Citation: | XIN Jiaying, SONG Qi, XU Jingyi, et al. Research Progress of Solvent-free Lipase Catalysis and Its Application in the Food Field[J]. Science and Technology of Food Industry, 2025, 46(11): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070284. |
[1] |
ZANGADE S, PATIL P. A review on solvent-free methods in organic synthesis[J]. Current Organic Chemistry,2019,23(21):2295−2318.
|
[2] |
吴小梅, 辛嘉英, 张颖鑫, 等. 无溶剂体系中的脂肪酶催化反应研究进展[J]. 分子催化,2006(6):597−603. [WU X M, XIN J Y, ZHANG Y X, et al. Research progress on lipase-catalyzed reactions in solvent-free systems[J]. Molecular Catalysis,2006(6):597−603.] doi: 10.3969/j.issn.1001-3555.2006.06.022
WU X M, XIN J Y, ZHANG Y X, et al. Research progress on lipase-catalyzed reactions in solvent-free systems[J]. Molecular Catalysis, 2006(6): 597−603. doi: 10.3969/j.issn.1001-3555.2006.06.022
|
[3] |
KLIBANOV A M, ZAKS A. Enzymatic catalysis in organic media at 100 C[J]. Science,1984,224(4654):1249−1251. doi: 10.1126/science.6729453
|
[4] |
SHELDON R A. Green solvents for sustainable organic synthesis:state of the art[J]. Green Chemistry,2005,7(5):267−278. doi: 10.1039/b418069k
|
[5] |
WANG S, MENG X, ZHOU H, et al. Enzyme stability and activity in non-aqueous reaction systems:A mini review[J]. Catalysts,2016,6(2):32. doi: 10.3390/catal6020032
|
[6] |
SÁ A G A, DE MENESES A C, DE ARAÚJO P H H, et al. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries[J]. Trends in Food Science & Technology,2017,69:95−105.
|
[7] |
ORTEGA-REQUENA S, MONTIEL C, MÁXIMO F, et al. Esters in the food and cosmetic industries:An overview of the reactors used in their biocatalytic synthesis[J]. Materials,2024,17(1):268. doi: 10.3390/ma17010268
|
[8] |
BASHEER S, MASRI R. Immobilized lipases-A versatile industrial tool for catalyzing transesterification of phytosterols solubilized in plant oils to produce their fatty acid esters[J]. Processes,2024,12(2):307. doi: 10.3390/pr12020307
|
[9] |
张天祺. 无溶剂体系中生物催化天麻素酯合成反应及其生物活性研究[D]. 广州:华南理工大学, 2021. [ZHANG T Q. Study on biocatalytic synthesis of gastrodin ester insolvent-free system and its biological activity[D]. Guangzhou:South China University of Technology, 2021.]
ZHANG T Q. Study on biocatalytic synthesis of gastrodin ester insolvent-free system and its biological activity[D]. Guangzhou: South China University of Technology, 2021.
|
[10] |
HERNÁNDEZ J G, FRINGS M, BOLM C. Mechanochemical enzymatic kinetic resolution of secondary alcohols under ball-milling conditions[J]. ChemCatChem,2016,8(10):1769−1772. doi: 10.1002/cctc.201600455
|
[11] |
BUZATU A R, TODEA A, PETER F, et al. The role of reactive natural deep eutectic solvents in sustainable biocatalysis[J]. ChemCatChem, 2024:e202301597.
|
[12] |
YOUN S H, KIM H J, KIM T H, et al. Lipase-catalyzed acylation of naringin with palmitic acid in highly concentrated homogeneous solutions[J]. Journal of Molecular Catalysis B:Enzymatic,2007,46(1-4):26−31. doi: 10.1016/j.molcatb.2007.02.002
|
[13] |
DE SOUSA R R, DA COSTA LÁZARO C, REGO C B S M, et al. Butyl-esters synthesis from palm fatty acid distillate catalyzed by immobilized lipases in solvent-free system-optimization using a simplified method (SER)[J]. Process Biochemistry,2023,128:158−166. doi: 10.1016/j.procbio.2023.02.030
|
[14] |
MARTINEZ-GARCIA M, VAN H W, PEETERS H, et al. Methyl oleate for plant protection products formulations:Enzymatic synthesis, reaction kinetics and application testing[J]. Journal of Biotechnology,2024,379:78−86. doi: 10.1016/j.jbiotec.2023.12.004
|
[15] |
JAISWAL K, SARAIYA S, RATHOD V K. Intensification of enzymatic synthesis of decyl oleate using ultrasound in solvent free system:Kinetic, thermodynamic and physicochemical study[J]. Journal of Oleo Science,2021,70(4):559−570. doi: 10.5650/jos.ess20235
|
[16] |
XIA X L, WANG C, YANG B, et al. Water activity dependence of lipases in non-aqueous biocatalysis[J]. Applied Biochemistry and Biotechnology,2009,159:759−767. doi: 10.1007/s12010-009-8618-8
|
[17] |
ADLERCREUTZ P. Immobilisation and application of lipases in organic media[J]. Chemical Society Reviews,2013,42(15):6406−6436. doi: 10.1039/c3cs35446f
|
[18] |
SOUSA R R, SILVA A S A, FERNANDEZ-LAFUENTE R, et al. Solvent-free esterifications mediated by immobilized lipases:A review from thermodynamic and kinetic perspectives[J]. Catalysis Science & Technology,2021,11(17):5696−5711.
|
[19] |
ZOU S, CHEN J, LEE Y Y, et al. Candida antartica lipase-catalyzed esterification for efficient partial acylglycerol synthesis in solvent-free system:Substrate selectivity, molecular modelling and optimization[J]. Bioresource Technology,2024,412:131368. doi: 10.1016/j.biortech.2024.131368
|
[20] |
SANTOS M, VELEZ A, ABBURRA R, et al. Thermodynamic and kinetic aspects of the solvent-free liquid-liquid synthesis of tailor-made glyceride esters[J]. Fuel,2023,333:126461. doi: 10.1016/j.fuel.2022.126461
|
[21] |
TODEA A, DREAVĂ D M, BENEA I C, et al. Achievements and trends in biocatalytic synthesis of specialty polymers from biomass-derived monomers using lipases[J]. Processes,2021,9(4):646. doi: 10.3390/pr9040646
|
[22] |
ALJAWISH A, HEUSON E, BIGAN M, et al. Lipase catalyzed esterification of formic acid in solvent and solvent-free systems[J]. Biocatalysis and Agricultural Biotechnology,2019,20:101221. doi: 10.1016/j.bcab.2019.101221
|
[23] |
RODRIGUES D S R, VITOR B P L, ZAMITH L D G, et al. A practical approach to obtain high yield lipase-mediated synthesis of octyl caprylate with Novozym 435[J]. Biocatalysis and Biotransformation,2020,38(4):293−303.
|
[24] |
SERRANO-ARNALDOS M, MONTIEL M C, ORTEGA-REQUENA S, et al. Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters[J]. Bioprocess and Biosystems Engineering,2020,43:495−505. doi: 10.1007/s00449-019-02243-1
|
[25] |
YU H, LEE M W, SHIN H, et al. Lipase-catalyzed solvent-free synthesis of erythorbyl laurate in a gas-solid-liquid multiphase system[J]. Food Chemistry,2019,271:445−449. doi: 10.1016/j.foodchem.2018.07.134
|
[26] |
VENTURI V, PRESINI F, TRAPELLA C, et al. Microwave-assisted enzymatic synthesis of geraniol esters in solvent-free systems:Optimization of the reaction parameters, purification and characterization of the products, and biocatalyst reuse[J]. Molecular Diversity,2023,28(3):1665−1679.
|
[27] |
JAISWAL K S, RATHOD V K. Green synthesis of amyl levulinate using lipase in the solvent free system:Optimization, mechanism and thermodynamics studies[J]. Catalysis Today,2021,375:120−131. doi: 10.1016/j.cattod.2020.06.059
|
[28] |
SOUSA R R, SILVA A S A, FERNANDEZ-LAFUENTE R, et al. Simplified method to optimize enzymatic esters syntheses in solvent-free systems:Validation using literature and experimental data[J]. Catalysts,2021,11(11):1357. doi: 10.3390/catal11111357
|
[29] |
崔添玉, 辛嘉英, 孙立瑞, 等. 机械酶催化反应的研究进展[J]. 食品科学,2024,45(23):23321−23328. [CUI T Y, XIN J Y, SUN L R, et al. Research progress on mechanoenzymatic reactions[J]. Food Science,2024,45(23):23321−23328.] doi: 10.7506/spkx1002-6630-20231127-210
CUI T Y, XIN J Y, SUN L R, et al. Research progress on mechanoenzymatic reactions[J]. Food Science, 2024, 45(23): 23321−23328. doi: 10.7506/spkx1002-6630-20231127-210
|
[30] |
PÉREZ-VENEGAS M, JUARISTI E. Mechanoenzymology:State of the art and challenges towards highly sustainable biocatalysis[J]. ChemSusChem,2021,14(13):2682−2688. doi: 10.1002/cssc.202100624
|
[31] |
PÉREZ-VENEGAS M, TELLEZ-CRUZ M M, SOLORZA-FERIA O, et al. Thermal and mechanical stability of immobilized candida antarctica lipase B:An approximation to mechanochemical energetics in enzyme catalysis[J]. ChemCatChem,2020,12(3):803−811. doi: 10.1002/cctc.201901714
|
[32] |
SPINELLA S, GANESH M, RE G L, et al. Enzymatic reactive extrusion:Moving towards continuous enzyme-catalysed polyester polymerisation and processing[J]. Green Chemistry,2015,17(8):4146−4150. doi: 10.1039/C5GC00992H
|
[33] |
Green chemical synthesis with microwaves and ultrasound[M]. John Wiley & Sons, 2024.
|
[34] |
KHAN N R, RATHOD V K. Microwave assisted enzymatic synthesis of speciality esters:A mini-review[J]. Process Biochemistry,2018,75:89−98. doi: 10.1016/j.procbio.2018.08.019
|
[35] |
NHIVEKAR G S, RATHOD V K. Microwave-assisted lipase-catalyzed synthesis of polyethylene glycol stearate in a solvent-free system[J]. Journal of the Indian Chemical Society,2021,98(9):100131. doi: 10.1016/j.jics.2021.100131
|
[36] |
DANGE P N, RATHOD V K. Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation[J]. Resource-Efficient Technologies,2017,3(1):64−70. doi: 10.1016/j.reffit.2016.11.012
|
[37] |
SOSE M T, RATHOD V K. Ultrasound assisted enzyme catalysed synthesis of butyl caprylate in solvent free system[J]. Indian Chemical Engineer,2021,63(4):402−413. doi: 10.1080/00194506.2020.1750975
|
[38] |
MULAY A, RATHOD V K. Kinetics of microwave-assisted synthesis of ethyl hexanoate by using heterogeneous catalyst:Process intensification and energy consumption analysis[J]. Journal of Microwave Power and Electromagnetic Energy,2024,58(1):36−52. doi: 10.1080/08327823.2024.2305489
|
[39] |
郑丽娜, 辛嘉英, 王艳, 等. 微波对酶催化反应的影响及其微波效应的研究进展[J]. 分子催化,2017,31(6):567−574. [ZHENG L N, XIN J Y, WANG Y, et al. The effect of microwave on enzyme-catalyzed reactions and its research progress on microwave effect[J]. Molecular Catalysis,2017,31(6):567−574.]
ZHENG L N, XIN J Y, WANG Y, et al. The effect of microwave on enzyme-catalyzed reactions and its research progress on microwave effect[J]. Molecular Catalysis, 2017, 31(6): 567−574.
|
[40] |
BANSODE S R, RATHOD V K. Enzymatic sythesis of isoamyl butyrate under microwave irradiation[J]. Chemical Engineering and Processing-Process Intensification,2018,129:71−76. doi: 10.1016/j.cep.2018.04.015
|
[41] |
闫国栋, 董洪举, 王智, 等. 超声技术应用于非水相酶催化的研究[J]. 合成化学,2018,26(11):4. [YAN G D, DONG H J, WANG Z, et al. Ultrasound technology is applied to the study of non-aqueous enzyme catalysis[J]. Synthetic Chemistry,2018,26(11):4.]
YAN G D, DONG H J, WANG Z, et al. Ultrasound technology is applied to the study of non-aqueous enzyme catalysis[J]. Synthetic Chemistry, 2018, 26(11): 4.
|
[42] |
MOENTAMARIA D, RULIANAH S, CHUMAIDI A, et al. Enhancement in synthesis of citronellyl laurate flavour by combined effect of ultrasound and immobilized lipase as heterogeneous biocatalyst[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing, 2021, 1073(1):012001.
|
[43] |
NIETO S, VILLA R, DONAIRE A, et al. Ultrasound-assisted enzymatic synthesis of xylitol fatty acid esters in solvent-free conditions[J]. Ultrasonics Sonochemistry,2021,75:105606. doi: 10.1016/j.ultsonch.2021.105606
|
[44] |
DIAO X, SUN W, JIA R, et al. Preparation and characterization of diacylglycerol via ultrasound-assisted enzyme-catalyzed transesterification of lard with glycerol monolaurate[J]. Ultrasonics Sonochemistry,2023,95:106354. doi: 10.1016/j.ultsonch.2023.106354
|
[45] |
ZHANG H, ZHENG M, TANG H, et al. Enzymatic preparation of “functional oil” rich in feruloylated structured lipids with solvent-free ultrasound pretreatment[J]. Food Chemistry,2018,248:272−278. doi: 10.1016/j.foodchem.2017.12.069
|
[46] |
JAISWAL K S, RATHOD V K. Acoustic cavitation promoted lipase catalysed synthesis of isobutyl propionate in solvent free system:Optimization and kinetic studies[J]. Ultrasonics Sonochemistry,2018,40:727−735. doi: 10.1016/j.ultsonch.2017.07.026
|
[47] |
YUSHKOVA E D, NAZAROVA E A, MATYUHINA A V, et al. Application of immobilized enzymes in food industry[J]. Journal of Agricultural and Food Chemistry,2019,67(42):11553−11567. doi: 10.1021/acs.jafc.9b04385
|
[48] |
TOMKE P D, RATHOD V K. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium[J]. Ultrasonics Sonochemistry,2015,27:241−246. doi: 10.1016/j.ultsonch.2015.04.022
|
[49] |
BHAVSAR K V, YADAV G D. Microwave assisted solvent-free synthesis of n-butyl propionate by immobilized lipase as catalyst[J]. Biocatalysis and Agricultural Biotechnology,2018,14:264−269. doi: 10.1016/j.bcab.2018.02.012
|
[50] |
FERRAZ L I R, POSSEBOM G, ALVEZ E V, et al. Application of home-made lipase in the production of geranyl propionate by esterification of geraniol and propionic acid in solvent-free system[J]. Biocatalysis and Agricultural Biotechnology,2015,4(1):44−48. doi: 10.1016/j.bcab.2014.07.003
|
[51] |
BHAVSAR K V, YADAV G D. Process intensification by microwave irradiation in immobilized-lipase catalysis in solvent-free synthesis of ethyl valerate[J]. Molecular Catalysis,2018,461:34−39. doi: 10.1016/j.mcat.2018.09.019
|
[52] |
GAWAS S D, LOKANATH N, RATHOD V K. Optimization of enzymatic synthesis of ethyl hexanoate in a solvent free system using response surface methodology (RSM)[J]. Biocatalysis,2018,4(1):14−26. doi: 10.1515/boca-2018-0002
|
[53] |
JAWALE P V, BHANAGE B M. Synthesis of propyl benzoate by solvent-free immobilized lipase-catalyzed transesterification:Optimization and kinetic modeling[J]. Bioprocess and Biosystems Engineering,2021,44:369−378. doi: 10.1007/s00449-020-02448-9
|
[54] |
DE MENESES A C, BALEN M, DE ANDRADE JASPER E, et al. Enzymatic synthesis of benzyl benzoate using different acyl donors:Comparison of solvent-free reaction techniques[J]. Process Biochemistry,2020,92:261−268. doi: 10.1016/j.procbio.2020.01.018
|
[55] |
LEE Y, LEE S, KIM S, et al. Solvent-free enzymatic synthesis and evaluation of vanillyl propionate as an effective and biocompatible preservative[J]. Bioprocess and Biosystems Engineering,2023,46(11):1579−1590. doi: 10.1007/s00449-023-02921-1
|
[56] |
SUN S, ZHU S, BI Y. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil[J]. Food Chemistry,2014,158:292−295. doi: 10.1016/j.foodchem.2014.02.146
|
[57] |
ABDELGAWAD A, EID M, ABOU-ELMAGD W, et al. Lipase catalysed transesterification of palm stearin with ferulic acid in solvent-free media[J]. Biocatalysis and Biotransformation,2022,40(5):378−385. doi: 10.1080/10242422.2021.1949001
|
[58] |
ZHANG S, AKOH C C. Solvent-free enzymatic synthesis of 1-o-galloylglycerol optimized by the taguchi method[J]. Journal of the American Oil Chemists' Society,2019,96(8):877−889. doi: 10.1002/aocs.12229
|
[59] |
YE R, HAYES D G, BURTON R, et al. Solvent-free lipase-catalyzed synthesis of technical-grade sugar esters and evaluation of their physicochemical and bioactive properties[J]. Catalysts,2016,6(6):78. doi: 10.3390/catal6060078
|
[60] |
MUSTAFA A, KARMALI A, ABDELMOEZ W. Optimisation and economic assessment of lipase-catalysed production of monoesters using Rhizomucor miehei lipase in a solvent-free system[J]. Journal of Cleaner Production,2016,137:953−964. doi: 10.1016/j.jclepro.2016.07.056
|
[61] |
SATYAWALI Y, CAUWENBERGHS L, DEJONGHE W. Lipase-catalyzed solvent-free synthesis of polyglycerol 10 (PG-10) esters[J]. Chemical and Biochemical Engineering Quarterly,2019,33(4):501−509.
|
[62] |
OGAWA S, ENDO A, KITAHARA N, et al. Factors determining the reaction temperature of the solvent-free enzymatic synthesis of trehalose esters[J]. Carbohydrate Research,2019,482:107739. doi: 10.1016/j.carres.2019.06.018
|
[63] |
MA Q, ZHANG X, LI X, et al. Novel trends and challenges in fat modification of next-generation infant formula:Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants[J]. Food Research International,2023,174(P1):113574.
|
[64] |
REMONATTO D, SANTAELLA N, LERIN L A, et al. Solvent-free enzymatic synthesis of dietary triacylglycerols from cottonseed oil in a fluidized bed reactor[J]. Molecules,2023,28(14):5384. doi: 10.3390/molecules28145384
|
[65] |
BALOCH K A, PATIL U, PUDTIKAJORN K, et al. Lipase-catalyzed synthesis of structured fatty acids enriched with medium and long-chain n-3 fatty acids via solvent-free transesterification of skipjack tuna eyeball oil and commercial butterfat[J]. Foods,2024,13(2):347. doi: 10.3390/foods13020347
|
[66] |
LAI Y, LI D, LIU T, et al. Preparation of functional oils rich in diverse medium and long-chain triacylglycerols based on a broadly applicable solvent-free enzymatic strategy[J]. Food Research International,2023,164:112338. doi: 10.1016/j.foodres.2022.112338
|
[67] |
ZOU X, NADEGE K, NINETTE I, et al. Preparation of docosahexaenoic acid-rich diacylglycerol-rich oil by lipase-catalyzed glycerolysis of microbial oil from Schizochytrium sp. in a solvent-free system[J]. Journal of the American Oil Chemists' Society,2020,97(3):263−270. doi: 10.1002/aocs.12311
|
[68] |
CHOONG T S Y, YEOH C M, PHUAH E T, et al. Kinetic study of lipase-catalyzed glycerolysis of palm olein using lipozyme TLIM in solvent-free system[J]. PLoS One,2018,13(2):e0192375. doi: 10.1371/journal.pone.0192375
|
[69] |
VERMA S, CHOUDHARY R N, KANADJE A P, et al. Diversifying arena of drug synthesis:In the realm of lipase mediated waves of biocatalysis[J]. Catalysts,2021,11(11):1328. doi: 10.3390/catal11111328
|
[70] |
ZHANG Y, MA G, WANG S, et al. Study on the synthesis of pine sterol esters in solvent-free systems catalyzed by Candida rugosa lipase immobilized on hydrophobic macroporous resin[J]. Journal of the Science of Food and Agriculture,2023,103(15):7849−7861. doi: 10.1002/jsfa.12869
|
[71] |
YU H, KIM S, CHANG P S. Lipase-catalyzed production of pyridoxine monolaurate in solvent-free bioreactor system[J]. Food Chemistry,2023,399:133949. doi: 10.1016/j.foodchem.2022.133949
|
[72] |
HUANG S M, WU P Y, CHEN J H, et al. Develo a high-temperature solvent-free system for efficient biocatalysis of octyl ferulate[J]. Catalysts,2018,8(8):338. doi: 10.3390/catal8080338
|
[73] |
CHEN K, LIU X, OUYANG B, et al. Effective production of β‐sitosteryl oleate using a highly thermal‐tolerant immobilized lipase in a solvent‐free system[J]. Journal of the American Oil Chemists' Society,2024,101(7):627−635. doi: 10.1002/aocs.12813
|
[74] |
WANG X S, ZHAO Y, JIANG C, et al. Enzymatic synthesis of bornyl linoleate in a solvent-free system[J]. Food Bioscience,2021,41:100947. doi: 10.1016/j.fbio.2021.100947
|
[75] |
ZHENG X, HAO Y, ZHAO M, et al. Efficient enzymatic synthesis of D-α-tocopherol acetate by Carica papaya lipase-catalyzed acetylation of D-α-tocopherol in a solvent-free system[J]. LWT,2024,202:116289. doi: 10.1016/j.lwt.2024.116289
|