ZHAO Xinying, RUAN Changqing, LI Zhijiang, et al. Properties, Physiological Functions and Applications of Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2025, 46(10): 12−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024080363.
Citation: ZHAO Xinying, RUAN Changqing, LI Zhijiang, et al. Properties, Physiological Functions and Applications of Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2025, 46(10): 12−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024080363.

Properties, Physiological Functions and Applications of Starch-Lipid Complexes

More Information
  • Received Date: August 28, 2024
  • Available Online: March 18, 2025
  • Starch-lipid complexes, the fifth type of resistant starch, result from the binding of starch's long-chain segments with oils or fatty acids, which alters the original starch's structure, properties, and physiological functions. This review examines the impact of starch-lipid complex formation on the physicochemical characteristics of starch, including gelatinization, swelling, freeze-thaw stability, and rheological properties, as well as its digestive capabilities. Furthermore, it explores the physiological effects on stabilizing the intestinal environment, glucose metabolism, lipid metabolism, and mitigating neurological disorders. The applications of starch-lipid complexes in the food industry are also discussed. The distinctive properties and physiological impacts of starch-lipid complexes suggest promising prospects for future research and applications.
  • [1]
    ENGLYST H N, CUMMINGS J H. Digestion of the polysaccharides of some cereal foods in the human small intestine[J]. The American Journal of Clinical Nutrition,1985,42(5):778−787. doi: 10.1093/ajcn/42.5.778
    [2]
    赵克东, 阮长青, 李志江, 等. 超声辅助制备抗性淀粉研究进展[J]. 食品工业科技,2025,46(5):8−16. [ZHAO K D, RUAN C Q, LI Z J, et al. Research progress on ultrasound-assisted preparation of resistant starch[J]. Science and Technology of Food Industry,2025,46(5):8−16.]

    ZHAO K D, RUAN C Q, LI Z J, et al. Research progress on ultrasound-assisted preparation of resistant starch[J]. Science and Technology of Food Industry, 2025, 46(5): 8−16.
    [3]
    PUTSEYS J A, LIEVE L, DELCOUR J A. Amylose-inclusion complexes:Formation, identity and physico-chemical properties[J]. Journal of Cereal Science,2010,51(3):238−247. doi: 10.1016/j.jcs.2010.01.011
    [4]
    董营. 湿法研磨辅助制备淀粉-脂质复合物及其作用机制研究[D]. 泰安:山东农业大学, 2024. [DONG Y. Preparation of starch-lipid complex assisted by wet grinding and its mechanism analysis[D]. Taian:Shandong Agricultural University, 2024.]

    DONG Y. Preparation of starch-lipid complex assisted by wet grinding and its mechanism analysis[D]. Taian: Shandong Agricultural University, 2024.
    [5]
    闫紫晴. 茶多酚对淀粉-脂质复合物形成及体外发酵特性的影响[D]. 天津:天津科技大学, 2024. [YAN Z Q. Effects of polyphenols on the formation and in vitro fermentation properties of starch-lipid complexes[D]. Tianjin:Tianjin University of Science and Technology, 2024.]

    YAN Z Q. Effects of polyphenols on the formation and in vitro fermentation properties of starch-lipid complexes[D]. Tianjin: Tianjin University of Science and Technology, 2024.
    [6]
    NARJABADIFAM A, ABAZADEH B, FAKHRABADI M M S. Graphyne nano-spirals under tension:Effects of base structures on superelasticity and fracture mechanisms[J]. Mechanics of Materials,2022,171:104367. doi: 10.1016/j.mechmat.2022.104367
    [7]
    石少侠, 董瑶瑶, 李琪, 等. 淀粉-脂质复合物功能及营养特性研究进展[J]. 食品科学,2020,41(9):238−245. [SHI S X, DONG Y Y, LI Q, et al. Asvances in functional and nutritional properties of starch-lipid complexes[J]. Food Science,2020,41(9):238−245.]

    SHI S X, DONG Y Y, LI Q, et al. Asvances in functional and nutritional properties of starch-lipid complexes[J]. Food Science, 2020, 41(9): 238−245.
    [8]
    OYEYINKA S A, SINGH S, AMONSOU E O. A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes[J]. Food Chemistry,2021,349:129165. doi: 10.1016/j.foodchem.2021.129165
    [9]
    董吉林, 杨溢, 申瑞玲, 等. 燕麦淀粉-硬脂酸复合物的制备及其性质研究[J]. 粮食与油脂,2019,32(5):15−19. [DONG J L, YANG Y, SHEN R L, et al. Study on preparation and properties of oat starch-stearic acid complex[J]. Cereals & Oils,2019,32(5):15−19.] doi: 10.3969/j.issn.1008-9578.2019.05.005

    DONG J L, YANG Y, SHEN R L, et al. Study on preparation and properties of oat starch-stearic acid complex[J]. Cereals & Oils, 2019, 32(5): 15−19. doi: 10.3969/j.issn.1008-9578.2019.05.005
    [10]
    OSKAYBAŞ-EMLEK B, ÖZBEY A, AYDEMIR L Y, et al. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra[J]. International Journal of Biological Macromolecules,2022,207:978−989. doi: 10.1016/j.ijbiomac.2022.03.189
    [11]
    YANG Y, WANG L, LI Y, et al. Investigation the molecular degradation, starch-lipid complexes formation and pasting properties of wheat starch in instant noodles during deep-frying treatment[J]. Food Chemistry,2019,283(283):287−293.
    [12]
    孙梦. 大米淀粉-甘油单棕榈酸酯复合物的制备及其对米蛋糕品质的影响[D]. 哈尔滨:哈尔滨商业大学, 2024. [SUN M. Preparation of rice starch-glycerol monopalmiate complex and its effect on the quality of rice cake[D]. Harbin:Harbin University of Commerce, 2024.]

    SUN M. Preparation of rice starch-glycerol monopalmiate complex and its effect on the quality of rice cake[D]. Harbin: Harbin University of Commerce, 2024.
    [13]
    陈旭. 蛋白和脂质对淀粉消化特性的影响机理研究[D]. 广州:华南理工大学, 2018. [CHEN X. Mechanism for the digestion properties of starch influenced by lipid and protein[D]. Guangzhou:South China University of Technology, 2018.]

    CHEN X. Mechanism for the digestion properties of starch influenced by lipid and protein[D]. Guangzhou: South China University of Technology, 2018.
    [14]
    王睿. 马铃薯淀粉-脂质复合物的构建及其耐酶解机理研究[D]. 济宁:齐鲁工业大学, 2019. [WANG R. Construction of potato starch-lipid complex and its mechanism of enzymatic hydrolysis[D]. Jining:Qilu University of Technology, 2019.]

    WANG R. Construction of potato starch-lipid complex and its mechanism of enzymatic hydrolysis[D]. Jining: Qilu University of Technology, 2019.
    [15]
    HU X Y, LI Z Y, WANG F Y, et al. Formation of starch-lipid complexes during the deep-frying process and its effects on lipid oxidation[J]. Foods,2022,11(19):3083. doi: 10.3390/foods11193083
    [16]
    LIU P, KANG X, CUI B, et al. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes[J]. Carbohydrate Polymers,2019,222:115000. doi: 10.1016/j.carbpol.2019.115000
    [17]
    CIEŚLA K, ELIASSON A C. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,265(1):399−405.
    [18]
    牛海力, 卢柏志, 马朗天, 等. 藜麦淀粉和藜麦抗性淀粉的理化性质[J]. 食品研究与开发,2023,44(18):45−52. [NIU H L, LU B Z, MA L T, et al. Physicochemical properties of quinoa starch and quinoa resistant starch[J]. Food Research and Development,2023,44(18):45−52.]

    NIU H L, LU B Z, MA L T, et al. Physicochemical properties of quinoa starch and quinoa resistant starch[J]. Food Research and Development, 2023, 44(18): 45−52.
    [19]
    张佳艳, 熊建文, 崔娜, 等. 脂质类型对淀粉-脂质复合物性质的影响[J]. 食品工业,2021,42(4):235−238. [ZHANG J Y, XIONG J W, CUI N, et al. Effect of types of lipid on the properties of rice starch-lipid complexes[J]. The Food Industry,2021,42(4):235−238.]

    ZHANG J Y, XIONG J W, CUI N, et al. Effect of types of lipid on the properties of rice starch-lipid complexes[J]. The Food Industry, 2021, 42(4): 235−238.
    [20]
    江佳妮, 向贵元, 邓佳宜, 等. 脂肪酸链长对高直链玉米淀粉-脂质复合物结构及理化性质的影响[J]. 食品与机械,2022,38(3):25−31. [JIANG J N, XIANG G Y, DENG J Y, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose corn starch-lipid complexes[J]. Food & Machinery,2022,38(3):25−31.]

    JIANG J N, XIANG G Y, DENG J Y, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose corn starch-lipid complexes[J]. Food & Machinery, 2022, 38(3): 25−31.
    [21]
    黄峻榕, 严青, 蒲华寅, 等. 各种因素对淀粉流变学性质的影响[J]. 食品工业科技,2014,35(13):364−368. [HUANG J R, YAN Q, PU H Y, et al. Effects of different factors on the rheological properties of starch[J]. Science and Technology of Food Industry,2014,35(13):364−368.]

    HUANG J R, YAN Q, PU H Y, et al. Effects of different factors on the rheological properties of starch[J]. Science and Technology of Food Industry, 2014, 35(13): 364−368.
    [22]
    WANG L, WANG W, WANG Y W, et al. Effects of fatty acid chain length on properties of potato starch-fatty acid complexes under partially gelatinization[J]. International Journal of Food Properties,2018,21(1):2121−2134. doi: 10.1080/10942912.2018.1489842
    [23]
    董慧娜. 板栗淀粉—脂质复合物的构建及特性对抗老化影响的研究[D]. 郑州:河南工业大学, 2022. [DONG H N. Study on preparation of chestnut starch lipid complex and its anti-aging mechanism[D]. Zhengzhou:Henan University of Technology, 2022.]

    DONG H N. Study on preparation of chestnut starch lipid complex and its anti-aging mechanism[D]. Zhengzhou: Henan University of Technology, 2022.
    [24]
    于小帅, 张俊杰, 王鹏, 等. 挤压制备高直链玉米淀粉脂工艺优化及结构功能特性[J]. 农业工程学报,2022,38(19):277−284. [YU X S, ZHANG J J, WANG P, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(19):277−284.] doi: 10.11975/j.issn.1002-6819.2022.19.030

    YU X S, ZHANG J J, WANG P, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 277−284. doi: 10.11975/j.issn.1002-6819.2022.19.030
    [25]
    LI Q, DONG Y Y, GAO Y, et al. Functional properties and structural characteristics of starch-fatty acid complexes prepared at high temperature[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9076−9085. doi: 10.1021/acs.jafc.1c00110
    [26]
    SHEN M, HUANG K, CAO H W, et al. Rheological thermal and in vitro starch digestibility properties of oat starch-lipid complexes[J]. International Journal of Biological Macromolecules,2024,268(1):131550.
    [27]
    WU X L, YU H P, BAO G H, et al. Preparation of adzuki bean starch-lipid complexes and their anti-digestion mechanism[J]. Journal of Food Measurement and Characterization,2022,16(2):1−12.
    [28]
    CHEN X, HE X W, FU X, et al. Complexation of rice starch/flour and maize oil through heat moisture treatment:Structural, in vitro digestion and physicochemical properties[J]. International Journal of Biological Macromolecules,2017,98:557−564. doi: 10.1016/j.ijbiomac.2017.01.105
    [29]
    OKUMUS B N, TACER-CABA Z, KAHRAMAN K, et al. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids[J]. Food Chemistry,2018,240(240):550−558.
    [30]
    赵小云, 黄琪琳, 张宾佳, 等. 淀粉-脂质/脂肪酸复合物研究进展[J]. 食品科学, 2020, 41(15):338−347. [ZHAO X Y, HUANG Q L, ZHANG B J, et al. Recent progress in research on starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(9):238−245.]

    ZHAO X Y, HUANG Q L, ZHANG B J, et al. Recent progress in research on starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(9): 238−245.
    [31]
    刘常念, 郭岩, 张嘉欣, 等. 蛋白质/脂质-淀粉相互作用及其对淀粉消化速率减缓作用研究进展[J/OL]. 食品工业科技:1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226. [LIU C N, GUO Y, ZHANG J X, et al. Protein/Lipid-starch interactions and their effect in slowing down starch digestion rate[J/OL]. Science and Technology of Food Industry:1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226.]

    LIU C N, GUO Y, ZHANG J X, et al. Protein/Lipid-starch interactions and their effect in slowing down starch digestion rate[J/OL]. Science and Technology of Food Industry: 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226.
    [32]
    张昀, 张康逸, 赵迪, 等. 糯麦淀粉-脂质复合物的结构及体外消化特性[J]. 食品工业科技,2022,43(20):97−106. [ZHANG Y, ZHANG K Y, ZHAO D, et al. Structure and in vitro digestion properties of waxy wheat starch-lipid complexes[J]. Science and Technology of Food Industry,2022,43(20):97−106.]

    ZHANG Y, ZHANG K Y, ZHAO D, et al. Structure and in vitro digestion properties of waxy wheat starch-lipid complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106.
    [33]
    LEHMANN U, ROBIN F. Slowly digestible starch-its structure and health implications:A review[J]. Trends in Food Science & Technology,2007,18(7):346−355.
    [34]
    HASJIM J, LEE S O, HENDRICH S, et al. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses[J]. Cereal Chemistry,2010,87(4):257−262. doi: 10.1094/CCHEM-87-4-0257
    [35]
    陈晴. 籼米淀粉-脂肪酸复合物的形成及消化特性研究[D]. 杭州:浙江工商大学, 2022. [CHEN Q. Study on the formation and digestive properties ofindica rice starch-fatty acid complexes[D]. Hangzhou:Zhejiang Gongshang University, 2022.]

    CHEN Q. Study on the formation and digestive properties ofindica rice starch-fatty acid complexes[D]. Hangzhou: Zhejiang Gongshang University, 2022.
    [36]
    LAU E, ZHOU W B, HENRY C J. Effect of fat type in baked bread on amylose–lipid complex formation and glycaemic response[J]. British Journal of Nutrition,2016,115(12):2122−2129. doi: 10.1017/S0007114516001458
    [37]
    QIN N N, MENG Y, MA Z H, et al. Pea starch-lauric acid complex alleviates dextran sulfate sodium-induced colitis in C57BL/6J Mice[J]. Nutrition and Cancer,2023,75(8):1673−1686. doi: 10.1080/01635581.2023.2223789
    [38]
    徐进, 王劼, 舒鼎铭, 等. 丁酸对脂肪代谢的调节及其作用机制[J]. 动物营养学报,2022,34(6):3495−3502. [XU J, WANG J, SHU D M, et al. Regulation of butyric acid on fat metabolism and its mechanism of action[J]. Chinese Journal of Animal Nutrition,2022,34(6):3495−3502.]

    XU J, WANG J, SHU D M, et al. Regulation of butyric acid on fat metabolism and its mechanism of action[J]. Chinese Journal of Animal Nutrition, 2022, 34(6): 3495−3502.
    [39]
    DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-γ dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398−2408. doi: 10.2337/db14-1213
    [40]
    GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes,2009,58(7):1509−1517. doi: 10.2337/db08-1637
    [41]
    CHEN Z S, HU A, IHSAN A, et al. The formation, structure, and physicochemical characteristics of starch-lipid complexes and the impact of ultrasound on their properties:A review[J]. Trends in Food Science & Technology,2024,148(148):104515.
    [42]
    LIN H V, FRASSETTO A, KOWALIK JR E J, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One,2012,7(4):e35240. doi: 10.1371/journal.pone.0035240
    [43]
    RONDAS D, D'HERTOG W, OVERBERGH L, et al. Glucagon-like peptide-1:Modulator of β-cell dysfunction and death[J]. Diabetes, Obesity and Metabolism,2013,15(s3):185−192. doi: 10.1111/dom.12165
    [44]
    LI D, ZHANG X Y, MENG X X, et al. Studies on nutritional intervention of ginkgo starch-lauric acid complex in obese rats induced by a high-fat diet[J]. Food Bioscience,2023,53:102644. doi: 10.1016/j.fbio.2023.102644
    [45]
    位雅莉. 淀粉-脂质复合物的制备及其对糖尿病小鼠的影响[D]. 济南:山东大学, 2021. [WEI Y L. Preparation of starch-lipid complex and its effect on diabetic mice[D]. Jinan:Shandong University, 2021.]

    WEI Y L. Preparation of starch-lipid complex and its effect on diabetic mice[D]. Jinan: Shandong University, 2021.
    [46]
    段仪, 刘秦明, 卢开华, 等. 咖啡生物活性物质及其健康功效研究进展[J/OL]. 食品工业科技:1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149. [DUAN Y, LIU Q M, LU K H, et al. Progress in the study of bioactive substances in coffee and health effects[J/OL]. Science and Technology of Food Industry:1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149.]

    DUAN Y, LIU Q M, LU K H, et al. Progress in the study of bioactive substances in coffee and health effects[J/OL]. Science and Technology of Food Industry: 1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149.
    [47]
    QIN R B, WANG J, CHAO C, et al. RS5 produced more butyric acid through regulating the microbial community of human gut microbiota[J]. Journal of Agricultural and Food Chemistry,2021,69(10):3209−3218. doi: 10.1021/acs.jafc.0c08187
    [48]
    狄嘉欣, 郭梅芳, 肖嫩群, 等. 肠道丁酸的研究进展[J]. 中国感染控制杂志,2024,23(9):1192−1198. [DI J X, GUO M F, XIAO N Q, et al. Research progress of intestinal butyric acid[J]. Chinese Journal of Infection Control,2024,23(9):1192−1198.]

    DI J X, GUO M F, XIAO N Q, et al. Research progress of intestinal butyric acid[J]. Chinese Journal of Infection Control, 2024, 23(9): 1192−1198.
    [49]
    ZHOU Q W, FU X, DHITAL S, et al. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type[J]. Food Hydrocolloids,2021,120(120):106941.
    [50]
    BLAZEK J, GILBERT E P, COPELAND L. Effects of monoglycerides on pasting properties of wheat starch after repeated heating and cooling[J]. Journal of Cereal Science,2011,54(1):151−159. doi: 10.1016/j.jcs.2011.02.014
    [51]
    CÂNDIDO F G, VALENTE F X, GRZEŚKOWIAK Ł M, et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation:Mechanisms and clinical implications on obesity[J]. International Journal of Food Sciences and Nutrition,2018,69(2):125−143. doi: 10.1080/09637486.2017.1343286
    [52]
    贾祥泽, 陈秉彦, 赵蓓蓓, 等. 直链淀粉-脂质复合物的形成及其结构性质研究进展[J]. 食品与发酵工业,2017,43(3):276−284. [JIA X Z, CHEN B Y, ZHAO B B, et al. Research advance in the formation and structural properties of amylose-lipid complex[J]. Food and Fermentation Industries,2017,43(3):276−284.]

    JIA X Z, CHEN B Y, ZHAO B B, et al. Research advance in the formation and structural properties of amylose-lipid complex[J]. Food and Fermentation Industries, 2017, 43(3): 276−284.
    [53]
    WU M L, YANG X Q, XUE L, et al. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice[J]. Behavioural Brain Research,2021,402:113125. doi: 10.1016/j.bbr.2021.113125
    [54]
    姚轩. 淀粉-脂肪酸复合物对衰老大鼠认知障碍的干预作用[D]. 天津:天津科技大学, 2022. [YAO X. Effects of complex of starch fatty acid on cognitive impairment in aging rats[D]. Tianjin:Tianjin University of Science and Technology, 2022.]

    YAO X. Effects of complex of starch fatty acid on cognitive impairment in aging rats[D]. Tianjin: Tianjin University of Science and Technology, 2022.
    [55]
    HUANG Y, WANG Y U, WANG H, et al. Prevalence of mental disorders in China:A cross-sectional epidemiological study[J]. The Lancet Psychiatry,2019,6(3):211−224. doi: 10.1016/S2215-0366(18)30511-X
    [56]
    陈烁. RS-FA对脂多糖诱导的小鼠抑郁样行为的作用研究[D]. 天津:天津科技大学, 2023. [CHEN S. Effect of RS-FA on lipopolysaccharide-induced depressive behaviorin mice[D]. Tianjin:Tianjin University of Science and Technology, 2023.]

    CHEN S. Effect of RS-FA on lipopolysaccharide-induced depressive behaviorin mice[D]. Tianjin: Tianjin University of Science and Technology, 2023.
    [57]
    沈雪丽, 蒲媛媛, 曹亚楠, 等. 脂肪模拟物及其在食品中的应用研究进展[J]. 食品科学,2024,45(15):351−359. [SHEN X L, PU Y Y, CAO Y N, et al. Research progress in fat mimics and their applications in foods[J]. Food Science,2024,45(15):351−359.]

    SHEN X L, PU Y Y, CAO Y N, et al. Research progress in fat mimics and their applications in foods[J]. Food Science, 2024, 45(15): 351−359.
    [58]
    李君, 崔怀田, 刘瑞琦, 等. 脂肪替代物在低脂人造黄油中的应用研究进展[J]. 中国粮油学报,2021,36(6):173−180,189. [LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association,2021,36(6):173−180,189.]

    LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(6): 173−180,189.
    [59]
    SINGH M, BYARS J A. Jet-cooked high amylose corn starch and shortening composites for use in cake icings[J]. Journal of Food Science,2011,76(8):530−535.
    [60]
    AGYEI-AMPONSAH J, MACAKOVA L, DEKOCK H L, et al. Effect of substituting sunflower oil with starch-based fat replacers on sensory profile, tribology, and rheology of reduced-fat mayonnaise-type emulsions[J]. Starch-Stärke,2021,73(3-4):2000092.
    [61]
    WARNER K, ESKINS K, FANTA G F, et al. Use of starch-lipid composites in low-fat ground beef products[J]. Food Technology (Chicago),2001,55(2):36−41.
    [62]
    陈雪华, 陈山, 陈旭, 等. 玉米淀粉-脂质复合物对曲奇饼干体外消化和血糖生成指数的影响[J]. 食品安全质量检测学报,2022,13(8):2680−2686. [CHEN X H, CHEN S, CHEN X, et al. Effects of maize starch-lipid complexes on in vitro digestion and glycemic index of cookies[J]. Journal of Food Safety & Quality,2022,13(8):2680−2686.] doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040

    CHEN X H, CHEN S, CHEN X, et al. Effects of maize starch-lipid complexes on in vitro digestion and glycemic index of cookies[J]. Journal of Food Safety & Quality, 2022, 13(8): 2680−2686. doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040
    [63]
    BÁRCENAS M E, ROSELL C M. Effect of frozen storage time on the bread crumb and aging of par-baked bread[J]. Food Chemistry,2006,95(3):438−445. doi: 10.1016/j.foodchem.2005.01.023
    [64]
    YAN H L, LU Q Y. Physicochemical properties of starch-wheat germ oil complex and its effects on water distribution and hardness of noodles[J]. LWT-Food Science and Technology, 2021, 135:110211.
    [65]
    KANG X M, YU B, ZHANG H Y, et al. The formation and in vitro enzymatic digestibility of starch-lipid complexes in steamed bread free from and supplemented with different fatty acids:Effect on textural and retrogradation properties during storage[J]. International Journal of Biological Macromolecules,2021,166:1210−1219. doi: 10.1016/j.ijbiomac.2020.11.003
    [66]
    MARISCAL-MORENO R M, FIGUEROA-CÁRDENAS J D, SANTIAGO-RAMOS D, et al. Amylose lipid complexes formation as an alternative to reduce amylopectin retrogradation and staling of stored tortillas[J]. International Journal of Food Science & Technology,2019,54(5):1651−1657.
    [67]
    陈龙. 油炸过程中淀粉结构变化与吸油特性研究[D]. 无锡:江南大学, 2019. [CHEN L. Investigation on the structural changes and oilabsorption of starch during frying[D]. Wuxi:Jiangnan University, 2019.]

    CHEN L. Investigation on the structural changes and oilabsorption of starch during frying[D]. Wuxi: Jiangnan University, 2019.
    [68]
    李仙宝. 淀粉-油体系中淀粉-脂质复合物的形成及其对淀粉吸油性的影响[D]. 南昌:南昌大学, 2022. [LI X B. Formation of starch-lipid complexes in starch-oil system and its effect on the oil absorption of starch[D]. Nanchang:Nanchang University, 2022.]

    LI X B. Formation of starch-lipid complexes in starch-oil system and its effect on the oil absorption of starch[D]. Nanchang: Nanchang University, 2022.
    [69]
    GUIDA C, AGUIAR A C, CUNHA R L. Green techniques for starch modification to stabilizePickering emulsions:A current review and future perspectives[J]. Current Opinion in Food Science,2021,38:52−61. doi: 10.1016/j.cofs.2020.10.017
    [70]
    姚先超, 钟庆旭, 刘鑫, 等. 木薯淀粉硬脂酸复合纳米颗粒的表征及其Pickering乳液稳定性分析[J]. 食品科学,2023,44(16):61−70. [YAO X C, ZHONG Q X, LIU X, et al. Characterization of cassava starch-stearic acid complex nanoparticles and stability of Pickering emulsions stabilized by it[J]. Food Science,2023,44(16):61−70.]

    YAO X C, ZHONG Q X, LIU X, et al. Characterization of cassava starch-stearic acid complex nanoparticles and stability of Pickering emulsions stabilized by it[J]. Food Science, 2023, 44(16): 61−70.
    [71]
    贾雨含. 脱支淀粉-脂肪酸纳米复合粒子构建叶黄素高内相Pickering乳液及其评价[D]. 广州:华南理工大学, 2022. [JIA Y H. Fabrication of lutein-loaded high internal phase Pickering emulsion stabilized by debranched starch-fattyacid and its evaluation[D]. Guangzhou:South China University of Technology, 2022.]

    JIA Y H. Fabrication of lutein-loaded high internal phase Pickering emulsion stabilized by debranched starch-fattyacid and its evaluation[D]. Guangzhou: South China University of Technology, 2022.
    [72]
    LU X, HUANG Q. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions:Role of fatty acid complexation and heat treatment[J]. Food & Function,2019,10(9):5969−5980.
    [73]
    LIU P F, SUN S L, LU H L, et al. Effect of the ways of adding stearic acid on properties of sweet potato starch and sweet-potato-starch-based films[J]. Starch-Stärke,2016,68(1−2):76−83.
    [74]
    THAKUR R, PRISTIJONO P, GOLDING J B, et al. Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch-Ɩ-carrageenan biodegradable edible film[J]. Food Packaging and Shelf Life,2017,14:108−115. doi: 10.1016/j.fpsl.2017.10.002
    [75]
    LIU P, SUN S, HOU H, et al. Effects of fatty acids with different degree of unsaturation on properties of sweet potato starch-based films[J]. Food Hydrocolloids,2016,61:351−357. doi: 10.1016/j.foodhyd.2016.05.033
    [76]
    吴小念. 淀粉-脂肪酸纳米复合物的制备、结构表征及应用[D]. 长沙:中南林业科技大学, 2024. [WU X N. Preparation, characterization and application of starch-fatty acid nanocomposites[D]. Changsha:Central South University of Forestry & Technology, 2024.]

    WU X N. Preparation, characterization and application of starch-fatty acid nanocomposites[D]. Changsha: Central South University of Forestry & Technology, 2024.

Catalog

    Article Metrics

    Article views (47) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return