Citation: | ZHAO Xinying, RUAN Changqing, LI Zhijiang, et al. Properties, Physiological Functions and Applications of Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2025, 46(10): 12−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024080363. |
[1] |
ENGLYST H N, CUMMINGS J H. Digestion of the polysaccharides of some cereal foods in the human small intestine[J]. The American Journal of Clinical Nutrition,1985,42(5):778−787. doi: 10.1093/ajcn/42.5.778
|
[2] |
赵克东, 阮长青, 李志江, 等. 超声辅助制备抗性淀粉研究进展[J]. 食品工业科技,2025,46(5):8−16. [ZHAO K D, RUAN C Q, LI Z J, et al. Research progress on ultrasound-assisted preparation of resistant starch[J]. Science and Technology of Food Industry,2025,46(5):8−16.]
ZHAO K D, RUAN C Q, LI Z J, et al. Research progress on ultrasound-assisted preparation of resistant starch[J]. Science and Technology of Food Industry, 2025, 46(5): 8−16.
|
[3] |
PUTSEYS J A, LIEVE L, DELCOUR J A. Amylose-inclusion complexes:Formation, identity and physico-chemical properties[J]. Journal of Cereal Science,2010,51(3):238−247. doi: 10.1016/j.jcs.2010.01.011
|
[4] |
董营. 湿法研磨辅助制备淀粉-脂质复合物及其作用机制研究[D]. 泰安:山东农业大学, 2024. [DONG Y. Preparation of starch-lipid complex assisted by wet grinding and its mechanism analysis[D]. Taian:Shandong Agricultural University, 2024.]
DONG Y. Preparation of starch-lipid complex assisted by wet grinding and its mechanism analysis[D]. Taian: Shandong Agricultural University, 2024.
|
[5] |
闫紫晴. 茶多酚对淀粉-脂质复合物形成及体外发酵特性的影响[D]. 天津:天津科技大学, 2024. [YAN Z Q. Effects of polyphenols on the formation and in vitro fermentation properties of starch-lipid complexes[D]. Tianjin:Tianjin University of Science and Technology, 2024.]
YAN Z Q. Effects of polyphenols on the formation and in vitro fermentation properties of starch-lipid complexes[D]. Tianjin: Tianjin University of Science and Technology, 2024.
|
[6] |
NARJABADIFAM A, ABAZADEH B, FAKHRABADI M M S. Graphyne nano-spirals under tension:Effects of base structures on superelasticity and fracture mechanisms[J]. Mechanics of Materials,2022,171:104367. doi: 10.1016/j.mechmat.2022.104367
|
[7] |
石少侠, 董瑶瑶, 李琪, 等. 淀粉-脂质复合物功能及营养特性研究进展[J]. 食品科学,2020,41(9):238−245. [SHI S X, DONG Y Y, LI Q, et al. Asvances in functional and nutritional properties of starch-lipid complexes[J]. Food Science,2020,41(9):238−245.]
SHI S X, DONG Y Y, LI Q, et al. Asvances in functional and nutritional properties of starch-lipid complexes[J]. Food Science, 2020, 41(9): 238−245.
|
[8] |
OYEYINKA S A, SINGH S, AMONSOU E O. A review on structural, digestibility and physicochemical properties of legume starch-lipid complexes[J]. Food Chemistry,2021,349:129165. doi: 10.1016/j.foodchem.2021.129165
|
[9] |
董吉林, 杨溢, 申瑞玲, 等. 燕麦淀粉-硬脂酸复合物的制备及其性质研究[J]. 粮食与油脂,2019,32(5):15−19. [DONG J L, YANG Y, SHEN R L, et al. Study on preparation and properties of oat starch-stearic acid complex[J]. Cereals & Oils,2019,32(5):15−19.] doi: 10.3969/j.issn.1008-9578.2019.05.005
DONG J L, YANG Y, SHEN R L, et al. Study on preparation and properties of oat starch-stearic acid complex[J]. Cereals & Oils, 2019, 32(5): 15−19. doi: 10.3969/j.issn.1008-9578.2019.05.005
|
[10] |
OSKAYBAŞ-EMLEK B, ÖZBEY A, AYDEMIR L Y, et al. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra[J]. International Journal of Biological Macromolecules,2022,207:978−989. doi: 10.1016/j.ijbiomac.2022.03.189
|
[11] |
YANG Y, WANG L, LI Y, et al. Investigation the molecular degradation, starch-lipid complexes formation and pasting properties of wheat starch in instant noodles during deep-frying treatment[J]. Food Chemistry,2019,283(283):287−293.
|
[12] |
孙梦. 大米淀粉-甘油单棕榈酸酯复合物的制备及其对米蛋糕品质的影响[D]. 哈尔滨:哈尔滨商业大学, 2024. [SUN M. Preparation of rice starch-glycerol monopalmiate complex and its effect on the quality of rice cake[D]. Harbin:Harbin University of Commerce, 2024.]
SUN M. Preparation of rice starch-glycerol monopalmiate complex and its effect on the quality of rice cake[D]. Harbin: Harbin University of Commerce, 2024.
|
[13] |
陈旭. 蛋白和脂质对淀粉消化特性的影响机理研究[D]. 广州:华南理工大学, 2018. [CHEN X. Mechanism for the digestion properties of starch influenced by lipid and protein[D]. Guangzhou:South China University of Technology, 2018.]
CHEN X. Mechanism for the digestion properties of starch influenced by lipid and protein[D]. Guangzhou: South China University of Technology, 2018.
|
[14] |
王睿. 马铃薯淀粉-脂质复合物的构建及其耐酶解机理研究[D]. 济宁:齐鲁工业大学, 2019. [WANG R. Construction of potato starch-lipid complex and its mechanism of enzymatic hydrolysis[D]. Jining:Qilu University of Technology, 2019.]
WANG R. Construction of potato starch-lipid complex and its mechanism of enzymatic hydrolysis[D]. Jining: Qilu University of Technology, 2019.
|
[15] |
HU X Y, LI Z Y, WANG F Y, et al. Formation of starch-lipid complexes during the deep-frying process and its effects on lipid oxidation[J]. Foods,2022,11(19):3083. doi: 10.3390/foods11193083
|
[16] |
LIU P, KANG X, CUI B, et al. Effects of amylose content and enzymatic debranching on the properties of maize starch-glycerol monolaurate complexes[J]. Carbohydrate Polymers,2019,222:115000. doi: 10.1016/j.carbpol.2019.115000
|
[17] |
CIEŚLA K, ELIASSON A C. DSC studies of retrogradation and amylose-lipid complex transition taking place in gamma irradiated wheat starch[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,265(1):399−405.
|
[18] |
牛海力, 卢柏志, 马朗天, 等. 藜麦淀粉和藜麦抗性淀粉的理化性质[J]. 食品研究与开发,2023,44(18):45−52. [NIU H L, LU B Z, MA L T, et al. Physicochemical properties of quinoa starch and quinoa resistant starch[J]. Food Research and Development,2023,44(18):45−52.]
NIU H L, LU B Z, MA L T, et al. Physicochemical properties of quinoa starch and quinoa resistant starch[J]. Food Research and Development, 2023, 44(18): 45−52.
|
[19] |
张佳艳, 熊建文, 崔娜, 等. 脂质类型对淀粉-脂质复合物性质的影响[J]. 食品工业,2021,42(4):235−238. [ZHANG J Y, XIONG J W, CUI N, et al. Effect of types of lipid on the properties of rice starch-lipid complexes[J]. The Food Industry,2021,42(4):235−238.]
ZHANG J Y, XIONG J W, CUI N, et al. Effect of types of lipid on the properties of rice starch-lipid complexes[J]. The Food Industry, 2021, 42(4): 235−238.
|
[20] |
江佳妮, 向贵元, 邓佳宜, 等. 脂肪酸链长对高直链玉米淀粉-脂质复合物结构及理化性质的影响[J]. 食品与机械,2022,38(3):25−31. [JIANG J N, XIANG G Y, DENG J Y, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose corn starch-lipid complexes[J]. Food & Machinery,2022,38(3):25−31.]
JIANG J N, XIANG G Y, DENG J Y, et al. Effects of fatty acid chain length on structure and physicochemical properties of high amylose corn starch-lipid complexes[J]. Food & Machinery, 2022, 38(3): 25−31.
|
[21] |
黄峻榕, 严青, 蒲华寅, 等. 各种因素对淀粉流变学性质的影响[J]. 食品工业科技,2014,35(13):364−368. [HUANG J R, YAN Q, PU H Y, et al. Effects of different factors on the rheological properties of starch[J]. Science and Technology of Food Industry,2014,35(13):364−368.]
HUANG J R, YAN Q, PU H Y, et al. Effects of different factors on the rheological properties of starch[J]. Science and Technology of Food Industry, 2014, 35(13): 364−368.
|
[22] |
WANG L, WANG W, WANG Y W, et al. Effects of fatty acid chain length on properties of potato starch-fatty acid complexes under partially gelatinization[J]. International Journal of Food Properties,2018,21(1):2121−2134. doi: 10.1080/10942912.2018.1489842
|
[23] |
董慧娜. 板栗淀粉—脂质复合物的构建及特性对抗老化影响的研究[D]. 郑州:河南工业大学, 2022. [DONG H N. Study on preparation of chestnut starch lipid complex and its anti-aging mechanism[D]. Zhengzhou:Henan University of Technology, 2022.]
DONG H N. Study on preparation of chestnut starch lipid complex and its anti-aging mechanism[D]. Zhengzhou: Henan University of Technology, 2022.
|
[24] |
于小帅, 张俊杰, 王鹏, 等. 挤压制备高直链玉米淀粉脂工艺优化及结构功能特性[J]. 农业工程学报,2022,38(19):277−284. [YU X S, ZHANG J J, WANG P, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(19):277−284.] doi: 10.11975/j.issn.1002-6819.2022.19.030
YU X S, ZHANG J J, WANG P, et al. Optimization processes and structural functional properties of high amylose corn starch-lipid complex synthesized via extrusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(19): 277−284. doi: 10.11975/j.issn.1002-6819.2022.19.030
|
[25] |
LI Q, DONG Y Y, GAO Y, et al. Functional properties and structural characteristics of starch-fatty acid complexes prepared at high temperature[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9076−9085. doi: 10.1021/acs.jafc.1c00110
|
[26] |
SHEN M, HUANG K, CAO H W, et al. Rheological thermal and in vitro starch digestibility properties of oat starch-lipid complexes[J]. International Journal of Biological Macromolecules,2024,268(1):131550.
|
[27] |
WU X L, YU H P, BAO G H, et al. Preparation of adzuki bean starch-lipid complexes and their anti-digestion mechanism[J]. Journal of Food Measurement and Characterization,2022,16(2):1−12.
|
[28] |
CHEN X, HE X W, FU X, et al. Complexation of rice starch/flour and maize oil through heat moisture treatment:Structural, in vitro digestion and physicochemical properties[J]. International Journal of Biological Macromolecules,2017,98:557−564. doi: 10.1016/j.ijbiomac.2017.01.105
|
[29] |
OKUMUS B N, TACER-CABA Z, KAHRAMAN K, et al. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids[J]. Food Chemistry,2018,240(240):550−558.
|
[30] |
赵小云, 黄琪琳, 张宾佳, 等. 淀粉-脂质/脂肪酸复合物研究进展[J]. 食品科学, 2020, 41(15):338−347. [ZHAO X Y, HUANG Q L, ZHANG B J, et al. Recent progress in research on starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(9):238−245.]
ZHAO X Y, HUANG Q L, ZHANG B J, et al. Recent progress in research on starch-lipid/fatty acid complexes[J]. Food Science, 2020, 41(9): 238−245.
|
[31] |
刘常念, 郭岩, 张嘉欣, 等. 蛋白质/脂质-淀粉相互作用及其对淀粉消化速率减缓作用研究进展[J/OL]. 食品工业科技:1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226. [LIU C N, GUO Y, ZHANG J X, et al. Protein/Lipid-starch interactions and their effect in slowing down starch digestion rate[J/OL]. Science and Technology of Food Industry:1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226.]
LIU C N, GUO Y, ZHANG J X, et al. Protein/Lipid-starch interactions and their effect in slowing down starch digestion rate[J/OL]. Science and Technology of Food Industry: 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024070226.
|
[32] |
张昀, 张康逸, 赵迪, 等. 糯麦淀粉-脂质复合物的结构及体外消化特性[J]. 食品工业科技,2022,43(20):97−106. [ZHANG Y, ZHANG K Y, ZHAO D, et al. Structure and in vitro digestion properties of waxy wheat starch-lipid complexes[J]. Science and Technology of Food Industry,2022,43(20):97−106.]
ZHANG Y, ZHANG K Y, ZHAO D, et al. Structure and in vitro digestion properties of waxy wheat starch-lipid complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97−106.
|
[33] |
LEHMANN U, ROBIN F. Slowly digestible starch-its structure and health implications:A review[J]. Trends in Food Science & Technology,2007,18(7):346−355.
|
[34] |
HASJIM J, LEE S O, HENDRICH S, et al. Characterization of a novel resistant-starch and its effects on postprandial plasma-glucose and insulin responses[J]. Cereal Chemistry,2010,87(4):257−262. doi: 10.1094/CCHEM-87-4-0257
|
[35] |
陈晴. 籼米淀粉-脂肪酸复合物的形成及消化特性研究[D]. 杭州:浙江工商大学, 2022. [CHEN Q. Study on the formation and digestive properties ofindica rice starch-fatty acid complexes[D]. Hangzhou:Zhejiang Gongshang University, 2022.]
CHEN Q. Study on the formation and digestive properties ofindica rice starch-fatty acid complexes[D]. Hangzhou: Zhejiang Gongshang University, 2022.
|
[36] |
LAU E, ZHOU W B, HENRY C J. Effect of fat type in baked bread on amylose–lipid complex formation and glycaemic response[J]. British Journal of Nutrition,2016,115(12):2122−2129. doi: 10.1017/S0007114516001458
|
[37] |
QIN N N, MENG Y, MA Z H, et al. Pea starch-lauric acid complex alleviates dextran sulfate sodium-induced colitis in C57BL/6J Mice[J]. Nutrition and Cancer,2023,75(8):1673−1686. doi: 10.1080/01635581.2023.2223789
|
[38] |
徐进, 王劼, 舒鼎铭, 等. 丁酸对脂肪代谢的调节及其作用机制[J]. 动物营养学报,2022,34(6):3495−3502. [XU J, WANG J, SHU D M, et al. Regulation of butyric acid on fat metabolism and its mechanism of action[J]. Chinese Journal of Animal Nutrition,2022,34(6):3495−3502.]
XU J, WANG J, SHU D M, et al. Regulation of butyric acid on fat metabolism and its mechanism of action[J]. Chinese Journal of Animal Nutrition, 2022, 34(6): 3495−3502.
|
[39] |
DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR-γ dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398−2408. doi: 10.2337/db14-1213
|
[40] |
GAO Z G, YIN J, ZHANG J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes,2009,58(7):1509−1517. doi: 10.2337/db08-1637
|
[41] |
CHEN Z S, HU A, IHSAN A, et al. The formation, structure, and physicochemical characteristics of starch-lipid complexes and the impact of ultrasound on their properties:A review[J]. Trends in Food Science & Technology,2024,148(148):104515.
|
[42] |
LIN H V, FRASSETTO A, KOWALIK JR E J, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms[J]. PLoS One,2012,7(4):e35240. doi: 10.1371/journal.pone.0035240
|
[43] |
RONDAS D, D'HERTOG W, OVERBERGH L, et al. Glucagon-like peptide-1:Modulator of β-cell dysfunction and death[J]. Diabetes, Obesity and Metabolism,2013,15(s3):185−192. doi: 10.1111/dom.12165
|
[44] |
LI D, ZHANG X Y, MENG X X, et al. Studies on nutritional intervention of ginkgo starch-lauric acid complex in obese rats induced by a high-fat diet[J]. Food Bioscience,2023,53:102644. doi: 10.1016/j.fbio.2023.102644
|
[45] |
位雅莉. 淀粉-脂质复合物的制备及其对糖尿病小鼠的影响[D]. 济南:山东大学, 2021. [WEI Y L. Preparation of starch-lipid complex and its effect on diabetic mice[D]. Jinan:Shandong University, 2021.]
WEI Y L. Preparation of starch-lipid complex and its effect on diabetic mice[D]. Jinan: Shandong University, 2021.
|
[46] |
段仪, 刘秦明, 卢开华, 等. 咖啡生物活性物质及其健康功效研究进展[J/OL]. 食品工业科技:1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149. [DUAN Y, LIU Q M, LU K H, et al. Progress in the study of bioactive substances in coffee and health effects[J/OL]. Science and Technology of Food Industry:1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149.]
DUAN Y, LIU Q M, LU K H, et al. Progress in the study of bioactive substances in coffee and health effects[J/OL]. Science and Technology of Food Industry: 1−23[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024060149.
|
[47] |
QIN R B, WANG J, CHAO C, et al. RS5 produced more butyric acid through regulating the microbial community of human gut microbiota[J]. Journal of Agricultural and Food Chemistry,2021,69(10):3209−3218. doi: 10.1021/acs.jafc.0c08187
|
[48] |
狄嘉欣, 郭梅芳, 肖嫩群, 等. 肠道丁酸的研究进展[J]. 中国感染控制杂志,2024,23(9):1192−1198. [DI J X, GUO M F, XIAO N Q, et al. Research progress of intestinal butyric acid[J]. Chinese Journal of Infection Control,2024,23(9):1192−1198.]
DI J X, GUO M F, XIAO N Q, et al. Research progress of intestinal butyric acid[J]. Chinese Journal of Infection Control, 2024, 23(9): 1192−1198.
|
[49] |
ZHOU Q W, FU X, DHITAL S, et al. In vitro fecal fermentation outcomes of starch-lipid complexes depend on starch assembles more than lipid type[J]. Food Hydrocolloids,2021,120(120):106941.
|
[50] |
BLAZEK J, GILBERT E P, COPELAND L. Effects of monoglycerides on pasting properties of wheat starch after repeated heating and cooling[J]. Journal of Cereal Science,2011,54(1):151−159. doi: 10.1016/j.jcs.2011.02.014
|
[51] |
CÂNDIDO F G, VALENTE F X, GRZEŚKOWIAK Ł M, et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation:Mechanisms and clinical implications on obesity[J]. International Journal of Food Sciences and Nutrition,2018,69(2):125−143. doi: 10.1080/09637486.2017.1343286
|
[52] |
贾祥泽, 陈秉彦, 赵蓓蓓, 等. 直链淀粉-脂质复合物的形成及其结构性质研究进展[J]. 食品与发酵工业,2017,43(3):276−284. [JIA X Z, CHEN B Y, ZHAO B B, et al. Research advance in the formation and structural properties of amylose-lipid complex[J]. Food and Fermentation Industries,2017,43(3):276−284.]
JIA X Z, CHEN B Y, ZHAO B B, et al. Research advance in the formation and structural properties of amylose-lipid complex[J]. Food and Fermentation Industries, 2017, 43(3): 276−284.
|
[53] |
WU M L, YANG X Q, XUE L, et al. Age-related cognitive decline is associated with microbiota-gut-brain axis disorders and neuroinflammation in mice[J]. Behavioural Brain Research,2021,402:113125. doi: 10.1016/j.bbr.2021.113125
|
[54] |
姚轩. 淀粉-脂肪酸复合物对衰老大鼠认知障碍的干预作用[D]. 天津:天津科技大学, 2022. [YAO X. Effects of complex of starch fatty acid on cognitive impairment in aging rats[D]. Tianjin:Tianjin University of Science and Technology, 2022.]
YAO X. Effects of complex of starch fatty acid on cognitive impairment in aging rats[D]. Tianjin: Tianjin University of Science and Technology, 2022.
|
[55] |
HUANG Y, WANG Y U, WANG H, et al. Prevalence of mental disorders in China:A cross-sectional epidemiological study[J]. The Lancet Psychiatry,2019,6(3):211−224. doi: 10.1016/S2215-0366(18)30511-X
|
[56] |
陈烁. RS-FA对脂多糖诱导的小鼠抑郁样行为的作用研究[D]. 天津:天津科技大学, 2023. [CHEN S. Effect of RS-FA on lipopolysaccharide-induced depressive behaviorin mice[D]. Tianjin:Tianjin University of Science and Technology, 2023.]
CHEN S. Effect of RS-FA on lipopolysaccharide-induced depressive behaviorin mice[D]. Tianjin: Tianjin University of Science and Technology, 2023.
|
[57] |
沈雪丽, 蒲媛媛, 曹亚楠, 等. 脂肪模拟物及其在食品中的应用研究进展[J]. 食品科学,2024,45(15):351−359. [SHEN X L, PU Y Y, CAO Y N, et al. Research progress in fat mimics and their applications in foods[J]. Food Science,2024,45(15):351−359.]
SHEN X L, PU Y Y, CAO Y N, et al. Research progress in fat mimics and their applications in foods[J]. Food Science, 2024, 45(15): 351−359.
|
[58] |
李君, 崔怀田, 刘瑞琦, 等. 脂肪替代物在低脂人造黄油中的应用研究进展[J]. 中国粮油学报,2021,36(6):173−180,189. [LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association,2021,36(6):173−180,189.]
LI J, CUI H T, LIU R Q, et al. Research progress on application of fat substitute in low-fat margarine[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(6): 173−180,189.
|
[59] |
SINGH M, BYARS J A. Jet-cooked high amylose corn starch and shortening composites for use in cake icings[J]. Journal of Food Science,2011,76(8):530−535.
|
[60] |
AGYEI-AMPONSAH J, MACAKOVA L, DEKOCK H L, et al. Effect of substituting sunflower oil with starch-based fat replacers on sensory profile, tribology, and rheology of reduced-fat mayonnaise-type emulsions[J]. Starch-Stärke,2021,73(3-4):2000092.
|
[61] |
WARNER K, ESKINS K, FANTA G F, et al. Use of starch-lipid composites in low-fat ground beef products[J]. Food Technology (Chicago),2001,55(2):36−41.
|
[62] |
陈雪华, 陈山, 陈旭, 等. 玉米淀粉-脂质复合物对曲奇饼干体外消化和血糖生成指数的影响[J]. 食品安全质量检测学报,2022,13(8):2680−2686. [CHEN X H, CHEN S, CHEN X, et al. Effects of maize starch-lipid complexes on in vitro digestion and glycemic index of cookies[J]. Journal of Food Safety & Quality,2022,13(8):2680−2686.] doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040
CHEN X H, CHEN S, CHEN X, et al. Effects of maize starch-lipid complexes on in vitro digestion and glycemic index of cookies[J]. Journal of Food Safety & Quality, 2022, 13(8): 2680−2686. doi: 10.3969/j.issn.2095-0381.2022.8.spaqzljcjs202208040
|
[63] |
BÁRCENAS M E, ROSELL C M. Effect of frozen storage time on the bread crumb and aging of par-baked bread[J]. Food Chemistry,2006,95(3):438−445. doi: 10.1016/j.foodchem.2005.01.023
|
[64] |
YAN H L, LU Q Y. Physicochemical properties of starch-wheat germ oil complex and its effects on water distribution and hardness of noodles[J]. LWT-Food Science and Technology, 2021, 135:110211.
|
[65] |
KANG X M, YU B, ZHANG H Y, et al. The formation and in vitro enzymatic digestibility of starch-lipid complexes in steamed bread free from and supplemented with different fatty acids:Effect on textural and retrogradation properties during storage[J]. International Journal of Biological Macromolecules,2021,166:1210−1219. doi: 10.1016/j.ijbiomac.2020.11.003
|
[66] |
MARISCAL-MORENO R M, FIGUEROA-CÁRDENAS J D, SANTIAGO-RAMOS D, et al. Amylose lipid complexes formation as an alternative to reduce amylopectin retrogradation and staling of stored tortillas[J]. International Journal of Food Science & Technology,2019,54(5):1651−1657.
|
[67] |
陈龙. 油炸过程中淀粉结构变化与吸油特性研究[D]. 无锡:江南大学, 2019. [CHEN L. Investigation on the structural changes and oilabsorption of starch during frying[D]. Wuxi:Jiangnan University, 2019.]
CHEN L. Investigation on the structural changes and oilabsorption of starch during frying[D]. Wuxi: Jiangnan University, 2019.
|
[68] |
李仙宝. 淀粉-油体系中淀粉-脂质复合物的形成及其对淀粉吸油性的影响[D]. 南昌:南昌大学, 2022. [LI X B. Formation of starch-lipid complexes in starch-oil system and its effect on the oil absorption of starch[D]. Nanchang:Nanchang University, 2022.]
LI X B. Formation of starch-lipid complexes in starch-oil system and its effect on the oil absorption of starch[D]. Nanchang: Nanchang University, 2022.
|
[69] |
GUIDA C, AGUIAR A C, CUNHA R L. Green techniques for starch modification to stabilizePickering emulsions:A current review and future perspectives[J]. Current Opinion in Food Science,2021,38:52−61. doi: 10.1016/j.cofs.2020.10.017
|
[70] |
姚先超, 钟庆旭, 刘鑫, 等. 木薯淀粉硬脂酸复合纳米颗粒的表征及其Pickering乳液稳定性分析[J]. 食品科学,2023,44(16):61−70. [YAO X C, ZHONG Q X, LIU X, et al. Characterization of cassava starch-stearic acid complex nanoparticles and stability of Pickering emulsions stabilized by it[J]. Food Science,2023,44(16):61−70.]
YAO X C, ZHONG Q X, LIU X, et al. Characterization of cassava starch-stearic acid complex nanoparticles and stability of Pickering emulsions stabilized by it[J]. Food Science, 2023, 44(16): 61−70.
|
[71] |
贾雨含. 脱支淀粉-脂肪酸纳米复合粒子构建叶黄素高内相Pickering乳液及其评价[D]. 广州:华南理工大学, 2022. [JIA Y H. Fabrication of lutein-loaded high internal phase Pickering emulsion stabilized by debranched starch-fattyacid and its evaluation[D]. Guangzhou:South China University of Technology, 2022.]
JIA Y H. Fabrication of lutein-loaded high internal phase Pickering emulsion stabilized by debranched starch-fattyacid and its evaluation[D]. Guangzhou: South China University of Technology, 2022.
|
[72] |
LU X, HUANG Q. Bioaccessibility of polymethoxyflavones encapsulated in resistant starch particle stabilized Pickering emulsions:Role of fatty acid complexation and heat treatment[J]. Food & Function,2019,10(9):5969−5980.
|
[73] |
LIU P F, SUN S L, LU H L, et al. Effect of the ways of adding stearic acid on properties of sweet potato starch and sweet-potato-starch-based films[J]. Starch-Stärke,2016,68(1−2):76−83.
|
[74] |
THAKUR R, PRISTIJONO P, GOLDING J B, et al. Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch-Ɩ-carrageenan biodegradable edible film[J]. Food Packaging and Shelf Life,2017,14:108−115. doi: 10.1016/j.fpsl.2017.10.002
|
[75] |
LIU P, SUN S, HOU H, et al. Effects of fatty acids with different degree of unsaturation on properties of sweet potato starch-based films[J]. Food Hydrocolloids,2016,61:351−357. doi: 10.1016/j.foodhyd.2016.05.033
|
[76] |
吴小念. 淀粉-脂肪酸纳米复合物的制备、结构表征及应用[D]. 长沙:中南林业科技大学, 2024. [WU X N. Preparation, characterization and application of starch-fatty acid nanocomposites[D]. Changsha:Central South University of Forestry & Technology, 2024.]
WU X N. Preparation, characterization and application of starch-fatty acid nanocomposites[D]. Changsha: Central South University of Forestry & Technology, 2024.
|