Citation: | CHEN Shengdan, YANG Zhiwei. Interaction between Ellagic Acid from Pomegranate Peel and Corn Starch and Its Mechanism of Inhibiting Starch Digestibility[J]. Science and Technology of Food Industry, 2025, 46(10): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070294. |
[1] |
DENG N, DENG Z, TANG C, et al. Formation, structure and properties of the starch-polyphenol inclusion complex:A review[J]. Trends in Food Science & Technology,2021,112:667−675.
|
[2] |
KARUNARATNE R, ZHU F. Physicochemical interactions of maize starch with ferulic acid[J]. Food Chemistry,2016,199:372−379. doi: 10.1016/j.foodchem.2015.12.033
|
[3] |
ZHU F. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology,2015,43(2):129−143.
|
[4] |
WANG L B, WANG L J, LI Z G, et al. Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of Tartary buckwheat starch[J]. Food Chemistry,2021,335:127556. doi: 10.1016/j.foodchem.2020.127556
|
[5] |
HE C A, ZHANG Z, LIU H, et al. Effect of rutin and quercetin on the physicochemical properties of Tartary buckwheat starch[J]. Starch - Stä rke,2018,70(1−2):1700038.
|
[6] |
陈天鸽, 李泳娴, 王露, 等. 三种食源性多酚对马铃薯淀粉理化特性的影响[J/OL]. 食品工业科技, 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024050136. [CHEN T G, LI Y X, WANG L, et al. Effects of three foodborne polyphenols on the physicochemical properties of potato starch[J/OL]. Science and Technology of Food Industry, 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024050136.]
CHEN T G, LI Y X, WANG L, et al. Effects of three foodborne polyphenols on the physicochemical properties of potato starch[J/OL]. Science and Technology of Food Industry, 1−15[2025-03-10]. https://doi.org/10.13386/j.issn1002-0306.2024050136.
|
[7] |
HAN X Q, ZHANG M W, ZHANG R F, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT,2020,125:109227. doi: 10.1016/j.lwt.2020.109227
|
[8] |
GIUBERTI G, ROCCHETTI G, LUCINI L. Interactions between phenolic compounds, amylolytic enzymes and starch:An updated overview[J]. Current Opinion in Food Science,2020,31:102−113. doi: 10.1016/j.cofs.2020.04.003
|
[9] |
MU J L, WANG L W, LÜ J W, et al. Phenolics from sea buckthorn (Hippophae rhamnoides L.) modulate starch digestibility through physicochemical modifications brought about by starch – Phenolic molecular interactions[J]. LWT,2022,165:113682. doi: 10.1016/j.lwt.2022.113682
|
[10] |
MIAO L, XU Y, JIA C H, et al. Structural changes of rice starch and activity inhibition of starch digestive enzymes by anthocyanins retarded starch digestibility[J]. Carbohydrate Polymers,2021,261:117841. doi: 10.1016/j.carbpol.2021.117841
|
[11] |
屈艳君, 王文慧, 曹家南, 等. 鞣花酸的制备及应用研究进展[J]. 中国食物与营养,2022,28(6):39−45. [QU Y J, WANG W H, CAO J N, et al. Research progress on the preparation and application of ellagic acid[J]. Chinese Food & Nutrition,2022,28(6):39−45.]
QU Y J, WANG W H, CAO J N, et al. Research progress on the preparation and application of ellagic acid[J]. Chinese Food & Nutrition, 2022, 28(6): 39−45.
|
[12] |
NYAMBA I, LECHANTEUR A, SEMDÉ R, et al. Physical formulation approaches for improving aqueous solubility and bioavailability of ellagic acid:A review[J]. European Journal of Pharmaceutics and Biopharmaceutics,2021,159:198−210. doi: 10.1016/j.ejpb.2020.11.004
|
[13] |
CHI C D, LI X X, ZHANG Y P, et al. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid[J]. Food & Function,2017,8(2):720−730.
|
[14] |
TAN J Q, LI P C, WANG W L, et al. Separation of gallic acid from Cornus officinalis and its interactions with corn starch[J]. International Journal of Biological Macromolecules,2022,208:390−399. doi: 10.1016/j.ijbiomac.2022.03.116
|
[15] |
ZHENG Y X, TIAN J H, KONG X L, et al. Physicochemical and digestibility characterisation of maize starch–caffeic acid complexes[J]. LWT,2020,121:108857. doi: 10.1016/j.lwt.2019.108857
|
[16] |
WU M X, YANG Q X, WU Y W, et al. Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV[J]. Food Bioscience,2021,43:101224. doi: 10.1016/j.fbio.2021.101224
|
[17] |
AHMAD S, ALOUFFI S, KHAN S, et al. Physicochemical characterization of in vitro LDL glycation and its inhibition by ellagic acid (EA):An in vivo approach to inhibit diabetes in experimental animals[J]. BioMed Research International,2022,2022(1):5583298. doi: 10.1155/2022/5583298
|
[18] |
CHEN N, FENG Z F, GAO H X, et al. Effects of phenols with different structure characteristics on properties of potato starch:Action rule and molecular mechanism[J]. Journal of Food Processing and Preservation,2022,46(7):e16679.
|
[19] |
徐加喜, 高迪, 朱晓梅, 等. 高温高压条件制备石榴皮鞣花酸的试验研究[J]. 食品工业科技,2017,38(17):174−177. [XU J X, GAO D, ZHU X M, et al. Experimental study on the preparation of ellagic acid from pomegranate peel under high temperature and high pressure conditions[J]. Science and Technology of Food Industry,2017,38(17):174−177.]
XU J X, GAO D, ZHU X M, et al. Experimental study on the preparation of ellagic acid from pomegranate peel under high temperature and high pressure conditions[J]. Science and Technology of Food Industry, 2017, 38(17): 174−177.
|
[20] |
WANG L, LIAN B L, WU W W, et al. Optimization of ellagic acid purification from pomegranate husk by antisolvent recrystallization[J]. Chemical Engineering & Technology,2018,41(6):1188−1198.
|
[21] |
刘伟, 刘军海. 石榴皮中鞣花酸的提取工艺优化研究[J]. 粮食与油脂,2022,35(3):149−154. [LIU W, LIU H J. Study on the optimization of the extraction process of ellagic acid from pomegranate peel[J]. Grains and Fats,2022,35(3):149−154.] doi: 10.3969/j.issn.1008-9578.2022.03.034
LIU W, LIU H J. Study on the optimization of the extraction process of ellagic acid from pomegranate peel[J]. Grains and Fats, 2022, 35(3): 149−154. doi: 10.3969/j.issn.1008-9578.2022.03.034
|
[22] |
王佳宁. 蓝靛果鞣花酸分离纯化及对脂质过氧化作用的影响研究[D]. 黑龙江:哈尔滨商业大学, 2018. [WANG J N. Separation and purification of ellagic acid from blue indigo fruit and its effect on lipid peroxidation[D]. Heilongjiang:Harbin University of Commerce, 2018.]
WANG J N. Separation and purification of ellagic acid from blue indigo fruit and its effect on lipid peroxidation[D]. Heilongjiang: Harbin University of Commerce, 2018.
|
[23] |
ZHU F, CAI Y Z, SUN M, et al. Effect of phytochemical extracts on the pasting, thermal, and gelling properties of wheat starch[J]. Food Chemistry,2009,112(4):919−923. doi: 10.1016/j.foodchem.2008.06.079
|
[24] |
QIU S, YADAV M P, CHEN H, et al. Effects of corn fiber gum (CFG) on the pasting and thermal behaviors of maize starch[J]. Carbohydrate Polymers,2015,115:246−252. doi: 10.1016/j.carbpol.2014.08.071
|
[25] |
苗兰鸽, 许燕, 赵思明, 等. 花青素对不同直链淀粉含量的淀粉理化特性的影响[J]. 食品工业科技,2020,41(14):22−28. [MIAO L G, XU Y, ZHAO S M, et al. Effect of anthocyanins on the physicochemical properties of starch with different amylose contents[J]. Science and Technology of Food Industry,2020,41(14):22−28.]
MIAO L G, XU Y, ZHAO S M, et al. Effect of anthocyanins on the physicochemical properties of starch with different amylose contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22−28.
|
[26] |
GAO S S, LIU H, SUN L J, et al. Rheological, thermal and in vitro digestibility properties on complex of plasma modified Tartary buckwheat starches with quercetin[J]. Food Hydrocolloids,2021,110:106209. doi: 10.1016/j.foodhyd.2020.106209
|
[27] |
HAN M J, BAO W J, WU Y W, et al. Insights into the effects of caffeic acid and amylose on in vitro digestibility of maize starch-caffeic acid complex[J]. International Journal of Biological Macromolecules,2020,162:922−930. doi: 10.1016/j.ijbiomac.2020.06.200
|
[28] |
LI B, ZHU L B, WANG Y T, et al. Multi-scale supramolecular structure of Pouteria campechiana (Kunth) Baehni seed and pulp starch[J]. Food Hydrocolloids,2022,124:107284. doi: 10.1016/j.foodhyd.2021.107284
|
[29] |
YE J P, LUO S J, HUANG A, et al. Synthesis and characterization of citric acid esterified rice starch by reactive extrusion:A new method of producing resistant starch[J]. Food Hydrocolloids,2019,92:135−142. doi: 10.1016/j.foodhyd.2019.01.064
|
[30] |
ZHANG Q, DUAN H, ZHOU Y X, et al. Effect of dry heat treatment on multi-structure, physicochemical properties, and in vitro digestibility of potato starch with controlled surface-removed levels[J]. Food Hydrocolloids,2023,134:108062. doi: 10.1016/j.foodhyd.2022.108062
|
[31] |
万芊. 多酚与玉米淀粉的相互作用及其对淀粉消化和加工特性的影响[D]. 无锡:江南大学, 2019. [WAN X. Interaction of polyphenols with corn starch and their effects on starch digestion and processing characteristics[D]. Wuxi:Jiangnan University, 2019.]
WAN X. Interaction of polyphenols with corn starch and their effects on starch digestion and processing characteristics[D]. Wuxi: Jiangnan University, 2019.
|
[32] |
XU J H, LI X, CHEN J, et al. Effect of polymeric proanthocyanidin on the physicochemical and in vitro digestive properties of different starches[J]. LWT,2021,148:111713. doi: 10.1016/j.lwt.2021.111713
|
[33] |
AMOAKO D, AWIKA J M. Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose[J]. Current Opinion in Food Science,2016,8:14−18. doi: 10.1016/j.cofs.2016.01.010
|
[34] |
MADRUGA M S, de ALBUQUERQUE F S M, SILVA I R A, et al. Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch[J]. Food Chemistry,2014,143:440−445. doi: 10.1016/j.foodchem.2013.08.003
|
[35] |
MA S P, ZHU P L, WANG M C. Effects of konjac glucomannan on pasting and rheological properties of corn starch[J]. Food Hydrocolloids,2019,89:234−240. doi: 10.1016/j.foodhyd.2018.10.045
|
[36] |
HUANG G R, WANG F, YANG R, et al. Characterization of the physicochemical properties of Lipu Colocasia esculenta (L.) Schott starch:A potential new food ingredient[J]. International Journal of Biological Macromolecules,2024,254:127803. doi: 10.1016/j.ijbiomac.2023.127803
|
[37] |
CHI C D, LI X X, ZHANG Y P, et al. Modulating the in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid[J]. Food Hydrocolloids,2019,89:821−828. doi: 10.1016/j.foodhyd.2018.11.016
|
[38] |
MAO S F, REN Y M, YE X Q, et al. Regulating the physicochemical, structural characteristics and digestibility of potato starch by complexing with different phenolic acids[J]. International Journal of Biological Macromolecules,2023,253:127474. doi: 10.1016/j.ijbiomac.2023.127474
|
[39] |
CHAI Y W, WANG M Z, ZHANG G Y. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch[J]. Journal of Agricultural and Food Chemistry,2013,61(36):8608−8615. doi: 10.1021/jf402821r
|
[40] |
于美汇. 肉桂酸基酚酸调控淀粉消化性的机制及构效关系研究[D]. 无锡:江南大学, 2023. [YU M H. Study on the mechanism and structure-activity relationship of cinnamic acid-based phenolic acid regulating starch digestibility[D]. Wuxi:Jiangnan University, 2023.]
YU M H. Study on the mechanism and structure-activity relationship of cinnamic acid-based phenolic acid regulating starch digestibility[D]. Wuxi: Jiangnan University, 2023.
|
[41] |
ZHENG M, SU H, LUO M, et al. Effect of hydrocolloids on the retrogradation of lotus seed starch undergoing an autoclaving–cooling treatment[J]. Journal of Food Science,2019,84(3):466−474. doi: 10.1111/1750-3841.14480
|
[42] |
WANG Y Y, GUO J Y, WANG C Y, et al. Effects of konjac glucomannan and freezing on thermal properties, rheology, digestibility and microstructure of starch isolated from wheat dough[J]. LWT,2023,177:114588. doi: 10.1016/j.lwt.2023.114588
|
[43] |
TARAHI M, HEDAYATI S, SHAHIDI F. Effects of mung bean (Vigna radiata) protein isolate on rheological, textural, and structural properties of native corn starch:Polymers[Z]. Polymers (Basel), 2022:14(15):3012.
|
[44] |
WANG M T, SHEN Q, HU L L, et al. Physicochemical properties, structure and in vitro digestibility on complex of starch with lotus (Nelumbo nucifera Gaertn.) leaf flavonoids[J]. Food Hydrocolloids,2018,81:191−199. doi: 10.1016/j.foodhyd.2018.02.020
|
[45] |
LI S, LIU H M, ZHENG Q H, et al. Effects of soluble and insoluble dietary fiber from corn bran on pasting, thermal, and structural properties of corn starch[J]. Starch - Stä rke,2022,74(5-6):2100254.
|
[46] |
WANG S Q, WU T H, CUI W J, et al. Structure and in vitro digestibility on complex of corn starch with soy isoflavone[J]. Food Science & Nutrition,2020,8(11):6061−6068.
|
[47] |
ZHANG Y J, HU M J, ZHU K X, et al. Functional properties and utilization of Artocarpus heterophyllus Lam seed starch from new species in China[J]. International Journal of Biological Macromolecules,2018,107:1395−1405. doi: 10.1016/j.ijbiomac.2017.10.001
|
[48] |
ZHENG Y X, TIAN J H, KONG X L, et al. Proanthocyanidins from Chinese berry leaves modified the physicochemical properties and digestive characteristic of rice starch[J]. Food Chemistry,2021,335:127666. doi: 10.1016/j.foodchem.2020.127666
|
[49] |
BUILDERS P F, MBAH C C, ADAMA K K, et al. Effect of pH on the physicochemical and binder properties of tigernut starch[J]. Starch - Stä rke,2014,66(3−4):281−293.
|
[50] |
ZUO Y, ZHU F, JIANG S, et al. Differences in structure, physicochemical properties, and in vitro digestibility of three types of starch complexed with tannic acid[J]. Food Hydrocolloids,2024,157:110419. doi: 10.1016/j.foodhyd.2024.110419
|
[51] |
LIU B, ZHONG F, YOKOYAMA W, et al. Interactions in starch co-gelatinized with phenolic compound systems:Effect of complexity of phenolic compounds and amylose content of starch[J]. Carbohydrate Polymers,2020,247:116667. doi: 10.1016/j.carbpol.2020.116667
|
[52] |
HE T, WANG K, ZHAO L, et al. Interaction with longan seed polyphenols affects the structure and digestion properties of maize starch[J]. Carbohydrate Polymers,2021,256:117537. doi: 10.1016/j.carbpol.2020.117537
|
[53] |
刘玉杰, 季嘉城, 张硕, 等. 刺梨中鞣花酸的分离鉴定及提取工艺的优化[J]. 食品工业科技,2023,44(8):212−220. [LIU Y J, JI J C, ZHANG S, et al. Isolation and identification of ellagic acid in prickly pear and optimization of extraction process[J]. Science and Technology of Food Industry,2023,44(8):212−220.]
LIU Y J, JI J C, ZHANG S, et al. Isolation and identification of ellagic acid in prickly pear and optimization of extraction process[J]. Science and Technology of Food Industry, 2023, 44(8): 212−220.
|
[54] |
WEI X, XIE H, HU Z, et al. Multiscale structure changes and mechanism of polyphenol-amylose complexes modulated by polyphenolic structures[J]. International Journal of Biological Macromolecules,2024,262:130086. doi: 10.1016/j.ijbiomac.2024.130086
|
[55] |
XIAO Q, WAN B, YING R, et al. The physicochemical and in vitro digestion characteristics of Cynanchum auriculatum Royle ex Wight starch-tea polyphenols non-inclusive complex[J]. International Journal of Food Science & Technology,2024,59(5):2971−2982.
|
[56] |
IGOUMENIDIS P E, ZOUMPOULAKIS P, KARATHANOS V T. Physicochemical interactions between rice starch and caffeic acid during boiling[J]. Food Research International,2018,109:589−595. doi: 10.1016/j.foodres.2018.04.062
|
[57] |
WANG Y, HAN S, HAO Z, et al. Preparation of the black rice starch-gallic acid complexes by ultrasound treatment:Physicochemical properties, multiscale structure, and in vitro digestibility[J]. International Journal of Biological Macromolecules,2024,263:130331. doi: 10.1016/j.ijbiomac.2024.130331
|
[58] |
MA Y, CHEN Z, WANG Z, et al. Molecular interactions between apigenin and starch with different amylose/amylopectin ratios revealed by X-ray diffraction, FT-IR and solid-state NMR[J]. Carbohydrate Polymers,2023,310:120737. doi: 10.1016/j.carbpol.2023.120737
|
[59] |
YU M, LIU B, ZHONG F, et al. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion[J]. Food Hydrocolloids,2021,114:106544. doi: 10.1016/j.foodhyd.2020.106544
|
[60] |
MAIBAM B D, NICKHIL C, DEKA S C. Preparation, physicochemical characterization, and in vitro starch digestibility on complex of Euryale ferox kernel starch with ferulic acid and quercetin[J]. International Journal of Biological Macromolecules,2023,250:126178. doi: 10.1016/j.ijbiomac.2023.126178
|
[61] |
WANG J, YANG H, LUO L, et al. Persimmon leaf polyphenols as potential ingredients for modulating starch digestibility:Effect of starch-polyphenol interaction[J]. International Journal of Biological Macromolecules,2024,270:132524. doi: 10.1016/j.ijbiomac.2024.132524
|
[62] |
柴子淇. 山楂多酚对玉米淀粉理化性质和消化特性的影响[D]. 杭州:浙江大学, 2023. [CHAI Z Q. Effect of hawthorn polyphenols on physicochemical properties and digestibility of corn starch[D]. Hangzhou:Zhejiang University, 2023.]
CHAI Z Q. Effect of hawthorn polyphenols on physicochemical properties and digestibility of corn starch[D]. Hangzhou: Zhejiang University, 2023.
|
[63] |
ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. European Journal of Elinical Nutrition,1992,46,2:S33−S50.
|