GAO Wei, WEI Yunshan, ZHU Guangsu, et al. Electrospraying Technology and Its Research Progress in Food Field[J]. Science and Technology of Food Industry, 2025, 46(10): 1−13. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070001.
Citation: GAO Wei, WEI Yunshan, ZHU Guangsu, et al. Electrospraying Technology and Its Research Progress in Food Field[J]. Science and Technology of Food Industry, 2025, 46(10): 1−13. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024070001.

Electrospraying Technology and Its Research Progress in Food Field

More Information
  • Received Date: July 01, 2024
  • Available Online: March 19, 2025
  • Electrospraying is a non-thermophysical processing technology that uses high-voltage electrostatic fields to continuously prepare micro/nano particles, and thanks to its various advantages such as easy operation, mild conditions, and high encapsulation efficiency, which have received a great attention in the food market. However, its application in the food field is currently still in its early stage and requires in-depth exploration by researchers. Therefore, this review briefly summarizes the working principle, focusing on the effects of polymer solution conditions, process parameters and environmental conditions on the effect of electrospraying. The commonly used encapsulating materials, including proteins (such as zein, whey protein, gelatin, etc.), and polysaccharides (such as alginate, chitosan, pullulan, etc.) are summarized. Additionally, it provides an overview of the current use of this technology for encapsulation of bioactive compounds and food packaging. Further, the existing limitations and scope for future research are discussed, hoping to provide a reference and inspiration for related research on electrospraying technology in food field.
  • [1]
    NIU B, SHAO P, LUO Y C, et al. Recent advances of electrosprayed particles as encapsulation systems of bioactives for food application[J]. Food Hydrocolloids,2020,99:105376. doi: 10.1016/j.foodhyd.2019.105376
    [2]
    WANG P P, DING M Z, ZHANG T, et al. Electrospraying technique and its recent application advances for biological macromolecule encapsulation of food bioactive substances[J]. Food Reviews International,2022,38(4):566−588. doi: 10.1080/87559129.2020.1738455
    [3]
    DHIMAN A, SUHAG R, SINGH A, et al. Mechanistic understanding and potential application of electrospraying in food processing:A review[J]. Critical Reviews in Food Science and Nutrition,2022,62(30):8288−8306. doi: 10.1080/10408398.2021.1926907
    [4]
    冯坤, 韦昀姗, 吴虹. 基于静电流体的静电纺丝/喷涂技术在食品领域中的研究进展[J]. 食品科学,2021,42(15):231−241. [FENG K, WEI Y S, WU H. Progress in applications of electrospinning/electrospraying based on electrohydrodynamics in the food field[J]. Food Science,2021,42(15):231−241.] doi: 10.7506/spkx1002-6630-20200618-248

    FENG K, WEI Y S, WU H. Progress in applications of electrospinning/electrospraying based on electrohydrodynamics in the food field[J]. Food Science, 2021, 42(15): 231−241. doi: 10.7506/spkx1002-6630-20200618-248
    [5]
    TOMADONI B, FABRA M J, LOPEZ-RUBIO A. Electrohydrodynamic processing of phycocolloids for food-related applications:Recent advances and future prospects[J]. Trends in Food Science & Technology,2022,125:114−125.
    [6]
    ALEHOSSEINI A, GÓMEZ-MASCARAQUE L G, GHORANI B, et al. Stabilization of a saffron extract through its encapsulation within electrospun/electrosprayed zein structures[J]. LWT-Food Science and Technology,2019,113:108280. doi: 10.1016/j.lwt.2019.108280
    [7]
    PAXIMADA P, ECHEGOYEN Y, KOUTINAS A A, et al. Encapsulation of hydrophilic and lipophilized catechin into nanoparticles through emulsion electrospraying[J]. Food Hydrocolloids,2017,64:123−132. doi: 10.1016/j.foodhyd.2016.11.003
    [8]
    冯坤, 皇甫露露, 相启森, 等. 静电纺丝技术在食品抗菌保鲜中的应用研究进展[J]. 食品安全质量检测学报,2022,13(20):6554−6562. [FENG K, HUANG PU L L, XIANG Q S, et al. Research progress on the application of electrospinning technology in food antibacterial preservation[J]. Journal of Food Safety and Quality,2022,13(20):6554−6562.]

    FENG K, HUANG PU L L, XIANG Q S, et al. Research progress on the application of electrospinning technology in food antibacterial preservation[J]. Journal of Food Safety and Quality, 2022, 13(20): 6554−6562.
    [9]
    RAHMANI-MANGLANO N E, GUADIX E M, JACOBSEN C, et al. Comparative study on the oxidative stability of encapsulated fish oil by monoaxial or coaxial electrospraying and spray-drying[J]. Antioxidants,2023,12(2):266. doi: 10.3390/antiox12020266
    [10]
    TANHAEI A, MOHAMMADI M, HAMISHEHKAR H, et al. Electrospraying as a novel method of particle engineering for drug delivery vehicles[J]. Journal of Controlled Release,2021,330:851−865. doi: 10.1016/j.jconrel.2020.10.059
    [11]
    PARASKEVI P, EUGENIA K, EFTYCHIOS A, et al. Encapsulation of catechin in electrosprayed food-grade particles[J]. Food Hydrocolloids for Health,2021,1:100021. doi: 10.1016/j.fhfh.2021.100021
    [12]
    CETINKAYA T, MENDES A C, JACOBSEN C, et al. Development of kafirin-based nanocapsules by electrospraying for encapsulation of fish oil[J]. Lwt-Food Science and Technology,2021,136:110297. doi: 10.1016/j.lwt.2020.110297
    [13]
    冯坤. 基于静电流体技术的胰岛素肠道递送体系的构建及其血糖调控机制研究[D]. 广州:华南理工大学, 2023. [FENG K. Development of intestinal delivery systems of insulin by electrohydrodynamics technique and their blood glucose regulation mechanism[D]. Guangzhou:South China University of Technology, 2023.]

    FENG K. Development of intestinal delivery systems of insulin by electrohydrodynamics technique and their blood glucose regulation mechanism[D]. Guangzhou: South China University of Technology, 2023.
    [14]
    HUANG R M, FENG K, LI S F, et al. Enhanced survival of probiotics in the electrosprayed microcapsule by addition of fish oil[J]. Journal of Food Engineering,2021,307:110650. doi: 10.1016/j.jfoodeng.2021.110650
    [15]
    PIRES J B, DOS SANTOS F N, COSTA I H D, et al. Essential oil encapsulation by electrospinning and electrospraying using food proteins:A review[J]. Food Research International,2023,170:112970. doi: 10.1016/j.foodres.2023.112970
    [16]
    李金磊. 基于静电纺丝/静电喷雾构筑荷叶效应纳米纤维及性能研究[D]. 郑州:中原工学院, 2023. [LI J M. Construction and properties of lotus leaf effect nanofibers based on electrostatic spinning/electrostatic spray[D]. Zhengzhou:Zhongyuan University of Technology, 2023.]

    LI J M. Construction and properties of lotus leaf effect nanofibers based on electrostatic spinning/electrostatic spray[D]. Zhengzhou: Zhongyuan University of Technology, 2023.
    [17]
    JACOBSEN C, GARCÍA-MORENO P J, MENDES A C, et al. Use of electrohydrodynamic processing for encapsulation of sensitive bioactive compounds and applications in food[J]. Annual Review of Food Science and Technology, 2018:525−549.
    [18]
    LIU Z P, ZHANG L L, YANG Y Y, et al. Preparing composite nanoparticles for immediate drug release by modifying electrohydrodynamic interfaces during electrospraying[J]. Powder Technology,2018,327:179−187. doi: 10.1016/j.powtec.2017.12.066
    [19]
    COELHO S C, ESTEVINHO B N, ROCHA F. Encapsulation in food industry with emerging electrohydrodynamic techniques:Electrospinning and electrospraying - A review[J]. Food Chemistry,2021,339:127850. doi: 10.1016/j.foodchem.2020.127850
    [20]
    NGUYEN D N, PALANGETIC L, CLASEN C, et al. One-step production of darunavir solid dispersion nanoparticles coated with enteric polymers using electrospraying[J]. Journal of Pharmacy and Pharmacology,2016,68(5):625−633. doi: 10.1111/jphp.12459
    [21]
    JAYAPRAKASH P, MAUDHUIT A, GAIANI C, et al. Encapsulation of bioactive compounds using competitive emerging techniques:Electrospraying, nano spray drying, and electrostatic spray drying[J]. Journal of Food Engineering,2023,339:111260. doi: 10.1016/j.jfoodeng.2022.111260
    [22]
    ALEHOSSEINI A, GHORANI B, SARABI-JAMAB M, et al. Principles of electrospraying:A new approach in protection of bioactive compounds in foods[J]. Critical Reviews in Food Science and Nutrition,2018,58(14):2346−2363. doi: 10.1080/10408398.2017.1323723
    [23]
    ROSTAMI M, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi: 10.1016/j.foodhyd.2019.06.015
    [24]
    KURAKULA M, NAVEEN N R. Electrospraying:A facile technology unfolding the chitosan based drug delivery and biomedical applications[J]. European Polymer Journal,2021,147:110326. doi: 10.1016/j.eurpolymj.2021.110326
    [25]
    MORAIS A I S, VIEIRA E G, AFEWERKI S, et al. Fabrication of polymeric microparticles by electrospray:The impact of experimental parameters[J]. Journal of Functional Biomaterials,2020,11(1):4. doi: 10.3390/jfb11010004
    [26]
    黄如梦. 基于静电喷涂的益生菌包埋体系的构建及其性能研究[D]. 广州:华南理工大学, 2023. [HUANG R M. Construction and performance of encapsulation system of probiotics based on electrospraying technology[D]. Guangzhou:South China University of Technology, 2023.]

    HUANG R M. Construction and performance of encapsulation system of probiotics based on electrospraying technology[D]. Guangzhou: South China University of Technology, 2023.
    [27]
    KARIMI A, ASKARI G, YARMAND M S, et al. Development, modification and characterization of ursolic acid-loaded gelatin nanoparticles through electrospraying technique[J]. Food and Bioproducts Processing,2020,124:329−341. doi: 10.1016/j.fbp.2020.08.018
    [28]
    TAPIA-HERNÁNDEZ J A, DEL-TORO-SÁNCHEZ C L, CINCO-MOROYOQUI F J, et al. Gallic acid-loaded zein nanoparticles by electrospraying process[J]. Journal of Food Science,2019,84(4):818−831. doi: 10.1111/1750-3841.14486
    [29]
    BHUSHANI J A, KURREY N K, ANANDHARAMAKRISHNAN C. Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability[J]. Journal of Food Engineering,2017,199:82−92. doi: 10.1016/j.jfoodeng.2016.12.010
    [30]
    TAO L N, ZHANG T, WANG P P, et al. Shape control and stability of multicore millimetre-sized capsules using a combined monoaxial dispersion electrospraying-ionotropic gelation technique[J]. International Journal of Food Science and Technology,2021,56(10):5150−5159. doi: 10.1111/ijfs.15300
    [31]
    TSAI S, TING Y W. Synthesize of alginate/chitosan bilayer nanocarrier by CCD-RSM guided co-axial electrospray:A novel and versatile approach[J]. Food Research International,2019,116:1163−1172. doi: 10.1016/j.foodres.2018.11.047
    [32]
    RAMOS-HERNÁNDEZ J A, RAGAZZO-SÁNCHEZ J A, CALDERÓN-SANTOYO M, et al. Use of electrosprayed agave fructans as nanoencapsulating hydrocolloids for bioactives[J]. Nanomaterials,2018,8(11):868. doi: 10.3390/nano8110868
    [33]
    NIU B, SHAO P, FENG S M, et al. Rheological aspects in fabricating pullulan-whey protein isolate emulsion suitable for electrospraying:Application in improving β-carotene stability[J]. LWT-Food Science and Technology,2020,129:109581. doi: 10.1016/j.lwt.2020.109581
    [34]
    DE D C L, VELÁQUEZ E, ROJAS A, et al. Developing core/shell capsules based on hydroxypropyl methylcellulose and gelatin through electrodynamic atomization for betalain encapsulation[J]. Polymers,2023,15(2):361. doi: 10.3390/polym15020361
    [35]
    MIGUEL G A, JACOBSEN C, PRIETO C, et al. Oxidative stability and physical properties of mayonnaise fortified with zein electrosprayed capsules loaded with fish oil[J]. Journal of Food Engineering,2019,263:348−358. doi: 10.1016/j.jfoodeng.2019.07.019
    [36]
    OIKONOMOPOULOU V, STRAMARKOU M, PLAKIDA A, et al. Optimization of encapsulation of stevia glycosides through electrospraying and spray drying[J]. Food Hydrocolloids,2022,131:107854. doi: 10.1016/j.foodhyd.2022.107854
    [37]
    COELHO S C, GIRON A, ROCHA F, et al. Electrosprayed B-complex vitamins/zein microparticles for drug sustained release and antioxidant applications[J]. Journal of Chemical Technology and Biotechnology,2024,99(1):217−226. doi: 10.1002/jctb.7526
    [38]
    DO E J A, CRIZEL R L, CHAVES F C, et al. Thermal and irradiation resistance of folic acid encapsulated in zein ultrafine fibers or nanocapsules produced by electrospinning and electrospraying[J]. Food Research International,2019,124:137−146. doi: 10.1016/j.foodres.2018.08.019
    [39]
    ESCOBAR-GARCÍA J D, PRIETO C, PARDO-FIGUEREZ M, et al. Room temperature nanoencapsulation of bioactive eicosapentaenoic acid rich oil within whey protein microparticles[J]. Nanomaterials,2021,11(3):575. doi: 10.3390/nano11030575
    [40]
    PÉREZ-MASIÁ R, LÓPEZ-NICOLÁS R, PERIAGO M J, et al. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications[J]. Food Chemistry,2015,168:124−133. doi: 10.1016/j.foodchem.2014.07.051
    [41]
    SOLEIMANIFAR M, JAFARI S M, ASSADPOUR E. Encapsulation of olive leaf phenolics within electrosprayed whey protein nanoparticles; production and characterization[J]. Food Hydrocolloids,2020,101:105572. doi: 10.1016/j.foodhyd.2019.105572
    [42]
    RODRIGUES R M, RAMOS P E, CERQUEIRA M F, et al. Electrosprayed whey protein-based nanocapsules for β-carotene encapsulation[J]. Food Chemistry,2020,314:126157. doi: 10.1016/j.foodchem.2019.126157
    [43]
    GÓMEZ-MASCARAQUE L G, LAGARÓN J M, LÓPEZ-RUBIO A. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods[J]. Food Hydrocolloids,2015,49:42−52. doi: 10.1016/j.foodhyd.2015.03.006
    [44]
    BIDUSKI B, KRINGEL D H, COLUSSI R, et al. Electrosprayed octenyl succinic anhydride starch capsules for rosemary essential oil encapsulation[J]. International Journal of Biological Macromolecules,2019,132:300−307. doi: 10.1016/j.ijbiomac.2019.03.203
    [45]
    SEVERGNINI V L S, RENGIFO A F C, DEBACHER N A, et al. Urea entrapment in cellulose acetate microparticles obtained by electrospraying[J]. Journal of Polymer Research,2020,27(12):378. doi: 10.1007/s10965-020-02344-6
    [46]
    OZCAN B E, SAROGLU O, KARAKAS C Y, et al. Encapsulation of purple basil leaf extract by electrospraying in double emulsion (W/O/W) filled alginate-carrageenan beads to improve the bioaccessibility of anthocyanins[J]. International Journal of Biological Macromolecules,2023,250:126207. doi: 10.1016/j.ijbiomac.2023.126207
    [47]
    SVARC P L, GARCIA-MORENO P J, MENDES A C, et al. Encapsulation of L-5-methyltetrahydrofolate by electrospraying for food applications[J]. Journal of Food Engineering,2020,277:109901. doi: 10.1016/j.jfoodeng.2019.109901
    [48]
    GARCíA-MORENO P J, PELAYO A, YU S, et al. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules:Combined use of whey protein and carbohydrates as wall materials[J]. Journal of Food Engineering,2018,231:42−53. doi: 10.1016/j.jfoodeng.2018.03.005
    [49]
    XUE Y Y, LIAO Y W, WANG H Q, et al. Preparation and evaluation of astaxanthin-loaded 2-hydroxypropyl-beta-cyclodextrin and Soluplus® nanoparticles based on electrospray technology[J]. Journal of the Science of Food and Agriculture,2023,103(7):3628−3637. doi: 10.1002/jsfa.12527
    [50]
    ERARSLAN A, KARAKAS C Y, BOZKURT F, et al. Enhanced antifungal activity of electrosprayed poly (vinyl alcohol)/chitosan nanospheres loaded with sage essential oil on the viability of aspergillus niger and botrytis cinerea[J]. Chemistryselect,2023,8(21):296.
    [51]
    PÉREZ-MASIÁ R, LAGARON J M, LOPEZ-RUBIO A. Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying[J]. Food and Bioprocess Technology,2015,8(2):459−470. doi: 10.1007/s11947-014-1422-7
    [52]
    ZHU Y, LI S, WANG H Q, et al. Enhanced oral bioavailability of capsaicin-loaded microencapsulation complex via electrospray technology:Preparation, in vitro and in vivo evaluation[J]. Biopharmaceutics & Drug Disposition,2023,44(2):137−146.
    [53]
    REZEKI Y A, HAPIDIN D A, RACHMAWATI H, et al. Formation of electrosprayed composite nanoparticles from polyvinylpyrrolidone/mangosteen pericarp extract[J]. Advanced Powder Technology,2020,31(5):1811−1824. doi: 10.1016/j.apt.2020.02.016
    [54]
    FUNG W Y, LIONG M T, YUEN K H. Preparation, in-vitro and in-vivo characterisation of CoQ10 microparticles:electrospraying-enhanced bioavailability[J]. Journal of Pharmacy and Pharmacology,2016,68(2):159−169. doi: 10.1111/jphp.12502
    [55]
    MA J G, LI T Z, WANG Q Y, et al. Enhanced viability of probiotics encapsulated within synthetic/natural biopolymers by the addition of gum arabic via electrohydrodynamic processing[J]. Food Chemistry, 2023, 413.
    [56]
    ALEHOSSEINI A, SARABI-JAMAB M, GHORANI B, et al. Electro-encapsulation of Lactobacillus case in high-resistant capsules of whey protein containing transglutaminase enzyme[J]. Lwt-Food Science and Technology,2019,102:150−158. doi: 10.1016/j.lwt.2018.12.022
    [57]
    PREMJIT Y, MITRA J. Optimization of electrospray-assisted microencapsulation of probiotics (Leuconostoc lactis) in soy protein isolate-oil particles using Box-Behnken experimental design[J]. Food and Bioprocess Technology,2021,14(9):1712−1729. doi: 10.1007/s11947-021-02670-7
    [58]
    KARAKAS C Y, YILDIRIM R M, KARADAG A. Encapsulation of Lactobacillus plantarum ELB90 by electrospraying in a double emulsion (W1/O/W2) loaded alginate beads to improve the gastrointestinal survival and thermal stability[J]. Journal of the Science of Food and Agriculture,2023,103(7):3427−3436. doi: 10.1002/jsfa.12494
    [59]
    PREMJIT Y, MITRA J. Synthesis, characterization, and in vitro digestion of electrosprayed and freeze-dried probiotics encapsulated in soy protein isolate-sunflower oil emulsions[J]. Food Bioscience,2023,53:102532. doi: 10.1016/j.fbio.2023.102532
    [60]
    AMIRI S, TEYMORLOUEI M J, BARI M R, et al. Development of Lactobacillus acidophilus LA5-loaded whey protein isolate/lactose bionanocomposite powder by electrospraying:A strategy for entrapment[J]. Food Bioscience,2021,43:101222. doi: 10.1016/j.fbio.2021.101222
    [61]
    ZHANG Y F, LI B G, HAN L. Microencapsulation of lactobacillus acidophilus KLDS 1.0391 by electrostatic spray increases viability after in vitro digestibility[J]. Journal of Food Process Engineering,2017,40(2):12416. doi: 10.1111/jfpe.12416
    [62]
    MORENO J S, DIMA P, CHRONAKIS I S, et al. Electrosprayed ethyl cellulose core-shell microcapsules for the encapsulation of probiotics[J]. Pharmaceutics,2022,14(1):7.
    [63]
    GÓMEZ-MASCARAQUE L G, AMBROSIO-MARTÍN J, PEREZ-MASIÁ R, et al. Impact of acetic acid on the survival of L. plantarum upon microencapsulation by coaxial electrospraying[J]. Journal of Healthcare Engineering,2017,2017(1):1−6.
    [64]
    MOREIRA A, LAWSON D, ONYEKURU L, et al. Protein encapsulation by electrospinning and electrospraying[J]. Journal of Controlled Release,2021,329:1172−1197. doi: 10.1016/j.jconrel.2020.10.046
    [65]
    BERRAQUERO-GARCÍA C, PÉREZ-GÁLVEZ R, ESPEJO-CARPIO F J, et al. Encapsulation of bioactive peptides by spray-drying and electrospraying[J]. Foods,2023,12(10):2005. doi: 10.3390/foods12102005
    [66]
    ZHANG Y P, LIU C, LIN Y J, et al. Development of food-grade xylanase encapsulation using electrospray dextran microparticles[J]. Food Hydrocolloids,2024,150:109716. doi: 10.1016/j.foodhyd.2023.109716
    [67]
    SCHMATZ D A, MASTRANTONIO D J D, COSTA J A V, et al. Encapsulation of phycocyanin by electrospraying:A promising approach for the protection of sensitive compounds[J]. Food and Bioproducts Processing,2020,119:206−215. doi: 10.1016/j.fbp.2019.07.008
    [68]
    HE J L, WANG Z Y, WEI L F, et al. Electrospray-assisted fabrication of dextran-whey protein isolation microcapsules for the encapsulation of selenium-enriched peptide[J]. Foods,2023,12(5):1008. doi: 10.3390/foods12051008
    [69]
    GÓMEZ-MASCARAQUE L G, LOPEZ-RUBIO A. Encapsulation of plant-derived bioactive ingredients through electrospraying for nutraceuticals and functional foods applications[J]. Current Medicinal Chemistry,2020,27(17):2872−2886. doi: 10.2174/0929867326666191010115343
    [70]
    BAYRAKTAR O, YAHSI Y, KÖSE M D. Electroencapsulation of trans-resveratrol in nanoparticles composed of silk fibroin and soluble eggshell membrane protein[J]. Food and Bioprocess Technology,2021,14(2):334−351. doi: 10.1007/s11947-020-02576-w
    [71]
    ASADI M, SALAMI M, HAJIKHANI M, et al. Electrospray production of curcumin-walnut protein nanoparticles[J]. Food Biophysics,2021,16(1):15−26. doi: 10.1007/s11483-020-09637-9
    [72]
    KARAKAS C Y, ORDU H R, BOZKURT F, et al. Electrosprayed chitosan-coated alginate-pectin beads as potential system for colon-targeted delivery of ellagic acid[J]. Journal of the Science of Food and Agriculture,2022,102(3):965−975. doi: 10.1002/jsfa.11430
    [73]
    TORRES-GINER S, MARTINEZ-ABAD A, OCIO M J, et al. Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine[J]. Journal of Food Science,2010,75(6):N69−N79.
    [74]
    BUSOLO M A, TORRES-GINER S, PRIETO C, et al. Electrospraying assisted by pressurized gas as an innovative high-throughput process for the microencapsulation and stabilization of docosahexaenoic acid-enriched fish oil in zein prolamine[J]. Innovative Food Science & Emerging Technologies,2019,51:12−19.
    [75]
    KARAKAS C Y, ÖZÇIMEN D. A novel approach to production of Chlorella protothecoides oil-loaded nanoparticles via electrospraying method:Modeling of critical parameters for particle sizing[J]. Biotechnology and Applied Biochemistry,2021,68(3):659−668. doi: 10.1002/bab.1977
    [76]
    ORMANLI E, ULUTURK B A, BOZDOGAN N, et al. Development of a novel, sustainable, cellulose-based food packaging material and its application for pears[J]. Food Chemistry,2023,429:136719. doi: 10.1016/j.foodchem.2023.136719
    [77]
    STOLERU E, MUNTEANU S B, DUMITRIU R P, et al. Polyethylene materials with multifunctional surface properties by electrospraying chitosan/vitamin E formulation destined to biomedical and food packaging applications[J]. Iranian Polymer Journal,2016,25(4):295−307. doi: 10.1007/s13726-016-0421-0
    [78]
    SCHMATZ D A, COSTA J A V, DE M M G. A novel nanocomposite for food packaging developed by electrospinning and electrospraying[J]. Food Packaging and Shelf Life,2019,20:100314. doi: 10.1016/j.fpsl.2019.100314
    [79]
    WU Z C, ZHANG Z J, SONG X L, et al. A silver nanoparticles-polylactic acid microspheres/polylactic acid-thermoplastic polyurethane nanofibers hierarchical antibacterial film[J]. Industrial Crops and Products,2024,207(2):117773.
    [80]
    PIRES J B, FONSECA L M, SIEBENEICHLER T J, et al. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning:Thermal resistance and antioxidant activity[J]. Food Research International,2022,162(8):112111.
    [81]
    FAN X, RONG L S, LI Y X, et al. Fabrication of bio-based hierarchically structured ethylene scavenger films via electrospraying for fruit preservation[J]. Food Hydrocolloids,2022,133:107837. doi: 10.1016/j.foodhyd.2022.107837
    [82]
    LIU Y W, WANG S Y, LAN W T. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications[J]. International Journal of Biological Macromolecules,2018,107:848−854. doi: 10.1016/j.ijbiomac.2017.09.044
    [83]
    CHALAPUD M C, BAÜMLER E R, CARELLI A A, et al. Pectin films with recovered sunflower waxes produced by electrospraying[J]. Membranes,2022,12(6):560. doi: 10.3390/membranes12060560
    [84]
    NATH V A, RAJA V, LEENA M M, et al. Co-electrospun-electrosprayed ethyl cellulose-gelatin nanocomposite pH-sensitive membrane for food quality applications[J]. Food Chemistry,2022,394:133420. doi: 10.1016/j.foodchem.2022.133420
    [85]
    LASPRILLA-BOTERO J, TORRES-GINER S, PARDO-FIGUEREZ M, et al. Superhydrophobic bilayer coating based on annealed electrospun ultrathin poly (ε-caprolactone) fibers and electrosprayed nanostructured silica microparticles for easy emptying packaging applications[J]. Coatings,2018,8(5):173. doi: 10.3390/coatings8050173
    [86]
    NAZARI M, MAJDI H, GHOLIZADEH P, et al. An eco-friendly chitosan/cellulose acetate hybrid nanostructure containing Ziziphora clinopodioides essential oils for active food packaging applications[J]. International Journal of Biological Macromolecules,2023,235:123885. doi: 10.1016/j.ijbiomac.2023.123885
    [87]
    庄晨俊, 钟宇. 静电喷涂技术及其在食品工业中的应用[J]. 食品研究与开发,2018,39(10):195−200. [ZHUANG C J, ZHONG Y. Electrostatic spraying and its application in food industry[J]. Food Research and Development,2018,39(10):195−200.] doi: 10.3969/j.issn.1005-6521.2018.10.036

    ZHUANG C J, ZHONG Y. Electrostatic spraying and its application in food industry[J]. Food Research and Development, 2018, 39(10): 195−200. doi: 10.3969/j.issn.1005-6521.2018.10.036
    [88]
    CAKMAK H, KUMCUOGLU S, TAVMAN S. Production of edible coatings with twin-nozzle electrospraying equipment and the effects on shelf-life stability of fresh-cut apple slices[J]. Journal of Food Process Engineering,2018,41(1):12627. doi: 10.1111/jfpe.12627
    [89]
    YILMAZ A. Synthesis and characterization of nanoparticles possessing bioactive properties[J]. Emerging Materials Research,2021,10(2):158−167. doi: 10.1680/jemmr.20.00328
    [90]
    MASSEY L M, HETTIARACHCHY N S, HORAX R, et al. Efficacy of organic acid electrostatic spray for decontaminating Salmonella on cantaloupe cubes and cherry tomatoes[J]. Journal of Food Processing and Preservation,2018,42(10):13748. doi: 10.1111/jfpp.13748
    [91]
    LEE C, WOO H, KANG J, et al. Electrostatic spraying of passion fruit (Passiflora edulis L.) peel extract for inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on fresh-cut Lollo rossa and beetroot leaves[J]. Food and Bioprocess Technology,2021,14(5):898−908. doi: 10.1007/s11947-021-02608-z
    [92]
    SINGH P, DASGUPTA N, SINGH V, et al. Inhibitory effect of clove oil nanoemulsion on fumonisin isolated from maize kernels[J]. LWT-Food Science and Technology,2020,134:110237. doi: 10.1016/j.lwt.2020.110237
    [93]
    MEHTA D, SAHU G, PATEL M K, et al. Quality evaluation of tomatoes coated by an advanced electrostatic spray coating system[J]. International Journal of Food Science and Technology, 2023:6351-6361.
    [94]
    PERETTO G, DU W X, AVENA-BUSTILLOS R J, et al. Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality[J]. Food and Bioprocess Technology,2017,10(1):165−174. doi: 10.1007/s11947-016-1808-9
    [95]
    JIANG Y L, YU L, HU Y W, et al. Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation[J]. International Journal of Biological Macromolecules,2019,139:1232−1238. doi: 10.1016/j.ijbiomac.2019.08.113
    [96]
    IÑIGUEZ-MORENO M, RAGAZZO-SÁNCHEZ J A, CALDERÓN-SANTOYO M. An extensive review of natural polymers used as coatings for postharvest shelf-life extension:Trends and challenges[J]. Polymers,2021,13(19):3271. doi: 10.3390/polym13193271
    [97]
    XUEDONG G, JUAN L, LIN Y, et al. Preparation of natural complex waxy structure for the evaluation of preservation performance of blueberry[J]. Food Bioscience,2023,55:102990. doi: 10.1016/j.fbio.2023.102990
    [98]
    KAPOOR S, GANDHI N, KAUR G, et al. Electrospray application of guava seed oil for shelf life extension of guava fruit[J]. International Journal of Food Science and Technology,2023,58(5):2669−2678. doi: 10.1111/ijfs.15833
    [99]
    KERR W L, KERR C A. Electrostatic spraying of potassium sorbate for the reduction of yeast and molds on cakes[J]. Journal of Food Processing and Preservation,2015,39(6):2171−2179. doi: 10.1111/jfpp.12461
    [100]
    KULAWIK P, JAMRÓZ E, KRUK T, et al. Active edible multi-layer chitosan/furcellaran micro/nanoemulsions with plant essential oils and antimicrobial peptides:Biological properties and consumer acceptance[J]. Food Control,2023,150:109767. doi: 10.1016/j.foodcont.2023.109767
  • Related Articles

    [1]ZHU Furong, WANG Shuangxiu, MAO Deyuan, WEI Ao, LIU Weiqing. Optimization of Ultrasound Assisted Extraction of Mangiferin in Mango (Mangifera indica L.) Kernel[J]. Science and Technology of Food Industry, 2024, 45(2): 161-167. DOI: 10.13386/j.issn1002-0306.2023020273
    [2]Lei HOU, Guoqiang HUI, Zhirun NAN, Jie ZHANG, Huaize TIAN, Liping HAO. Optimization of Ultrasound-assisted Extraction Process of Millet Bran Oil[J]. Science and Technology of Food Industry, 2021, 42(8): 186-193. DOI: 10.13386/j.issn1002-0306.2020060214
    [3]YIN Lin, LIN Jun-fang, QIAN Jing, YE Zhi-wei, LUO Shi-hua, GUO Li-qiong, YUN Fan. Optimization of the liquid culture medium composition for high carotenoid production by Cordyceps militaris and the investigation on the improvement of carotenoid extraction[J]. Science and Technology of Food Industry, 2017, (18): 79-84. DOI: 10.13386/j.issn1002-0306.2017.18.016
    [4]WU You- feng, MA Shi-zhen, TAN Liang, FENG Hai-sheng, LI Cai-xia. Extraction optimization and antioxidant activity for carotenoid in Qaidam Chinese wolfberry[J]. Science and Technology of Food Industry, 2016, (14): 250-256. DOI: 10.13386/j.issn1002-0306.2016.14.042
    [5]SUN Xie-jun, LI Jia-wei, LI Xiu-xia, BI Hai-yan, XUE Xiao-xia. Optimization of extracting technique assisted by ultrasound assisted extraction of β-carotene from Dunaliella salina by response surface methodology[J]. Science and Technology of Food Industry, 2015, (12): 278-281. DOI: 10.13386/j.issn1002-0306.2015.12.049
    [6]WANG Tian-jiao, REN Dan-dan, WANG Li, LI Bai-lei, WANG Qiu-kuan, HE Yun-hai. Study on extraction process of carotenoids from artemia cysts[J]. Science and Technology of Food Industry, 2014, (18): 298-300. DOI: 10.13386/j.issn1002-0306.2014.18.058
    [7]ZENG Dong-hui, ZHANG Jun, LU Sheng-min. Optimization of carotenoids extraction from Satsuma mandarin peel used by response surface methodology[J]. Science and Technology of Food Industry, 2013, (19): 183-187. DOI: 10.13386/j.issn1002-0306.2013.19.044
    [8]Optimization of extraction conditions of carotenoids from Lethariella spp. by response surface methodology[J]. Science and Technology of Food Industry, 2013, (05): 184-188. DOI: 10.13386/j.issn1002-0306.2013.05.034
    [9]Optimization of carotenoids extraction from Lycium barbarum skin-residues by response surface methodology[J]. Science and Technology of Food Industry, 2013, (04): 232-235. DOI: 10.13386/j.issn1002-0306.2013.04.060
    [10]Optimization of carotenoids extracting technology in Marigold by response surface methodology[J]. Science and Technology of Food Industry, 2012, (22): 319-322. DOI: 10.13386/j.issn1002-0306.2012.22.078
  • Cited by

    Periodical cited type(7)

    1. 高瑞萍,刘松林,吴振. UV-C联合热处理对橙汁品质特性的影响. 食品工业科技. 2022(09): 79-86 . 本站查看
    2. 石岩,魏锋,马双成. 枸橼药用研究进展. 中国药物警戒. 2022(05): 574-578 .
    3. 李灵,熊芸,张钰瑶,杜奎,李明章,高平,谢玥. 响应面法优化猕猴桃类胡萝卜素提取工艺. 四川大学学报(自然科学版). 2022(05): 162-168 .
    4. 陈慧聪,焦烨磊,王伟隆,黄旭雄. 基于UPLC对卤虫体内类胡萝卜素检测方法的建立. 天津科技大学学报. 2022(06): 9-17 .
    5. 何香凝,刘娜,王园,王瑞芳,安晓萍,齐景伟. 酶解玉米芯木聚糖的超声辅助提取工艺及抗氧化活性. 食品工业. 2021(05): 1-5 .
    6. 田童瑶,何东青,高溥,谢旭东,李选晋,李艳,张华峰,张颖. 蔬菜染色再生纸制作的科普实验. 大学化学. 2021(10): 218-226 .
    7. 鞠玉旋,谢倩,陈清西. 石仙桃总黄酮提取工艺优化及抗氧化活性分析. 园艺与种苗. 2021(11): 15-20+27 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (10) PDF downloads (0) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return