Citation: | CUI Hailin, TANG Hailun, LIU Lian, et al. Chrysanthemum indicum Flavonoid Extract on the Oxidative Stress Resistance of Caenorhabditis elegans[J]. Science and Technology of Food Industry, 2025, 46(11): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070078. |
[1] |
汤亚芳, 余婉婷, 余港, 等. 野菊花药用活性成分及调控措施研究进展[J]. 中华中医药学刊,2023,41(10):255−258. [TANG Y F, YU W T, YU G, et al. Research progress on pharmacological active constituents and regulation in Yejuhua (Chrysanthemum indicium L.)[J]. Chinese Archives of Traditional Chinese Medicine,2023,41(10):255−258.]
TANG Y F, YU W T, YU G, et al. Research progress on pharmacological active constituents and regulation in Yejuhua (Chrysanthemum indicium L.)[J]. Chinese Archives of Traditional Chinese Medicine, 2023, 41(10): 255−258.
|
[2] |
曹双, 刘瑞, 张秋月, 等. 野菊花化学成分和药理作用研究进展[J]. 广东化工,2023,50(3):203−204. [CAO S, LIU R, ZHANG Q Y, et al. Research progress on chemical constituents and pharmacological action of wild Chrysanthemum[J]. Guangdong Chemical Industry,2023,50(3):203−204.] doi: 10.3969/j.issn.1007-1865.2023.03.064
CAO S, LIU R, ZHANG Q Y, et al. Research progress on chemical constituents and pharmacological action of wild Chrysanthemum[J]. Guangdong Chemical Industry, 2023, 50(3): 203−204. doi: 10.3969/j.issn.1007-1865.2023.03.064
|
[3] |
孙平, 董萍萍, 董丹华, 等. 超声波辅助低共熔溶剂提取野菊花总黄酮的工艺研究[J]. 食品工业科技,2020,41(20):147−152. [SUN P, DONG P P, DONG D H, et al. Ultrasound-assisted deep eutectic solvent extraction of total flavonoids from Chrysanthemum indicum[J]. Science and Technology of Food Industry,2020,41(20):147−152.]
SUN P, DONG P P, DONG D H, et al. Ultrasound-assisted deep eutectic solvent extraction of total flavonoids from Chrysanthemum indicum[J]. Science and Technology of Food Industry, 2020, 41(20): 147−152.
|
[4] |
陈佳敏. 不同产地野菊花主要活性成分及其体外活性研究[D]. 南京:南京农业大学, 2020. [CHEN J M. Studies on the active components and their biological activities of Chrysanthemum indicum L. from different areas[D]. Nanjing:Nanjing Agricultural University, 2020.]
CHEN J M. Studies on the active components and their biological activities of Chrysanthemum indicum L. from different areas[D]. Nanjing: Nanjing Agricultural University, 2020.
|
[5] |
WANG Y, LI Y, GUO W, et al. Comparison of the chemical components, efficacy and mechanisms of action of Chrysanthemum morifolium flower and its wild relative Chrysanthemum indicum flower against liver-fire hyperactivity syndrome of hypertension via integrative analyses[J]. International Journal of Molecular Sciences,2022,23(22):13767.
|
[6] |
JIN C, LIU J, JIN R, et al. Linarin ameliorates dextran sulfate sodium-induced colitis in C57BL/6J mice via the improvement of intestinal barrier, suppression of inflammatory responses and modulation of gut microbiota[J]. Food & Function,2022,13(20):10574−1058.
|
[7] |
THU H N, THU H N, NGUYEN V P. Optimization of β-cyclodextrin-assisted extraction of apigenin and luteolin from Chrysanthemum indicum L. using response surface methodology combined with different optimization algorithms and evaluation of its antioxidant capacity[J]. Chemistry & Biodiversity,2023,20(8):e202300873.
|
[8] |
SHEN P Y, YUE Y R, PARK Y. Caenorhabditis elegans:A convenient in vivo model for assessing the impact of food bioactive compounds on obesity, aging, and Alzheimer's disease[J]. Annual Review of Food Science and Technology,2018,9(9):1−22.
|
[9] |
YE Y L, GU Q Y, SUN X L. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals:A review[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3084−3105.
|
[10] |
TISSENBAUM H A. Genetics, life span, health span, and the aging process in Caenorhabditis elegans[J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences,2012,67(5):503−510.
|
[11] |
WU S, MIAO J, ZHU S, et al. Pongamol prevents neurotoxicity via the activation of MAPKs/Nrf2 signaling pathway in H2O2-induced neuronal PC12 cells and prolongs the lifespan of Caenorhabditis elegans[J]. Molecular Neurobiology,2024,61:8219−8233. doi: 10.1007/s12035-024-04110-x
|
[12] |
DONG Q, CUI Z, WU X, et al. Natural flavonoid hesperetin blocks amyloid β-protein fibrillogenesis, depolymerizes preformed fibrils and alleviates cytotoxicity caused by amyloids[J]. Food & Function,2024,15(8):4233−4245.
|
[13] |
豆佳媛, 田巍, 唐琴, 等. 超声波辅助法提取野菊花中总黄酮的研究[J]. 皮革与化工,2022,39(2):19−26. [DOU J Y, TIAN W, TANG Q, et al. Study on ultrasonic-assisted extraction of total flavonoids from Chrysanthemum indicum[J]. Leather and Chemicals,2022,39(2):19−26.] doi: 10.3969/j.issn.1674-0939.2022.02.004
DOU J Y, TIAN W, TANG Q, et al. Study on ultrasonic-assisted extraction of total flavonoids from Chrysanthemum indicum[J]. Leather and Chemicals, 2022, 39(2): 19−26. doi: 10.3969/j.issn.1674-0939.2022.02.004
|
[14] |
缪园欣, 廖明星, 孙爱红, 等. 超声-乙醇法提取铁皮石斛花总黄酮及其体外抗氧化性的研究[J]. 中国酿造,2019,38(4):155−159. [MIAO Y X, LIAO M X, SUN A H, et al. Extraction of total flavonoids from Dendrobium officinale flowers by ultrasonic-ethanol synergistic and its antioxidant activity[J]. China Brewing,2019,38(4):155−159.] doi: 10.11882/j.issn.0254-5071.2019.04.030
MIAO Y X, LIAO M X, SUN A H, et al. Extraction of total flavonoids from Dendrobium officinale flowers by ultrasonic-ethanol synergistic and its antioxidant activity[J]. China Brewing, 2019, 38(4): 155−159. doi: 10.11882/j.issn.0254-5071.2019.04.030
|
[15] |
吴梦思, 金建宇, 尚书游, 等. 卷丹百合黄酮提取物抗氧化活性研究[J]. 食品与发酵工业,2024,50(15):163−169. [WU M S, JIN J Y, SHANG S Y, et al. Study on antioxidant activity of Lilium lancifolium Thunb flavonoid extract[J]. Food and Fermentation Industries,2024,50(15):163−169.]
WU M S, JIN J Y, SHANG S Y, et al. Study on antioxidant activity of Lilium lancifolium Thunb flavonoid extract[J]. Food and Fermentation Industries, 2024, 50(15): 163−169.
|
[16] |
YANG T, LIU X, XUE L, et al. Quality assessment of red yeast rice by fingerprint and fingerprint-effect relationship combined with antioxidant activity[J]. Food Chemistry,2024,438(16):137744.
|
[17] |
LI R, TAO M F, WU T, et al. A promising strategy for investigating the anti-aging effect of natural compounds:A case study of caffeoylquinic acids[J]. Food & Function,2021,12(18):8583−8593.
|
[18] |
SOLIS G M, PETRASCHECK M. Measuring Caenorhabditis elegans life span in 96 well microtiter plates[J]. Jove-Journal of Visualized Experiments,2011,49(10):e2496.
|
[19] |
LI R, TAO M F, XU T T, et al. Artemisia selengensis Turcz. leaf extract promotes longevity and stress resistance in Caenorhabditis elegans[J]. Journal of the Science of Food and Agriculture,2022,102(11):4532−4541.
|
[20] |
XU T T, TAO M F, LI R, et al. Longevity-promoting properties of ginger extract in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway[J]. Food & Function,2022,13(19):9893−9903.
|
[21] |
PENG Y, SUN Q, GAO R, et al. AAK-2 and SKN-1 are involved in chicoric-acid-induced lifespan extension in Caenorhabditis elegans[J]. Journal of Agricultural and Food Chemistry,2019,67(33):9178−9186.
|
[22] |
TAO M F, LI R, XU T T, et al. Vitexin and isovitexin delayed ageing and enhanced stress-resistance through the activation of the SKN-1/Nrf2 signaling pathway[J]. International Journal of Food Sciences and Nutrition,2023,74(6):685−694.
|
[23] |
TAO M F, LI R, XU T T, et al. Flavonoids from the mung bean coat promote longevity and fitness in Caenorhabditis elegans[J]. Food & Function,2021,12(17):8196−8207.
|
[24] |
王天顺. 杭白菊、野菊花和神农香菊抗氧化损伤作用及有效成分研究[D]. 武汉:湖北中医药大学, 2023. [WANG T S. Antioxidative damage effect and active ingredients of Chrysanthmum Morifolium Ramat., Chrysanthemum indicum L. and Chrysanthemum indicum var. aromaticum[D]. Wuhan:Hubei University of Chinese Medicine, 2023.]
WANG T S. Antioxidative damage effect and active ingredients of Chrysanthmum Morifolium Ramat., Chrysanthemum indicum L. and Chrysanthemum indicum var. aromaticum[D]. Wuhan: Hubei University of Chinese Medicine, 2023.
|
[25] |
LIOCHEV S I. Reactive oxygen species and the free radical theory of aging[J]. Free Radical Biology and Medicine,2013,60:1−4.
|
[26] |
LI R, YI Q P, WANG J S, et al. Paeonol promotes longevity and fitness in Caenorhabditis elegans through activating the DAF-16/FOXO and SKN-1/Nrf2 transcription factors[J]. Biomedicine & Pharmacotherapy,2024,173:1−15.
|
[27] |
WOLLENHAUPT S G, SOARES A T, SALGUEIRO W G, et al. Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway[J]. Food and Chemical Toxicology,2014,64:192−199.
|
[28] |
WAN Q L, FU X, MENG X, et al. Hypotaurine promotes longevity and stress tolerance via the stress response factors DAF-16/FOXO and SKN-1/NRF2 in Caenorhabditis elegans[J]. Food & Function,2020,11(1):347−357.
|
[29] |
NGUYEN V T, PARK A R, DURAISAMY K, et al. Elucidation of the nematicidal mode of action of grammicin on Caenorhabditis elegans[J]. Pesticide Biochemistry and Physiology,2022,188:105244.
|
[30] |
TULLET J M, HERTWECK M, AN J H, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans[J]. Cell,2008,132(6):1025−1038.
|
[31] |
WAN Q L, FU X, DAI W, et al. Uric acid induces stress resistance and extends the life span through activating the stress response factor DAF-16/FOXO and SKN-1/NRF2[J]. Aging-Us,2020,12(3):2840−2856.
|