ZHANG Linghe, XIE Hao, NUER Maimaiti. Microwave-assisted Deep Eutectic Solvent Extraction of Xinjiang Wild Prunus cerasifera Ehrh. Polysaccharides and Analysis of Its Antioxidant and Antibacterial Activities[J]. Science and Technology of Food Industry, 2025, 46(10): 228−236. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060318.
Citation: ZHANG Linghe, XIE Hao, NUER Maimaiti. Microwave-assisted Deep Eutectic Solvent Extraction of Xinjiang Wild Prunus cerasifera Ehrh. Polysaccharides and Analysis of Its Antioxidant and Antibacterial Activities[J]. Science and Technology of Food Industry, 2025, 46(10): 228−236. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060318.

Microwave-assisted Deep Eutectic Solvent Extraction of Xinjiang Wild Prunus cerasifera Ehrh. Polysaccharides and Analysis of Its Antioxidant and Antibacterial Activities

More Information
  • Received Date: June 23, 2024
  • Available Online: March 20, 2025
  • In this study, the optimal process for extracting polysaccharides from wild Prunus cerasifera Ehrh. sourced from Xinjiang was determined, and their antioxidant and antibacterial activities were analyzed. Prunus cerasifera Ehrh. obtained from Daxigou, Huocheng County, Xinjiang, was used as raw materials, polysaccharides were extracted through a microwave-assisted deep eutectic solvent method. The optimal extraction parameters were established via single-factor experiments and response surface methodology optimization, included degreasing, decolorization, and protein removal. Crude polysaccharide extract (PCE) was obtained, whose efficacy was subsequently evaluated through in vitro antioxidant and antibacterial assays. The results revealed that the highest yield of PCE (26.38%±0.73%) was obtained under the following conditions: A malic acid to choline chloride molar ratio of 4:1, microwave power, temperature, and duration of 400 W, 60 ℃, and 70 min, a liquid-to-material ratio of 30:1 (mL/g), and a deep eutectic solvent concentration of 50%. The IC50 values for PCE in scavenging DPPH, ABTS+, and hydroxyl free radicals were 1.163, 0.506, and 2.958 mg/mL, respectively. At a mass concentration of 4 mg/mL, PCE exhibited a total reducing capacity of 0.667. Furthermore, the PCE had significant inhibitory effects against Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa at a mass concentration of 200 mg/mL, with average inhibition zone diameters of 23.45±1.88, 16.12±0.47, 17.68±1.32, 17.20±1.18, and 12.00±0.72 mm, respectively. These findings indicate the promising in vitro antioxidant and antibacterial properties of cherry plum polysaccharides and provide a theoretical foundation for their development and utilization as functional products.
  • [1]
    刘影, 张相锋, 赵玉, 等. 新疆濒危野生樱桃李的种群结构与动态[J]. 生态学杂志,2013,32(7):1762−1769. [LIU Y, ZHANG X F, ZHAO Y, et al. Population structure and its dynamics of wild Prunus divaricata in Xinjiang, northwest China[J]. Chin J Ecol,2013,32(7):1762−1769.]

    LIU Y, ZHANG X F, ZHAO Y, et al. Population structure and its dynamics of wild Prunus divaricata in Xinjiang, northwest China[J]. Chin J Ecol, 2013, 32(7): 1762−1769.
    [2]
    ZHAO Z H, JU X Y, WANG K W, et al. Structure characterization, antioxidant and immunomodulatory activities of polysaccharide from Pteridium aquilinum (L.) Kuhn[J]. Foods,2022,11(13):1834. doi: 10.3390/foods11131834
    [3]
    GONG P, WANG M R, GUO Y X, et al. Structure characterization, in vitro antioxidant and anti-tumor activity of sulfated polysaccharide from Siraitia grosvenorii[J]. Foods,2023,12(11):2133. doi: 10.3390/foods12112133
    [4]
    CHEN B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro[J]. Carbohydrate Polymers,2010,81(2):420−424. doi: 10.1016/j.carbpol.2010.02.039
    [5]
    李成华, 秦汝兰, 关颖丽, 等. 超声-微波辅助提取酸浆宿萼多糖及其体外降糖活性[J]. 食品研究与开发,2023,44(14):93−98. [LI C H, QIN R L, GUAN Y L, et al. Ultrasonic-microwave assisted extraction of polysaccharide from calyx of Physali alkekengi L. and its hypoglycemic activity[J]. Food Research and Development,2023,44(14):93−98.]

    LI C H, QIN R L, GUAN Y L, et al. Ultrasonic-microwave assisted extraction of polysaccharide from calyx of Physali alkekengi L. and its hypoglycemic activity[J]. Food Research and Development, 2023, 44(14): 93−98.
    [6]
    LI C J, FENG Y H, LI J Y, et al. Extraction, purification, structural characterization, and hepatoprotective effect of the polysaccharide from purple sweet potato[J]. Journal of the Science of Food and Agriculture,2023,103(4):2196−2206. doi: 10.1002/jsfa.12239
    [7]
    张静茹, 孙海龙, 陆致成, 等. 野生樱桃李(Prunus cerasifera)果实多酚多样性分析[J]. 果树学报,2017,34(5):567−575. [ZHANG J R, SUN H L, LU Z C, et al. Diversity analysis of phenolic in wild myrobalan plums (Prunus cerasifera)[J]. Journal of Fruit Science,2017,34(5):567−575.]

    ZHANG J R, SUN H L, LU Z C, et al. Diversity analysis of phenolic in wild myrobalan plums (Prunus cerasifera)[J]. Journal of Fruit Science, 2017, 34(5): 567−575.
    [8]
    刘伟, 李紫薇, 王航, 等. 新疆野生樱桃李(Prunus cerasifera)叶黄酮类成分研究[J]. 现代食品科技,2018,34(9):263−267,290. [LIU W, LI Z W, WANG H, et al. Study on the flavonoids in the leaves of Prunus cerasifera grown in Xinjiang[J]. Modern Food Science and Technology,2018,34(9):263−267,290.]

    LIU W, LI Z W, WANG H, et al. Study on the flavonoids in the leaves of Prunus cerasifera grown in Xinjiang[J]. Modern Food Science and Technology, 2018, 34(9): 263−267,290.
    [9]
    罗世博, 刘伟, 谢星, 等. 紫色野生樱桃李提取物抗氧化和降血糖活性研究及化学成分鉴定[J/OL]. 食品与发酵工业:1−12[2024-08-07]. https://doi.org/10.13995/j.cnki.11-1802/ts.039997. [LUO S B, LIU W, XIE X, et al. Antioxidant and hypoglycemic activities of purple Prunus cerasifera Ehrh extracts and identification of chemical constituents[J/OL]. Food and Fermentation Industries: 1−12[2024-08-07]. https://doi.org/10.13995/j.cnki.11-1802/ts.039997.]

    LUO S B, LIU W, XIE X, et al. Antioxidant and hypoglycemic activities of purple Prunus cerasifera Ehrh extracts and identification of chemical constituents[J/OL]. Food and Fermentation Industries: 1−12[2024-08-07]. https://doi.org/10.13995/j.cnki.11-1802/ts.039997.
    [10]
    武晓艳, 叶钰怡, 任文凯, 等. 植物多糖研究进展:功能活性及潜在机制[J]. 中国科学:生命科学,2023,53(6):808−824. [WU X Y, YE Y Y, REN W K, et al. Research progress of plant polysaccharides:Functional activities and potential mechanisms[J]. Scientia Sinica Vitae,2023,53(6):808−824.]

    WU X Y, YE Y Y, REN W K, et al. Research progress of plant polysaccharides: Functional activities and potential mechanisms[J]. Scientia Sinica Vitae, 2023, 53(6): 808−824.
    [11]
    张喜峰, 南艳, 李雪茹, 等. 两种方法提取琉璃苣叶多糖的理化性质及生理活性[J]. 精细化工,2022,39(11):2297−2304. [ZHANG X F, NAN Y, LI X R, et al. Physicochemical properties and physiological activities of polysaccharides extracted from borage leaves by two methods[J]. Fine Chemicls,2022,39(11):2297−2304.]

    ZHANG X F, NAN Y, LI X R, et al. Physicochemical properties and physiological activities of polysaccharides extracted from borage leaves by two methods[J]. Fine Chemicls, 2022, 39(11): 2297−2304.
    [12]
    OZTURK B, PARKINSON C, GONZALEZ-MIQUEL M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents[J]. Separation and Purification Technology,2018,206:1−13. doi: 10.1016/j.seppur.2018.05.052
    [13]
    CAO J, WANG H M, ZHANG W, et al. Tailor-made deep eutectic solvents for simultaneous extraction of five aromatic acids from Ginkgo biloba leaves[J]. Molecules,2018,23(12):3214. doi: 10.3390/molecules23123214
    [14]
    LU W D, LIU S J. Choline chloride-based deep eutectic solvents (Ch-DESs) as promising green solvents for phenolic compounds extraction from bioresources:State-of-the-art, prospects, and challenges[J]. Biomass Conversion and Biorefinery,2022,12(7):2949−2962. doi: 10.1007/s13399-020-00753-7
    [15]
    沈静, 李洋, 李亚杰, 等. 新疆野生樱桃李中多糖提取物提取工艺及其抗氧化活性研究[J]. 中国现代应用药学,2019,36(24):3040−3045. [SHEN J, LI Y, LI Y J, et al. Study on extraction technology and antioxidant activity of polysaccharide extract from wild Prunus Cerasifera[J]. Chin J Mod Appl Pharm,2019,36(24):3040−3045.]

    SHEN J, LI Y, LI Y J, et al. Study on extraction technology and antioxidant activity of polysaccharide extract from wild Prunus Cerasifera[J]. Chin J Mod Appl Pharm, 2019, 36(24): 3040−3045.
    [16]
    罗光宏, 王海蓉, 崔晶, 等. 微波辅助低共熔溶剂提取、部分纯化螺旋藻多糖及其体外生物学活性研究[J]. 食品与发酵工业,2022,48(11):107−113. [LUO G H, WANG H R, CUI J, et al. Microwave-assisted deep eutectic solvents extraction, partial purification and in vitro biological activity of polysaccharides from Spirulina platensis[J]. Food and Fermentation Industries,2022,48(11):107−113.]

    LUO G H, WANG H R, CUI J, et al. Microwave-assisted deep eutectic solvents extraction, partial purification and in vitro biological activity of polysaccharides from Spirulina platensis[J]. Food and Fermentation Industries, 2022, 48(11): 107−113.
    [17]
    赵盈盈. 亚麻籽饼粕多糖微波辅助低共熔溶剂提取工艺优化及其生物活性研究[J]. 中国食品添加剂,2023,34(10):130−136. [ZHAO Y Y. Optimization of extraction process of flaxseed meal polysaccharide by microwave-assisted deep eutectic solvent and its bioactivity[J]. China Food Additives,2023,34(10):130−136.]

    ZHAO Y Y. Optimization of extraction process of flaxseed meal polysaccharide by microwave-assisted deep eutectic solvent and its bioactivity[J]. China Food Additives, 2023, 34(10): 130−136.
    [18]
    陈炯朝, 马雪, 张研, 等. 响应面法优化超声辅助低共熔溶剂提取洋蓟花苞多糖工艺[J]. 中国食品添加剂,2024,35(4):57−64. [CHEN J Z, MA X, ZHANG Y, et al. Optimisation of ultrasound-assisted low eutectic solvent extraction of polysaccharides from artichoke buds by response surface methodology[J]. China Food Additives,2024,35(4):57−64.]

    CHEN J Z, MA X, ZHANG Y, et al. Optimisation of ultrasound-assisted low eutectic solvent extraction of polysaccharides from artichoke buds by response surface methodology[J]. China Food Additives, 2024, 35(4): 57−64.
    [19]
    李文文, 蔺永刚, 边鹏, 等. 新疆藁本多糖的提取、理化性质与生物活性[J]. 精细化工, 2024, 41(9):1966−1977, 2081. [LI W W, LIN Y G, BIAN P, et al. Extraction, physicochemical property and bioactivity of polysaccharides from Conioselinum vaginatium[J]. Fine Chemicals, 2024, 41(9):1966−1977, 2081.]

    LI W W, LIN Y G, BIAN P, et al. Extraction, physicochemical property and bioactivity of polysaccharides from Conioselinum vaginatium[J]. Fine Chemicals, 2024, 41(9): 1966−1977, 2081.
    [20]
    赵丛丛, 彭春艳. 罗平小黄姜多糖提取工艺的优化及抗氧化活性测定[J]. 中国调味品,2017,42(11):133−136. [ZHAO C C, PENG C Y. Optimization of extraction process and determination of antioxidant activity of polysaccharides from Luoping yellow ginger[J]. China Condiment,2017,42(11):133−136.]

    ZHAO C C, PENG C Y. Optimization of extraction process and determination of antioxidant activity of polysaccharides from Luoping yellow ginger[J]. China Condiment, 2017, 42(11): 133−136.
    [21]
    HUANG X B, ZHANG Y L, XIE N, et al. Molecular characterization and bioactivities of a novel polysaccharide from Phyllostachys pracecox bamboo shoot residues[J]. Foods,2023,12(9):1758. doi: 10.3390/foods12091758
    [22]
    ZHU Z P, CHEN J, CHEN Y, et al. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides[J]. LWT,2022,154:112805. doi: 10.1016/j.lwt.2021.112805
    [23]
    WEI L, HUANG L, DU L J, et al. Structural characterization and in vitro antioxidant, hypoglycemic and hypolipemic activities of a natural polysaccharide from Liupao tea[J]. Foods,2023,12(11):2226. doi: 10.3390/foods12112226
    [24]
    LIAN Jiqin, WANG Wenjie, WEN Pingwei, et al. Two water-soluble polysaccharides from mung bean skin:Physicochemical characterization, antioxidant and antibacterial activities[J]. Food Hydrocolloids,2020,100:105412−105412. doi: 10.1016/j.foodhyd.2019.105412
    [25]
    ZHANG Kunfeng, HUANG Yuzhe, WU Qianzhen, et al. Antibacterial effect and mechanism against Escherichia coli of polysaccharides from Armillariella tabescens mycelia[J]. International Journal of Biological Macromolecules,2022,207:750−759. doi: 10.1016/j.ijbiomac.2022.03.086
    [26]
    史瑞武, 张素芳, 牛丽娜, 等. 忍冬叶多糖提取工艺优化及抗菌活性分析[J]. 中国农业科技导报,2023,25(11):218−226. [SHI R W, ZHANG S F, NIU L N, et al. Optimization on extraction of polysaccharide from honeysuckle (Lonicera japonica) leaves and its antibacterial activity[J]. Journal of Agricultural Science and Technology,2023,25(11):218−226.]

    SHI R W, ZHANG S F, NIU L N, et al. Optimization on extraction of polysaccharide from honeysuckle (Lonicera japonica) leaves and its antibacterial activity[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 218−226.
    [27]
    CVJETKO B M, VIDOVIĆ S, RADOJČIĆ R I, et al. New perspective in extraction of plant biologically active compounds by green solvents[J]. Food and Bioproducts Processing,2018,109:52−73. doi: 10.1016/j.fbp.2018.03.001
    [28]
    SHANG X C, CHU D P, ZHANG J X, et al. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents[J]. Separation and Purification Technology,2021,259:118169. doi: 10.1016/j.seppur.2020.118169
    [29]
    杨嘉丹, 刘婷婷, 张闪闪, 等. 微波辅助提取银耳多糖工艺优化及其流变、凝胶特性[J]. 食品科学,2019,40(14):289−295. [YANG J D, LIU T T, ZHANG S S, et al. Optimization of microwave-assisted extraction and rheological and gelling properties of polysaccharide from Tremella fuciformis[J]. Food Science,2019,40(14):289−295.]

    YANG J D, LIU T T, ZHANG S S, et al. Optimization of microwave-assisted extraction and rheological and gelling properties of polysaccharide from Tremella fuciformis[J]. Food Science, 2019, 40(14): 289−295.
    [30]
    常相娜, 陈雪峰, 龚频, 等. 融水香菇多糖结构表征及体外抗氧化、降糖活性[J]. 中国食品添加剂,2022,33(4):1−9. [CHANG X N, CHEN X F, GONG B, et al. Structural characterization, in vitro anti-oxidative effect and hypoglycemic activity of lentinan from Rongshui county[J]. China Food Additives,2022,33(4):1−9.]

    CHANG X N, CHEN X F, GONG B, et al. Structural characterization, in vitro anti-oxidative effect and hypoglycemic activity of lentinan from Rongshui county[J]. China Food Additives, 2022, 33(4): 1−9.
    [31]
    ZHOU Yin, CHEN Xinxin, CHEN Tingting, et al. A review of the antibacterial activity and mechanisms of plant polysaccharides[J]. Trends in Food Science and Technology,2022,123:264−280. doi: 10.1016/j.jpgs.2022.03.020
    [32]
    ZHANG Li, MA Li, PAN Yaping, et al. Effect of molecular weight on the antibacterial activity of polysaccharides produced by Chaetomium globosum CGMCC 6882[J]. International Journal of Biological Macromolecules,2021,188:863−869. doi: 10.1016/j.ijbiomac.2021.08.059
    [33]
    XIE J H, SHEN M Y, XIE M Y, et al. Ultrasonic-assisted extraction, antimicrobial and antioxidant activities of Cyclocarya paliurus (Batal.) Iljinskaja polysaccharides[J]. Carbohydrate Polymers,2012,89:177−184. doi: 10.1016/j.carbpol.2012.02.068
    [34]
    韩红艳, 冀爱青, 李洪燕. 5种中药材体外抑菌活性研究[J]. 中兽医医药杂志,2020,39(2):63−66. [HAN H Y, JI A Q, LI H Y. Study on quality standard of Yinluganmao oral solution[J]. J Trad Chin Vet Med,2020,39(2):63−66.]

    HAN H Y, JI A Q, LI H Y. Study on quality standard of Yinluganmao oral solution[J]. J Trad Chin Vet Med, 2020, 39(2): 63−66.

Catalog

    Article Metrics

    Article views (38) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return