Citation: | CHEN Zhina, CAO Shiyi, YIN Linlin, et al. Safety and Probiotic Evaluation of Lactiplantibacillus plantarum CHEN1 and Its Metabolic Analysis of Soymilk Oligosaccharides[J]. Science and Technology of Food Industry, 2025, 46(10): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024110347. |
[1] |
张素平, 林晓颖, 徐明超, 等. 棒状腐败乳杆菌Lc7的生物学特性及益生作用[J]. 微生物学报,2023,63(1):319−332. [ZHANG S P, LIN X Y, XU M C, et al. Biological characteristics and probiotic effect of Loigolactobacillus coryniformis Lc7[J]. Acta Microbiologica Sinica,2023,63(1):319−332.]
ZHANG S P, LIN X Y, XU M C, et al. Biological characteristics and probiotic effect of Loigolactobacillus coryniformis Lc7[J]. Acta Microbiologica Sinica, 2023, 63(1): 319−332.
|
[2] |
KATIKU M M, MATOFARI J W, NDUKO J M. Preliminary evaluation of probiotic properties and safety profile of Lactiplantibacillus plantarum isolated from spontaneously fermented milk, Amabere amaruranu[J]. Heliyon,2022,8(8):e10342. doi: 10.1016/j.heliyon.2022.e10342
|
[3] |
MIN Z, YUNYUN J, MIAO C, et al. Characterization and ACE inhibitory activity of fermented milk with probiotic Lactobacillus plantarum K25 as analyzed by GC-MS-based metabolomics approach[J]. Journal of Microbiology and Biotechnology,2020,30(6):903−911. doi: 10.4014/jmb.1911.11007
|
[4] |
BEHERA S S, RAY R C, ZDOLEC N. Lactobacillus plantarum with functional properties:an approach to increase safety and shelf-life of fermented foods[J]. BioMed Research International, 2018:9361614.
|
[5] |
WANG Y, XING X, MA Y, et al. Prevention of high-fat-diet-induced dyslipidemia by Lactobacillus plantarum LP104 through mediating bile acid enterohepatic axis circulation and intestinal flora[J]. Journal of Agricultural and Food Chemistry,2023,71(19):7334−7347. doi: 10.1021/acs.jafc.2c09151
|
[6] |
LIU Z, ZHAO J, SUN R, et al. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice[J]. Food & Function,2022,13(11):5971−5986.
|
[7] |
YUE Y, HE Z, ZHOU Y, et al. Lactobacillus plantarum relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation[J]. Food & Function,2020,11(12):10362−10374.
|
[8] |
SILVA D R, SARDI J C O, DE SOUZA PITANGUI N, et al. Probiotics as an alternative antimicrobial therapy:Current reality and future directions[J]. Journal of Functional Foods,2020,73:104080. doi: 10.1016/j.jff.2020.104080
|
[9] |
SHAROBA A M, SOLIMAN A H S, RADI O M M, et al. Evaluation of Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum for probiotic characteristics[J]. Middle East Journal of Agriculture Research,2015,5(1):10−18.
|
[10] |
CABABA M D, SALMINEN S, SANDERS M E. Probiotic safety-reasonable certainty of no harm[J]. JAMA Internal Medicine,2019,179(2):276−276.
|
[11] |
JANG J M, YANG Y, WANG R, et al. Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk[J]. International Journal of Biological Macromolecules,2019,131:1138−1146. doi: 10.1016/j.ijbiomac.2019.04.060
|
[12] |
MAO B, TANG H, GU J, et al. In vitro fermentation of raffinose by the human gut bacteria[J]. Food & Function,2018,9(11):5824−5831.
|
[13] |
DELGADO-FERNANDEZ P, PLAZA-VINUESA L, HERNANDEZ-HERNANDEZ O, et al. Unravelling the carbohydrate specificity of MelA from Lactobacillus plantarum WCFS1:An α-galactosidase displaying regioselective transgalactosylation[J]. International Journal of Biological Macromolecules,2020,153:1070−1079. doi: 10.1016/j.ijbiomac.2019.10.237
|
[14] |
SINGH B P, VIJ S. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk:A LC-MS/MS based revelation for peptides biofunctionality[J]. LWT-Food Science and Technology,2017,86:293−301. doi: 10.1016/j.lwt.2017.08.013
|
[15] |
陈志娜, 尹琳琳, 刘锦, 等. 一株抑MRSA植物乳植杆菌CHEN1的全基因测序及产细菌素基因分析[J]. 食品科学,2024,45(22):43−50. [CHEN Z N, YIN L L, LIU J, et al. Whole genome sequencing and bacteriocin gene analysis of an anti-MRSA strain Lactiplantibacillus plantarum CHEN1[J]. Food Science,2024,45(22):43−50.]
CHEN Z N, YIN L L, LIU J, et al. Whole genome sequencing and bacteriocin gene analysis of an anti-MRSA strain Lactiplantibacillus plantarum CHEN1[J]. Food Science, 2024, 45(22): 43−50.
|
[16] |
程坤, 刘蕊, 孙思佳, 等. 基于全基因组测序的黄水芽胞杆菌Bacillus aquiflavi 3H-10安全性评价[J]. 食品与发酵工业,2022,48(17):49−56. [CHENG K, LIU R, SUN S J, et al. Safety evaluation of Bacillus aquiflavi 3H-10 based on whole genome sequencing[J]. Food and Fermentation Industries,2022,48(17):49−56.]
CHENG K, LIU R, SUN S J, et al. Safety evaluation of Bacillus aquiflavi 3H-10 based on whole genome sequencing[J]. Food and Fermentation Industries, 2022, 48(17): 49−56.
|
[17] |
罗强, 张明, 刘巧. 产细菌素屎肠球菌SC-Y112的体外益生性及安全性评价[J]. 食品科学,2021,42(11):154−160. [LUO Q, ZHANG M, LIU Q. Evaluation of in vitro probiotic and safety properties of Enterococcus faecium SC-Y112 producing bacteriocin[J]. Food Science,2021,42(11):154−160.]
LUO Q, ZHANG M, LIU Q. Evaluation of in vitro probiotic and safety properties of Enterococcus faecium SC-Y112 producing bacteriocin[J]. Food Science, 2021, 42(11): 154−160.
|
[18] |
魏梓晴, 詹紫瑶, 王阿利, 等. 酱油渣源副干酪乳杆菌体外安全性评价[J]. 食品与发酵工业,2022,48(11):80−86. [WEI Z Q, ZHAN Z Y, WANG A L, et al. In vitro safety evaluation of Lactobacillus paracasei from soy sauce residue[J]. Food and Fermentation Industries,2022,48(11):80−86.]
WEI Z Q, ZHAN Z Y, WANG A L, et al. In vitro safety evaluation of Lactobacillus paracasei from soy sauce residue[J]. Food and Fermentation Industries, 2022, 48(11): 80−86.
|
[19] |
王芬, 刘鹭, 李函彤, 等. 具有α-葡萄糖苷酶抑制作用益生菌的筛选及特性分析[J]. 食品科学,2018,39(16):192−200. [WANG F, LIU L, LI H T, et al. Screening for probiotics based on high α-glucosidase inhibitory activity[J]. Food Science,2018,39(16):192−200.]
WANG F, LIU L, LI H T, et al. Screening for probiotics based on high α-glucosidase inhibitory activity[J]. Food Science, 2018, 39(16): 192−200.
|
[20] |
DENG L, LIU L, FU T, et al. Genome sequence and evaluation of safety and probiotic potential of Lactiplantibacillus plantarum LPJZ-658[J]. Microorganisms,2023,11(6):1620. doi: 10.3390/microorganisms11061620
|
[21] |
陈志娜, 叶韬, 张慧宇, 等. 屎肠球菌R2发酵豆腐黄浆水的代谢作用[J]. 中国食品学报,2021,21(3):360−368. [CHEN Z N, YE T, ZHANG H Y, et al. Fermentation properties of Enterococcus faecium R2 for Tofu whey[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(3):360−368.]
CHEN Z N, YE T, ZHANG H Y, et al. Fermentation properties of Enterococcus faecium R2 for Tofu whey[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(3): 360−368.
|
[22] |
PENG Y Y, ZHONG S Y, XU X L, et al. Analysis of the safety and probiotic properties of Bifidobacterium longum B2-01 by complete genome sequencing combined with corresponding phenotypes[J]. LWT-Food Science and Technology,2023,189:115445. doi: 10.1016/j.lwt.2023.115445
|
[23] |
王英, 范琳琳, 施亚萍, 等. 具有抗氧化功能的副干酪乳杆菌FM-LP-4和干酪乳杆菌FM-M9-1的安全性初步评价[J]. 中国乳品工业,2019,47(11):4−7,13. [WANG Y, FAN L L, SHI Y P, et al. Safety assessment of Lactobacillus paracasei FM-LP-4 and Lactobacillus casei FM-M9-1 with high anti-oxidative activity[J]. China Dairy Industry,2019,47(11):4−7,13.]
WANG Y, FAN L L, SHI Y P, et al. Safety assessment of Lactobacillus paracasei FM-LP-4 and Lactobacillus casei FM-M9-1 with high anti-oxidative activity[J]. China Dairy Industry, 2019, 47(11): 4−7,13.
|
[24] |
GUEIMONDE M, SÁNCHEZ B, DE LOS REYES-GAVILÁN C G, et al. Antibiotic resistance in probiotic bacteria[J]. Frontiers in Microbiology,2013,4:51661.
|
[25] |
CHOKESAJJAWATEE N, SANTIYANONT P, CHANTARASAKHA K, et al. Safety assessment of a nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis[J]. Scientific Reports,2020,10(1):10241. doi: 10.1038/s41598-020-66857-2
|
[26] |
FLÓREZ A B, EGERVÄRN M, DANIELSEN M, et al. Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values[J]. Microbial Drug Resistance,2006,12(4):252−256. doi: 10.1089/mdr.2006.12.252
|
[27] |
ZHANG F, GAO J, WANG B, et al. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum[J]. Journal of Dairy Science,2018,101(4):2867−2874. doi: 10.3168/jds.2017-13323
|
[28] |
KWON Y J, CHUN B H, JUNG H S, et al. Safety assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180[J]. Journal of Microbiology and Biotechnology,2021,31(10):1420. doi: 10.4014/jmb.2106.06066
|
[29] |
FAN X, JIANG X, GUO Y, et al. In vitro and in vivo evaluation of the safety of Levilactobacillus brevis CGMCC1. 5954 with probiotic potential based on tri-generation whole genome sequencing and animal studies[J]. Food Bioscience, 2023, 53:102654.
|
[30] |
WEINSTEIN M P, LEWIS J S. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing:background, organization, functions, and processes[J]. Journal of Clinical Microbiology,2020,58(3):e01864.
|
[31] |
MASCO L, VAN HOORDE K, DE BRANDT E, et al. Antimicrobial susceptibility of Bifidobacterium strains from humans, animals and probiotic products[J]. Journal of Antimicrobial Chemotherapy,2006,58(1):85−94. doi: 10.1093/jac/dkl197
|
[32] |
RUIZ L, MARGOLLES A, SÁNCHEZ B. Bile resistance mechanisms in Lactobacillus and Bifidobacterium[J]. Frontiers in Microbiology,2013,4:396.
|
[33] |
GAO Y, LIU Y, SUN M, et al. Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics[J]. Journal of Dairy Science,2020,103(7):5916−5930. doi: 10.3168/jds.2019-18047
|
[34] |
LI J, ZHANG L, MU G, et al. Interpretation of safety and potential probiotic properties of Lactiplantibacillus plantarum Y42 based on genome-wide sequencing[J]. Food Bioscience,2023,56:103249. doi: 10.1016/j.fbio.2023.103249
|
[35] |
ZHANG L, MA H, KULYAR M F A, et al. Complete genome analysis of Lactobacillus fermentum YLF016 and its probiotic characteristics[J]. Microbial Pathogenesis,2022,162:105212. doi: 10.1016/j.micpath.2021.105212
|
[36] |
WANG C Y, LIN P R, NG C C, et al. Probiotic properties of Lactobacillus strains isolated from the feces of breast-fed infants and Taiwanese pickled cabbage[J]. Anaerobe,2010,16(6):78−585.
|
[37] |
RUIZ-RAMÍREZ Y, VALADEZ-BLANCO R, CALDERÓN-GARCÍA C, et al. Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications[J]. Frontiers in Microbiology,2023,14:1241581. doi: 10.3389/fmicb.2023.1241581
|
[38] |
SHEKH S L, DAVE J M, VYAS B R M. Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production[J]. LWT-Food Science and Technology,2016,74:234−241. doi: 10.1016/j.lwt.2016.07.052
|
[39] |
RAMOS C L, THORSEN L, SCHWAN R F, et al. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products[J]. Food Microbiology,2013,36(1):22−29. doi: 10.1016/j.fm.2013.03.010
|
[40] |
TODOROV S D, FURTADO D N, SAAD S M I, et al. Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon[J]. Journal of Applied Microbiology,2011,110(4):971−986. doi: 10.1111/j.1365-2672.2011.04950.x
|
[41] |
WANG X, WANG W, LÜ H, et al. Probiotic potential and wide-spectrum antimicrobial activity of lactic acid bacteria isolated from infant feces[J]. Probiotics and Antimicrobial Proteins,2021,13:90−101. doi: 10.1007/s12602-020-09658-3
|
[42] |
ZHANG X, JIN J, ZHAO J, et al. Study on a galactose decomposition strain of Lactiplantibacillus plantarum MWLp-4 from human milk:Safety evaluating and key genes analysis of potential probiotic function[J]. Food Bioscience,2023,54:102934. doi: 10.1016/j.fbio.2023.102934
|
[43] |
ISKANDAR C F, CAILLIEZ-GRIMAL C, BORGES F, et al. Review of lactose and galactose metabolism in lactic acid bacteria dedicated to expert genomic annotation[J]. Trends in Food Science & Technology,2019,88:121−132.
|
1. |
高阿波,李留安,胡鹏程,刘佳琦,魏怡,刘鼎阔. 高产苯乳酸菌株的筛选及发酵条件的优化. 中国饲料. 2024(09): 45-52 .
![]() |