Citation: | ZHANG Jianxun, XIE Xuan, TIAN Tingting, et al. Study on the Structure, Physicochemical Properties and Functional Properties of Insoluble Dietary Fiber from Soybean Residue by Modification Methods[J]. Science and Technology of Food Industry, 2025, 46(10): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070405. |
[1] |
尹立晨. 豆渣膳食纤维的改性及其在酸奶冰淇淋中的应用研究[D]. 无锡:江南大学, 2022. [YIN L C, Modification of okara dietary fiber and its application in frozen yogurt[D]. Wuxi:Jiangnan University, 2022.]
YIN L C, Modification of okara dietary fiber and its application in frozen yogurt[D]. Wuxi: Jiangnan University, 2022.
|
[2] |
PRIVATTI R T, RODRIGUES C E. An overview of the composition, applications, and recovery techniques of the components of Okara aimed at the biovalorization of this soybean processing residue[J]. Food Reviews International,2023,39(2):726−749. doi: 10.1080/87559129.2021.1926484
|
[3] |
黄秋红. K2CO3预处理微细化豆渣及在米豆腐中的应用研究[D]. 贵阳:贵州大学, 2023. [HUANG Q H, K2CO3 pretreatment of micronized soybean dregs and its application in rice tofu[D]. Guiyang:Guizhou University, 2023.]
HUANG Q H, K2CO3 pretreatment of micronized soybean dregs and its application in rice tofu[D]. Guiyang: Guizhou University, 2023.
|
[4] |
LI Y A, YU Y S, WU J J, et al. Comparison the structural, physicochemical, and prebiotic properties of litchi pomace dietary fibers before and after modification[J]. Foods,2022,11(3):248. doi: 10.3390/foods11030248
|
[5] |
杨涛. 豆渣转化为食品级高效皮克林稳定剂的途径及机理[D]. 广州:华南理工大学, 2020. [Yang T, Food-grade efficient pickering stabilizers from okara:strategies and mechanisms investigation[D]. Guangzhou:South China University of Technology, 2020.]
Yang T, Food-grade efficient pickering stabilizers from okara: strategies and mechanisms investigation[D]. Guangzhou: South China University of Technology, 2020.
|
[6] |
GAN J P, PENG G Y, LIU S, et al. Comparison of structural, functional and in vitro digestion properties of bread incorporated with grapefruit peel soluble dietary fibers prepared by three microwave-assisted modifications[J]. Food & Function,2020,11(7):6458−6466.
|
[7] |
TIAN Y, WU T, SHENG Y A, et al. Effects of cavitation-jet technology combined with enzyme treatment on the structure properties and functional properties of OKARA insoluble dietary fiber [J]. Food Chemistry, 2023, 423 136286.
|
[8] |
GAN J P, XIE L, PENG G Y, et al. Systematic review on modification methods of dietary fiber[J]. Food Hydrocolloids,2021,119:106872. doi: 10.1016/j.foodhyd.2021.106872
|
[9] |
ZHANG F F, YI W R, CAO J, et al. Microstructure characteristics of tea seed dietary fibre and its effect on cholesterol, glucose and nitrite ion adsorption capacities in vitro:A comparison study among different modifications[J]. International Journal of Food Science and Technology,2020,55(4):1781−1791. doi: 10.1111/ijfs.14465
|
[10] |
HE Y Y, LI W, ZHANG X Y, et al. Physicochemical, functional, and microstructural properties of modified insoluble dietary fiber extracted from rose pomace[J]. Journal of Food Science and Technology,2020,57(4):1421−1429. doi: 10.1007/s13197-019-04177-8
|
[11] |
WEN Y, NIU M, ZHANG B J, et al. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments[J]. LWT,2017,75:344−351. doi: 10.1016/j.lwt.2016.09.012
|
[12] |
YANG M, WU L R, CAO C J, et al. Improved function of bamboo shoot fibre by high‐speed shear dispersing combined with enzyme treatment[J]. International Journal of Food Science and Technology,2019,54(3):844−853. doi: 10.1111/ijfs.14004
|
[13] |
朱玉莲. 改性沙棘不溶性膳食纤维功能特性及应用研究[D]. 杨凌:西北农林科技大学, 2022. [ZHU Y L, Functional Properties and Application Study of Modified Sea Buckthorn Insoluble Dietary Fiber[D]. Yangling:Northwest Agriculture and Forestry University, 2022.]
ZHU Y L, Functional Properties and Application Study of Modified Sea Buckthorn Insoluble Dietary Fiber[D]. Yangling: Northwest Agriculture and Forestry University, 2022.
|
[14] |
FAN X J, CHANG H D, LIN Y A, et al. Effects of ultrasound-assisted enzyme hydrolysis on the microstructure and physicochemical properties of okara fibers[J]. Ultrasonics Sonochemistry,2020,69:105247. doi: 10.1016/j.ultsonch.2020.105247
|
[15] |
ZHANG J T, DONG Y S, NISAR T, et al. Effect of superfine-grinding on the physicochemical and antioxidant properties of Lycium ruthenicum Murray powders[J]. Powder Technology,2020,372:68−75. doi: 10.1016/j.powtec.2020.05.097
|
[16] |
KHATKAR B, BARAK S, MUDGIL D. Effects of gliadin addition on the rheological, microscopic and thermal characteristics of wheat gluten[J]. International Journal of Biological Macromolecules,2013,53:38−41. doi: 10.1016/j.ijbiomac.2012.11.002
|
[17] |
WANG X J, ZHANG Y Y, LI Y B, et al. Insoluble dietary fibre from okara (soybean residue) modified by yeast Kluyveromyces marxianus[J]. LWT,2020,134:110252. doi: 10.1016/j.lwt.2020.110252
|
[18] |
PEERAJIT P, CHIEWCHAN N, DEVAHASTIN S. Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues[J]. Food Chemistry,2012,132(4):1891−1898. doi: 10.1016/j.foodchem.2011.12.022
|
[19] |
TANG C D, WU L R, ZHANG F S, et al. Comparison of different extraction methods on the physicochemical, structural properties, and in vitro hypoglycemic activity of bamboo shoot dietary fibers[J]. Food Chemistry,2022,386:132642. doi: 10.1016/j.foodchem.2022.132642
|
[20] |
ZHENG Y J, LI Y. Physicochemical and functional properties of coconut (Cocos nucifera L.) cake dietary fibres:Effects of cellulase hydrolysis, acid treatment and particle size distribution[J]. Food Chemistry,2018,257:135−142. doi: 10.1016/j.foodchem.2018.03.012
|
[21] |
MA M M, MU T H. Effects of extraction methods and particle size distribution on the structural, physicochemical, and functional properties of dietary fiber from deoiled cumin[J]. Food Chemistry,2016,194:237−246. doi: 10.1016/j.foodchem.2015.07.095
|
[22] |
ZHANG M Y, LIAO A M, THAKUR K, et al. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution[J]. Food Chemistry,2019,297:124983. doi: 10.1016/j.foodchem.2019.124983
|
[23] |
ZHU Y L, JI X L, YUEN M, et al. Effects of ball milling combined with cellulase treatment on physicochemical properties and in vitro hypoglycemic ability of sea buckthorn seed meal insoluble dietary fiber[J]. Frontiers in Nutrition,2022,8:820672. doi: 10.3389/fnut.2021.820672
|
[24] |
TAFLICK T, SCHWENDLER L A, ROSA S M, et al. Cellulose nanocrystals from acacia bark–Influence of solvent extraction[J]. International Journal of Biological Macromolecules,2017,101:553−561. doi: 10.1016/j.ijbiomac.2017.03.076
|
[25] |
REN F Y, FENG Y L, ZHANG H J, et al. Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber[J]. LWT,2021,151:112161. doi: 10.1016/j.lwt.2021.112161
|
[26] |
ILYAS R A, SAPUAN S M, ISHAK M R, et al. Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr):Effect of cycles on their yield, physic-chemical, morphological and thermal behavior[J]. International Journal of Biological Macromolecules,2019,123:379−388. doi: 10.1016/j.ijbiomac.2018.11.124
|
[27] |
金姝. 白芸豆皮中含结合酚膳食纤维的体外大肠酵解特性及其应用[D]. 广州:华南理工大学, 2023. [JIN S, In vitro fermentation properties of insoluble dietary fiber with bound phenolics from white kidney bean skin and its application[D]. Guangzhou:South China University of Technology, 2023.]
JIN S, In vitro fermentation properties of insoluble dietary fiber with bound phenolics from white kidney bean skin and its application[D]. Guangzhou: South China University of Technology, 2023.
|
[28] |
MENG X M, LIU F, XIAO Y, et al. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment[J]. Food Chemistry:X,2019,3:100029.
|
[29] |
张明, 马超, 吴茂玉, 等. 蒸汽爆破压力对西兰花老茎膳食纤维品质及理化特性的影响[J]. 食品工业科技,2020,41(2):46−51. [Zhang M, Ma C, Wu M Y, et al. Functional Effect of Steam Explosion Pressure on the Quality and Physical and Chemical Properties of Dietary Fiber of Old Stem in Broccoli[J]. Science and Technology of Food Industry,2020,41(2):46−51.]
Zhang M, Ma C, Wu M Y, et al. Functional Effect of Steam Explosion Pressure on the Quality and Physical and Chemical Properties of Dietary Fiber of Old Stem in Broccoli[J]. Science and Technology of Food Industry, 2020, 41(2): 46−51.
|
[30] |
HUANG J Y, LIAO J S, QI J R, et al. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel[J]. Food Hydrocolloids,2021,110:106140. doi: 10.1016/j.foodhyd.2020.106140
|
[31] |
AGUADO R, LOURENCO A F, FERREIRA P J, et al. The relevance of the pretreatment on the chemical modification of cellulosic fibers[J]. Cellulose,2019,26(10):5925−5936. doi: 10.1007/s10570-019-02517-7
|
[32] |
XIE F, LI M, LAN X H, et al. Modification of dietary fibers from purple-fleshed potatoes (Heimeiren) with high hydrostatic pressure and high pressure homogenization processing:A comparative study[J]. Innovative Food Science & Emerging Technologies,2017,42:157−164.
|
[33] |
YU G Y, BEI J, ZHAO J, et al. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure[J]. Food Chemistry,2018,257:333−340. doi: 10.1016/j.foodchem.2018.03.037
|
[34] |
LIU Y L, ZHANG H B, YI C P, et al. Chemical composition, structure, physicochemical and functional properties of rice bran dietary fiber modified by cellulase treatment[J]. Food Chemistry,2021,342:128352. doi: 10.1016/j.foodchem.2020.128352
|
[35] |
SI J Y, YANG C R, CHEN Y, et al. Structural properties and adsorption capacities of Mesona chinensis Benth residues dietary fiber prepared by cellulase treatment assisted by Aspergillus niger or Trichoderma reesei[J]. Food Chemistry,2023,407:135149. doi: 10.1016/j.foodchem.2022.135149
|
[36] |
QIAO H Z, SHAO H M, ZHENG X J, et al. Modification of sweet potato (Ipomoea batatas Lam.) residues soluble dietary fiber following twin-screw extrusion[J]. Food Chemistry,2021,335:127522. doi: 10.1016/j.foodchem.2020.127522
|
[37] |
XIAO Z Q, YANG X Y, ZHAO W W, et al. Physicochemical properties of insoluble dietary fiber from pomelo (Citrus grandis) peel modified by ball milling[J]. Journal of Food Processing and Preservation,2022,46(2):e16242.
|
[38] |
LUO X L, WANG Q, ZHENG B D, et al. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice[J]. Food and Chemical Toxicology,2017,109:1003−1009. doi: 10.1016/j.fct.2017.02.029
|