021040015
    [6]XU Jing, YE Rui, SHI Rui, CHENG Wen-jian, CHEN Li-jiao, LIANG Peng. Preparation and Properties of Fish Skin Collagen Fiber-starch Composite Film[J]. Science and Technology of Food Industry, 2020, 41(7): 30-36. DOI: 10.13386/j.issn1002-0306.2020.07.006
    [7]GUO Li, WANG Peng, LIU Dong-qi, WANG Xiao-meng. Preparation and Physicochemical Properties of Hyaluronic Acid-Gelatin Composite Films[J]. Science and Technology of Food Industry, 2019, 40(22): 217-222. DOI: 10.13386/j.issn1002-0306.2019.22.038
    [8]LI Chen-hui, YU Xiao-qian, DONG Ru-yue, LIU Zun-ying. Preparation and Characterization of Composite Films Incorporated with Chitosan,Gelatin and Rosemary[J]. Science and Technology of Food Industry, 2019, 40(10): 57-61,67. DOI: 10.13386/j.issn1002-0306.2019.10.010
    [9]YU Zuo-long, RAO Gui-wei, YAN Xiao-ping, HUO Po, WANG Chao, Tatsiana SAVITSKAYA, Dzmitry HRYNSHPAN. Preparation and Properties of Pea Starch/ε-Poly Lysine Composite Films[J]. Science and Technology of Food Industry, 2018, 39(13): 89-93,242. DOI: 10.13386/j.issn1002-0306.2018.13.017
    [10]DONG Zeng, ZHANG Xing-tao, SHAO Yu-chen, WEI Dai-xian, CAO Wen-gen, GAO Gui-zhen. Preparation and characterization of Vigna radiata (Linn.) Wilczek starch/PVA composite films[J]. Science and Technology of Food Industry, 2017, (22): 215-219. DOI: 10.13386/j.issn1002-0306.2017.22.042
  • Cited by

    Periodical cited type(10)

    1. 罗秀群,孙光城,林丹,许程剑,袁灿,何莲,贾洪锋. 基于模糊数学感官评价法优化香辣牛肉牛肝菌酱工艺及游离氨基酸分析. 中国调味品. 2024(04): 66-73+95 .
    2. 徐嘉俊,陈丽萍,陈虹宇,李海生,姚昕. 风味石榴花酱加工条件优化. 南方农业. 2024(03): 181-185 .
    3. 胡慧倩,蒋秉琦,李军明,王倩宁. 甘味豆豉牦牛肉辣椒酱制作工艺研究. 食品安全导刊. 2024(28): 106-109+113 .
    4. 赵建英,房文轩,白建. 新型蔬菜酱的工艺研究及品质检验. 中国食品添加剂. 2023(02): 163-173 .
    5. 陈建旭,陈志光,卓成靖,吴婉贞. 基于模糊数学评定与正交试验优化香菇银鱼仔辣酱的研制. 食品工业. 2023(03): 100-105 .
    6. 管庆林,周笑犁,覃志成,王艳丽,秦宇蒙,钟定江. 香菇酸辣酱配方优化及其品质分析. 食品工业科技. 2023(10): 185-194 . 本站查看
    7. 王荣兰,刘莹莹,胡燕,陈健,胡舰,朱云龙. 响应面法优化白玉菇鸡肉辣椒酱加工工艺. 中国调味品. 2023(07): 32-36 .
    8. 陈庆,何欧伶,李其艳,田时雨. 一种葛根曲奇饼干的工艺优化. 现代食品. 2023(09): 80-85 .
    9. 曾凡芝,朱茂华,周利兵. 山黄皮、山奈、十三香燃烧稳定性和多指标计量分析研究. 安徽化工. 2022(05): 120-122+143 .
    10. 管庆林,周笑犁,韦雪,杨莹莹,田其明,钟定江. 不同贮藏温度下香菇油辣椒酱品质变化规律及货架期预测. 食品研究与开发. 2022(22): 145-152 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (220) PDF downloads (34) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return