Citation: | CUI Baocheng, HUANG Jiao, LI Jiaxin, et al. Modification of Substrate Affinity of Nitrile Hydratase Based on Amino Acid Hotspot Mutation[J]. Science and Technology of Food Industry, 2022, 43(7): 148−154. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080147. |
[1] |
徐兆瑜. 烟酸和烟酰胺的合成和应用[J]. 精细化工原料及中间体,2003,9:6−9. [XU Z Y. Synthesis and application of niacin and nicotinamide[J]. Journal of Fine Chemical Materials and Intermediates,2003,9:6−9.
|
[2] |
ZHANG Z J, PAN J, LI C X, et al. Efficient production of (R)-(-)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase[J]. Bioprocess Biosyst Eng,2014,37(7):1241−1248. doi: 10.1007/s00449-013-1096-y
|
[3] |
PRASAD S, MISRA A, JANGIR V P, et al. A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis[J]. World Journal of Microbiology and Biotechnology,2006,23(3):345−353.
|
[4] |
ULLAH A, ZHAO T, MUHAMMAD M T, et al. Synthesis of novel nicotinamide susbstituted phthalocyanine and photodynamic antomicrobial chemotherapy evaluation potentiated by potassium iodide against the gram positive S. aureus and gram negative E. coli[J]. Biotechnol Lett,2021,43(4):781−790. doi: 10.1007/s10529-020-03071-0
|
[5] |
BORLONGAN C V, GRIFFIN S M, PICKARD M R, et al. Nicotinamide restricts neural precursor proliferation to enhance catecholaminergic neuronal subtype differentiation from mouse embryonic stem cells[J]. Plos One,2020,15(9):e0233477. doi: 10.1371/journal.pone.0233477
|
[6] |
YANG Z, PEI X, XU G, et al. Efficient production of 2, 6-difluorobenzamide by recombinant Escherichia coli expressing the Aurantimonas manganoxydans nitrile hydratase[J]. Appl Biochem Biotechnol,2019,187(2):439−449. doi: 10.1007/s12010-018-2823-2
|
[7] |
BHALLA T C, KUMAR V, THAKUR N, et al. Nitrile metabolizing enzymes in biocatalysis and biotransformation[J]. Appl Biochem Biotechnol,2018,185(4):925−946. doi: 10.1007/s12010-018-2705-7
|
[8] |
MASHWEU A R, CHHIBA-GOVINDJEE V P, BODE M L, et al. Substrate profiling of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA870[J]. Molecules,2020,25(1):238. doi: 10.3390/molecules25010238
|
[9] |
VESELA A B, RUCKA L, KAPLAN O, et al. Bringing nitrilase sequences from databases to life: The search for novel substrate specificities with a focus on dinitriles[J]. Appl Microbiol Biotechnol,2016,100(5):2193−2202. doi: 10.1007/s00253-015-7023-1
|
[10] |
XIA Y, PEPLOWSKI L, CHENG Z, et al. Metallochaperone function of the self-subunit swapping chaperone involved in the maturation of subunit-fused cobalt-type nitrile hydratase[J]. Biotechnol Bioeng,2019,116(3):481−489. doi: 10.1002/bit.26865
|
[11] |
SUN J, YU H, CHEN J, et al. Ammonium acrylate biomanufacturing by an engineered Rhodococcus ruber with nitrilase overexpression and double-knockout of nitrile hydratase and amidase[J]. J Ind Microbiol Biotechnol,2016,43(12):1631−1639. doi: 10.1007/s10295-016-1840-9
|
[12] |
WANG L, LIU S X, DU W J, et al. High Regioselectivity production of 5-cyanovaleramide from adiponitrile by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595[J]. ACS Omega,2020,5(29):18397−18402. doi: 10.1021/acsomega.0c02188
|
[13] |
DU W J, HUANG J, CUI B C, et al. Efficient biodegradation of nitriles by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595[J]. Biotechnology, Biotechnological Equipment,2021,35(1):1127−1135. doi: 10.1080/13102818.2021.1941253
|
[14] |
CHEN Q M, XIAO Y Q, SHAKHNOVICH E I, et al. Semi-rational design and molecular dynamics simulations study of the thermostability enhancement of cellobiose 2-epimerases[J]. International Journal of Biological Macromolecules,2020,154:1356−1365. doi: 10.1016/j.ijbiomac.2019.11.015
|
[15] |
SCHWEDE T, KOPP J, GUEX N, et al. SWISS-MODEL: An automated protein homology-modeling server[J]. Nucleic Acids Res,2003,31(13):3381−3385. doi: 10.1093/nar/gkg520
|
[16] |
WU S, SKOLNICK J, ZHANG Y. Ab initio modeling of small proteins by iterative TASSER simulations[J]. BMC Biol,2007,5:17. doi: 10.1186/1741-7007-5-17
|
[17] |
ESWAR N, WEBB B, MARTI-RENOM M A, et al. Comparative protein structure modeling using Modeller [J]. Curr Protoc Bioinformatics, 2006, Chapter 5: Unit-5 6.
|
[18] |
PEIWEN F E I, DEIRY E L, WAFIK S. P53 and radiation responses[J]. Oncogene,2003,22(37):5774−5783. doi: 10.1038/sj.onc.1206677
|
[19] |
EISENTHAL R, DANSON M J, HOUGH DW. Catalytic efficiency and kcat/KM: A useful comparator?[J]. Trends Biotechnol,2007,25(6):247−249. doi: 10.1016/j.tibtech.2007.03.010
|
[20] |
BREVERN A, BORNOT A, CRAVEUR P, et al. PredyFlexy: Flexibility and local structure prediction from sequence[J]. Nucleic Acids Research,2012,40(W1):W317−W322. doi: 10.1093/nar/gks482
|
[21] |
YANG J, YAN R, ROY A, et al. The I-TASSER Suite: Protein structure and function prediction[J]. Nat Methods,2015,12(1):7−8. doi: 10.1038/nmeth.3213
|
[22] |
ROBUSTELLI P, PIANA S, SHAW D E. Developing a molecular dynamics force field for both folded and disordered protein states[J]. Proceedings of the National Academy of Sciences,2018,115(21):E4758−E4766. doi: 10.1073/pnas.1800690115
|
[23] |
ZONG Z Y, GAO L, CAI W S, et al. Computer-assisted rational modifications to improve the thermostability of β-glucosidase from Penicillium piceum H16[J]. BioEnergy Research,2015,8(3):1384−1390. doi: 10.1007/s12155-015-9603-4
|
[24] |
RAMOS R M, MOREIRA I S. Computational alanine scanning mutagenesis-an improved methodological approach for protein-DNA complexes[J]. J Chem Theory Comput,2013,9(9):4243−4256. doi: 10.1021/ct400387r
|
[25] |
GILEADI O. Recombinant protein expression in E. coli: A historical perspective[J]. Methods Mol Biol,2017,1586:3−10.
|
1. |
高紫珊,杨意,李军,谢镇蔚,萧雅泳,敬思群,华军利,康会茹,肖志平,杨柳斌. 马蹄三部位生物活性初筛. 中国果菜. 2024(05): 40-47 .
![]() |