LIU Jingjie, PENG Xiaowei, WANG Anna, et al. Optimization of Extraction Process, Structural Characterization and in Vitro Bioactivity of Polysaccharides from Dendrocalamus brandisii Bamboo Shoot Shell[J]. Science and Technology of Food Industry, 2025, 46(9): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070363.
Citation: LIU Jingjie, PENG Xiaowei, WANG Anna, et al. Optimization of Extraction Process, Structural Characterization and in Vitro Bioactivity of Polysaccharides from Dendrocalamus brandisii Bamboo Shoot Shell[J]. Science and Technology of Food Industry, 2025, 46(9): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070363.

Optimization of Extraction Process, Structural Characterization and in Vitro Bioactivity of Polysaccharides from Dendrocalamus brandisii Bamboo Shoot Shell

More Information
  • Received Date: July 25, 2024
  • Available Online: February 28, 2025
  • The extraction process of polysaccharides from Dendrocalamus brandisii bamboo shoot shell (PDB) was optimized by Box-Behnken response surface method, and high performance gel permeation chromatography, ion chromatography, ultraviolet spectroscopy, and Fourier infrared spectroscopy were comprehensively applied, scanning electron microscopy, and Congo red assay were used to characterize the structure of PDB separated by DEAE-52 cellulose column, and to evaluate the in vitro antioxidant, hypoglycemic, and hypolipidemic activities of each component. The results showed that the highest percentage of available of PDB was 2.09% when the concentration of sodium carbonate was 4.1 mg/mL, the ultrasonic power was 310 W, the ultrasonic time was 81 min, and the ultrasonic temperature was 66 ℃. PDB was separated by a DEAE-52 cellulose column to obtain the three fractions, namely PDB-0, PDB-1, and PDB-2, which were all mainly composed of arabinose, galactose, glucose and xylose, and the IR spectra showed that the three fractions had typical polysaccharide characteristic peaks. In vitro bioactivity experiments revealed that all three polysaccharide fractions exhibited certain antioxidant, hypoglycemic and hypolipidemic activities, among which the antioxidant activity of PDB-2 was the most prominent, with the half-inhibitory concentrations (IC50) of 0.74±0.05 mg/mL and 0.64±0.01 mg/mL, respectively, for the removal of DPPH· and ABTS+·. When the concentration was 1 mg/mL, the absorbance value of the iron reduction assay was 0.331; the IC50 values for the inhibition of α-amylase activity by each component were 0.78±0.05, 0.82±0.04 and 0.94±0.02 mg/mL, respectively, at concentrations of 1 mg/mL, the binding ratios of PDB-0, PDB-1 and PDB-2 to sodium cholate, sodium taurocholate, and sodium glycylcholate were respectively up to 17.66%±0.12%, 21.06%±0.45%, and 22.28%±0.51%; 24.79%±0.79%, 26.27%±0.78%, and 32.57%±0.75%; 22.46%±0.79%, 25.52%±0.23% and 23.16%±0.78%. In summary, PDB has good in vitro antioxidant, hypoglycemic and hypolipidemic activities and has great potential in the development of food antioxidants and nutraceuticals.
  • [1]
    裴佳龙, 李鹏程, 王茜, 等. 云南不同地理种源勃氏甜龙竹竹笋营养成分比较[J]. 西北林学院学报,2018,33(1):156−161. [PEI J L, LI P C, WANG X, et al. Composition of bamboo shoot nutrients of Dendrocalamus brandisii among different provenances[J]. Journal of Northwest Forestry University,2018,33(1):156−161.] doi: 10.3969/j.issn.1001-7461.2018.01.25

    PEI J L, LI P C, WANG X, et al. Composition of bamboo shoot nutrients of Dendrocalamus brandisii among different provenances[J]. Journal of Northwest Forestry University, 2018, 33(1): 156−161. doi: 10.3969/j.issn.1001-7461.2018.01.25
    [2]
    王琴, 李锦成, 王秋萍, 等. 不同熟度竹筒饭在不同灭菌和储藏条件下的品质变化[J]. 保鲜与加工,2022,22(2):14−23. [WANG Q, LI J C, WANG Q P, et al. Quality changes of bamboo tube rice with different cooking levels under different sterilization and storage conditions[J]. Storage and Process,2022,22(2):14−23.] doi: 10.3969/j.issn.1009-6221.2022.02.003

    WANG Q, LI J C, WANG Q P, et al. Quality changes of bamboo tube rice with different cooking levels under different sterilization and storage conditions[J]. Storage and Process, 2022, 22(2): 14−23. doi: 10.3969/j.issn.1009-6221.2022.02.003
    [3]
    张雄峰, 赵一鹤, 李沁. 茶多酚处理对采后勃氏甜龙竹笋木质化的影响[J]. 西部林业科学,2022,51(1):118−124. [ZHANG X F, ZHAO Y H, LI Q. Effects of tea polyphenol treatment on lignification process of postharvest Dendrocalamus brandisi bamboo shoot[J]. Journal of West China Forestry Science,2022,51(1):118−124.]

    ZHANG X F, ZHAO Y H, LI Q. Effects of tea polyphenol treatment on lignification process of postharvest Dendrocalamus brandisi bamboo shoot[J]. Journal of West China Forestry Science, 2022, 51(1): 118−124.
    [4]
    SALIMATH S K, HEGDE R, GOOLI M. Dendrocalamus brandisii (Munro) Kurz:Unveiling the significance of an essential bamboo species[J]. International Journal of Plant & Soil Science,2023,35(23):124−131.
    [5]
    JIANG J T, ZHANG Z Y, BAI Y C, et al. Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics[J]. Journal of Integrative Plant Biology,2023,66:1087−1105.
    [6]
    FAN Z M, SHEN H, HU T G, et al. Effect of liquid nitrogen spray quick-freezing technology on the quality of bamboo shoots, Dendrocalamus brandisii from Yunnan Province, China[J]. Journal of Food Engineering,2024,368:111916. doi: 10.1016/j.jfoodeng.2023.111916
    [7]
    ZHAO J, WANG S, DONG Z H, et al. Effect of substituting Pennisetum sinese with bamboo shoot shell (BSS) on aerobic stability and digestibility of ensiled total mixed ration[J]. Italian Journal of Animal Science,2021,20(1):1706−1715. doi: 10.1080/1828051X.2021.1892544
    [8]
    MANAMOONGMONGKOL K, SRIPROM P, PHUMJAN L, et al. Production of antimicrobial film-reinforced purified cellulose derived from bamboo shoot shell[J]. Bioresource Technology Reports,2023,22:101429. doi: 10.1016/j.biteb.2023.101429
    [9]
    ZHOU Y, CHEN X X, CHEN T T, et al. A review of the antibacterial activity and mechanisms of plant polysaccharides[J]. Trends in Food Science & Technology,2022,123:264−280.
    [10]
    LUO X L, WANG Q, ZHENG B D, et al. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice[J]. Food and Chemical Toxicology,2017,109:1003−1009. doi: 10.1016/j.fct.2017.02.029
    [11]
    ZHENG Y F, ZHENG S, WANG Q, et al. Characterization and hypoglycemic activity of a β-pyran polysaccharides from bamboo shoot (Leleba oldhami Nakal) shells[J]. Carbohydrate Polymers,2016,144:438−446. doi: 10.1016/j.carbpol.2016.02.073
    [12]
    刘焕燕, 杨波, 李琴, 等. 复合酶法优化毛竹笋壳多糖提取工艺及其抗氧化活性研究[J]. 上海理工大学学报,2018,40(6):572−578. [LIU H Y, YANG B, LI Q, et al. Optimal extraction of polysaccharide from bamboo shoot shells by multi-enzyme method and its antioxidant activity[J]. Journal of University of Shanghai for Science and Technology,2018,40(6):572−578.]

    LIU H Y, YANG B, LI Q, et al. Optimal extraction of polysaccharide from bamboo shoot shells by multi-enzyme method and its antioxidant activity[J]. Journal of University of Shanghai for Science and Technology, 2018, 40(6): 572−578.
    [13]
    PENG X W, LIU J J, TANG N, et al. Sequential extraction, structural characterization, and antioxidant activity of polysaccharides from Dendrocalamus brandisii bamboo shoot shell[J]. Food Chemistry:X,2023,17:100621.
    [14]
    HUANG X Y, CHENX Y, XIAN Y H, et al. The material sources, pharmacological activities of bamboo polysaccharides and influencing factors:A review[J]. Industrial Crops and Products,2024,210:118037. doi: 10.1016/j.indcrop.2024.118037
    [15]
    金瑾, 刘延奇, 秦令祥. 蒸汽爆破辅助提取莼菜多糖及苯酚-硫酸法测定其多糖含量的研究[J]. 粮食与油脂,2022,35(5):116−120. [JIN J, LIU Y Q, QIN L X, et al. Study on steam explosion assisted extraction Brasenia schreberi polysaccharide and its content determination by phenol-sulfuric acid method[J]. Cereals and Oils,2022,35(5):116−120.] doi: 10.3969/j.issn.1008-9578.2022.05.027

    JIN J, LIU Y Q, QIN L X, et al. Study on steam explosion assisted extraction Brasenia schreberi polysaccharide and its content determination by phenol-sulfuric acid method[J]. Cereals and Oils, 2022, 35(5): 116−120. doi: 10.3969/j.issn.1008-9578.2022.05.027
    [16]
    SUN J, ZHONG X Y, SUN D D, et al. Structural characterization of polysaccharides recovered from extraction residue of ginseng root saponins and its fruit nutrition preservation performance[J]. Frontiers in Nutrition,2022,9:934927. doi: 10.3389/fnut.2022.934927
    [17]
    ZENG F K, CHEN W B, HE P, et al. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels[J]. Carbohydrate Polymers,2020,246:116551. doi: 10.1016/j.carbpol.2020.116551
    [18]
    YU J, JI H Y, LIU A J. Alcohol-soluble polysaccharide from Astragalus membranaceus:Preparation, characteristics and antitumor activity[J]. International Journal of Biological Macromolecules,2018,118:2057−2064. doi: 10.1016/j.ijbiomac.2018.07.073
    [19]
    YANG D Y, GAO S, YANG H S. Effects of sucrose addition on the rheology and structure of iota-carrageenan[J]. Food Hydrocolloids,2020,99:105317. doi: 10.1016/j.foodhyd.2019.105317
    [20]
    XU X, WANG Q, XUE S, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers,2021,259:117775. doi: 10.1016/j.carbpol.2021.117775
    [21]
    XIAO Z Q, ZHANG Q, DAI J, et al. Structural characterization, antioxidant and antimicrobial activity of water-soluble polysaccharides from bamboo (Phyllostachys pubescens Mazel) leaves[J]. International Journal of Biological Macromolecules,2020,142:432−442. doi: 10.1016/j.ijbiomac.2019.09.115
    [22]
    PENG X W, HU X, ZHANG Y J, et al. Extraction, characterization, antioxidant and anti-tumor activities of polysaccharides from Camellia fascicularis leaves[J]. International Journal of Biological Macromolecules,2022,222:373−384. doi: 10.1016/j.ijbiomac.2022.09.176
    [23]
    ZHU Z P, CHEN J, CHEN Y, et al. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides[J]. LWT-Food Science and Technology,2022,154:112805. doi: 10.1016/j.lwt.2021.112805
    [24]
    YANG J C, DONG S Y, ZHOU X, et al. Polysaccharides from waste Zingiber mioga leaves:Ultrasonic-microwave-assisted extraction, characterization, antioxidant and anticoagulant potentials[J]. Ultrasonics Sonochemistry,2023,101:106718. doi: 10.1016/j.ultsonch.2023.106718
    [25]
    岳庆明, 韩丽娟, 邓永蓉, 等. 黄刺多糖中单糖含量与体外降血糖活性相关性分析[J]. 食品科学,2024,45(8):122−133. [YUE Q M, HAN L J, DENG Y R, et al. Correlation analysis between monosaccharide composition and hypoglycemic activity in vitro of polysaccharides from Berberis dasystachya Maxim[J]. Food Science,2024,45(8):122−133.] doi: 10.7506/spkx1002-6630-20230831-239

    YUE Q M, HAN L J, DENG Y R, et al. Correlation analysis between monosaccharide composition and hypoglycemic activity in vitro of polysaccharides from Berberis dasystachya Maxim[J]. Food Science, 2024, 45(8): 122−133. doi: 10.7506/spkx1002-6630-20230831-239
    [26]
    YANG W W, WU J, LIU W M, et al. Structural characterization, antioxidant and hypolipidemic activity of Grifola frondosa polysaccharides in novel submerged cultivation[J]. Food Bioscience,2021,42:101187. doi: 10.1016/j.fbio.2021.101187
    [27]
    XIAO Y H, LIU S C, SHEN M Y, et al. Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction[J]. International Journal of Biological Macromolecules,2019,126:30−36. doi: 10.1016/j.ijbiomac.2018.12.211
    [28]
    ZHANG Y, LIU Y H, CAI Y Y, et al. Ultrasonic-assisted extraction brings high-yield polysaccharides from Kangxian flowers with cosmetic potential[J]. Ultrasonics Sonochemistry,2023,100:106626. doi: 10.1016/j.ultsonch.2023.106626
    [29]
    WANG C, LI J, CAO Y, et al. Extraction and characterization of pectic polysaccharides from Choerospondias axillaris peels:Comparison of hot water and ultrasound-assisted extraction methods[J]. Food Chemistry,2023,401:134156. doi: 10.1016/j.foodchem.2022.134156
    [30]
    ZHANG Y L, LEI Y, QI S R, et al. Ultrasonic-microwave-assisted extraction for enhancing antioxidant activity of Dictyophora indusiata polysaccharides:The difference mechanisms between single and combined assisted extraction[J]. Ultrasonics Sonochemistry,2023,95:106356. doi: 10.1016/j.ultsonch.2023.106356
    [31]
    张瑞刚, 王超越. 沙棘叶茶多糖提取工艺优化及体外降脂活性研究[J]. 北方园艺,2024(1):93−99. [ZHANG R G, WANG C Y. Optimization of extraction process and in vitro lipid-lowering activity of seabuckthor leaf tea polysaccharides[J]. Northern Horticulture,2024(1):93−99.] doi: 10.11937/bfyy.20231928

    ZHANG R G, WANG C Y. Optimization of extraction process and in vitro lipid-lowering activity of seabuckthor leaf tea polysaccharides[J]. Northern Horticulture, 2024(1): 93−99. doi: 10.11937/bfyy.20231928
    [32]
    LEE J H, KIM J H, KIM S M, et al. The antioxidant activity of Undaria pinnatifida sporophyll extract obtained using ultrasonication:A focus on crude polysaccharide extraction using ethanol precipitation[J]. Antioxidants,2023,12(11):1904. doi: 10.3390/antiox12111904
    [33]
    吴金姗, 黄榕, 刘树英, 等. 玉簪多糖对细胞氧化应激损伤的保护作用机制[J]. 食品科学,2022,43(17):138−146. [WU J S, HUANG R, LIU S Y, et al. Protective mechanism of polysaccharide from Hosta ventricosa against oxidative damage in cells[J]. Food Science,2022,43(17):138−146.] doi: 10.7506/spkx1002-6630-20210602-026

    WU J S, HUANG R, LIU S Y, et al. Protective mechanism of polysaccharide from Hosta ventricosa against oxidative damage in cells[J]. Food Science, 2022, 43(17): 138−146. doi: 10.7506/spkx1002-6630-20210602-026
    [34]
    WEI Q, ZHANG Y H. Ultrasound-assisted polysaccharide extraction from Cercis chinensis and properites, antioxidant activity of polysaccharide[J]. Ultrasonics Sonochemistry,2023,96:106422. doi: 10.1016/j.ultsonch.2023.106422
    [35]
    潘章超, 张人谕, 黎欢昶, 等. 暗褐脉柄牛肝菌子实体多糖的分离纯化、结构表征及体外降血糖活性[J]. 食品科学,2024,45(8):55−62. [PAN Z C, ZHANG R Y, LI H C, et al. Extraction, purification, characterization and in vitro hypoglycemic activity of polysaccharides from fruiting body of Phlebopus portentosus[J]. Food Science,2024,45(8):55−62.] doi: 10.7506/spkx1002-6630-20230709-090

    PAN Z C, ZHANG R Y, LI H C, et al. Extraction, purification, characterization and in vitro hypoglycemic activity of polysaccharides from fruiting body of Phlebopus portentosus[J]. Food Science, 2024, 45(8): 55−62. doi: 10.7506/spkx1002-6630-20230709-090
    [36]
    XIAO D, ZHU C P, HUANG G Q, et al. Fractionation and structural characterization of polysaccharides derived from red grape pomace[J]. Process Biochemistry,2021,109:37−45. doi: 10.1016/j.procbio.2021.06.022
    [37]
    和梦瑶, 董泽宇, 张兰兰, 等. 不同部位鱼腥草多糖的结构表征与生物活性[J]. 中国食品学报,2024,24(3):276−286. [HE M Y, DONG Z Y, ZHANG L L, et al. Structure characterization and biological activity of polysaccharides from different parts of Houttuynia cordata Thunb[J]. Journal of Chinese Institute of Food Science and Technology,2024,24(3):276−286.]

    HE M Y, DONG Z Y, ZHANG L L, et al. Structure characterization and biological activity of polysaccharides from different parts of Houttuynia cordata Thunb[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(3): 276−286.
    [38]
    FERNANDES P A R, COIMBRA M A. The antioxidant activity of polysaccharides:A structure-function relationship overview[J]. Carbohydrate Polymers,2023,314:120965. doi: 10.1016/j.carbpol.2023.120965
    [39]
    MU S, YANG W J, HUANG G L. Antioxidant activities and mechanisms of polysaccharides[J]. Chemical Biology and Drug Design,2020,97(3):628−632.
    [40]
    KTARI N, FEKI A, TRABELSI I, et al. Structure, functional and antioxidant properties in Tunisian beef sausage of a novel polysaccharide from Trigonella foenum-graecum seeds[J]. International Journal of Biological Macromolecules,2017,98:169−181. doi: 10.1016/j.ijbiomac.2017.01.113
    [41]
    李金婷, 雍一丹, 王雅楠, 等. 大蒜多糖酶法辅助双水相提取工艺优化及抗氧化和降糖活性分析[J]. 食品科技,2024,45(7):15−24. [LI J T, YONG Y D, WANG Y N, et al. Optimization of enzymatic-assisted aqueous two-phase extraction conditions of garlic polysaccharide and analysis of its antioxidant and hypoglycemic properties in vitro[J]. Food Science and Technology,2024,45(7):15−24.]

    LI J T, YONG Y D, WANG Y N, et al. Optimization of enzymatic-assisted aqueous two-phase extraction conditions of garlic polysaccharide and analysis of its antioxidant and hypoglycemic properties in vitro[J]. Food Science and Technology, 2024, 45(7): 15−24.
    [42]
    许梦粤, 丁泽宇, 李锦鹏, 等. 大豆多糖与纳豆多糖结构特征和主要生物活性比较[J]. 食品科学,2024,45(7):78−86. [XU M Y, DING Z Y, LI J P, et al. Comparison of structural characteristics and major biological activities of polysaccharides from soybean and natto[J]. Food Science,2024,45(7):78−86.] doi: 10.7506/spkx1002-6630-20230808-050

    XU M Y, DING Z Y, LI J P, et al. Comparison of structural characteristics and major biological activities of polysaccharides from soybean and natto[J]. Food Science, 2024, 45(7): 78−86. doi: 10.7506/spkx1002-6630-20230808-050
  • Related Articles

    [1]LI Lingdong, CHEN Jun, DENG Lizhen, GENG Qin, LI Ti, LIU Chengmei, DAI Taotao. Preparation, Characterization and Antioxidant Activity of Rice Protein Peptides with Different Enzymatic Hydrolysis Routes[J]. Science and Technology of Food Industry, 2024, 45(21): 10-19. DOI: 10.13386/j.issn1002-0306.2023090011
    [2]ABABAIKERI Gulimire, ROZI Parhat, SEMAYI Zelalai, ABUDOUAINI Alimu, CAO Bo, YANG Xiaojun. Optimization of Enzymatic Hydrolysis of Bovine Bone Marrow Protein and Its Physicochemical and Antioxidant Properties[J]. Science and Technology of Food Industry, 2023, 44(20): 171-181. DOI: 10.13386/j.issn1002-0306.2022100246
    [3]HUANG Dian, GAO Ya, LIU Lei, ZHANG Huiying, ZHANG Yuyu, CHEN Haitao, SUN Baoguo, ZENG Yan. Optimization of Preparation Technology and Antioxidant Activity of Enzymatic Hydrolysate from Boletus edulis Hydrolyzed by Protease[J]. Science and Technology of Food Industry, 2021, 42(12): 209-217. DOI: 10.13386/j.issn1002-0306.2020090169
    [4]YU Hui, LIU Hai-mei, LI Meng-na, LIN Shi-qi, WEI Fei-long, GUO Hong-yang. Optimization for enzymatic hydrolysis of Gracilaria lemaneiformis protein and antioxidant activity of its hydrolysate[J]. Science and Technology of Food Industry, 2017, (12): 157-163. DOI: 10.13386/j.issn1002-0306.2017.12.029
    [5]LIU Yan, DUAN Zhen-hua, LUO Wei, HU Bing-yang. Study on enzymatic hydrolysis technology of oyster meat by ficus and its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (18): 182-185. DOI: 10.13386/j.issn1002-0306.2015.18.028
    [6]Study on preparation and antioxidant activity in vitro of enzymatic hydrolysis from oyster protein[J]. Science and Technology of Food Industry, 2013, (16): 163-168. DOI: 10.13386/j.issn1002-0306.2013.16.015
    [7]Enzymatic hydrolysis of eggshell membrane and antioxidant activity of its hydrolysate in vitro[J]. Science and Technology of Food Industry, 2013, (09): 164-167. DOI: 10.13386/j.issn1002-0306.2013.09.064
    [8]茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069
    [9]全溶活性营养W粉的水解研究[J]. Science and Technology of Food Industry, 1999, (05): 24-25. DOI: 10.13386/j.issn1002-0306.1999.05.007
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006

Catalog

    Article Metrics

    Article views (32) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return