Citation: | LI Ke, YI Ruokun. Mechanism of the Regulatory Effect of Pediococcus pentosaceus CQFP202437 on Antibiotic-induced Locomotor Dysfunction in Mice[J]. Science and Technology of Food Industry, 2025, 46(10): 383−390. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060291. |
[1] |
陈雨露. 运动联合益生菌补充对大鼠脂代谢和运动机能的影响[D]. 北京:北京体育大学, 2021: 42−50. [CHEN Yulu. Effects of exercise combined with probiotic supplementation on lipid metabolism and locomotor function in rats[D]. Beijing:Beijing Sport University, 2021: 42−50.]
CHEN Yulu. Effects of exercise combined with probiotic supplementation on lipid metabolism and locomotor function in rats[D]. Beijing: Beijing Sport University, 2021: 42−50.
|
[2] |
包大鹏. 运动性疲劳脑功能变化的fMRI研究[D]. 北京:北京体育大学, 2012:32−38. [BAO Dapeng. An fMRI study of functional brain changes in exercise fatigue[D]. Beijing:Beijing Sport University, 2012:32−38.]
BAO Dapeng. An fMRI study of functional brain changes in exercise fatigue[D]. Beijing: Beijing Sport University, 2012: 32−38.
|
[3] |
CANTORE R, PETROU I, LAVENDER S S, et al. In situ clinical effects of new dentifrices containing 1.5% arginine and fluoride on enamel de- and remineralization and plaque metabolism[J]. The Journal of clinical dentistry,2013,24:32−44.
|
[4] |
SCHURR A. How the 'aerobic/anaerobic glycolysis' meme formed a 'habit of mind' which impedes progress in the field of brain energy metabolism[J]. International Journal of Molecular Sciences,2024,25(3):1433. doi: 10.3390/ijms25031433
|
[5] |
叶梅聆, 孔梅, 张翔. 运动和氧化应激及机体的抗氧化系统[J]. 当代体育科技, 2016, 6(5):46,48. [YE Meiling, KONG Mei, ZHANG Xiang, Exercise and oxidative stress and the body's antioxidant system[J]. Contemporary Sports Science and Technology, 2016, 6(5):46,48.]
YE Meiling, KONG Mei, ZHANG Xiang, Exercise and oxidative stress and the body's antioxidant system[J]. Contemporary Sports Science and Technology, 2016, 6(5): 46,48.
|
[6] |
曹奕炜, 宋睿, 吴宁, 等. 脑神经炎症对小鼠运动疲劳的影响及其可能机制[J]. 中国药理学与毒理学杂志,2023,37(9):655−663. [CAO Yiwei, SONG Rui, WU Ning, et al. Effect of neuroinflammation on exercise fatigue in mice and possible mechanism[J]. Chinese Journal of Pharmacology and Toxicology,2023,37(9):655−663.] doi: 10.3867/j.issn.1000-3002.2023.09.002
CAO Yiwei, SONG Rui, WU Ning, et al. Effect of neuroinflammation on exercise fatigue in mice and possible mechanism[J]. Chinese Journal of Pharmacology and Toxicology, 2023, 37(9): 655−663. doi: 10.3867/j.issn.1000-3002.2023.09.002
|
[7] |
STECKLING F M, LIMA F D, FARINHA J B, et al. Diclofenac attenuates inflammation through TLR4 pathway and improves exercise performance after exhaustive swimming[J]. Scandinavian Journal of Medicine and Science in Sports,2020,30(2):264−271. doi: 10.1111/sms.13579
|
[8] |
DEMBITSKAYA Y, PIETTE C, PEREZ S, et al. Lactate supply overtakes glucose when neural computational and cognitive loads scale up[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(47):e2212004119.
|
[9] |
CASES J, ROMAIN C, MARÍN-PAGÁN C, et al. Supplementation with a polyphenol-rich extract, PerfLoad®, improves physical performance during high-intensity exercise:A randomized, double blind, crossover trial[J]. Nutrients,2017,9(4):421. doi: 10.3390/nu9040421
|
[10] |
TANG Tian, WANG Jing, JIANG Yuanyuan, et al. Bifidobacterium lactis TY-S01 prevents loperamide-induced constipation by modulating gut microbiota and its metabolites in mice[J]. Frontiers in Nutrition,2022,9:890314. doi: 10.3389/fnut.2022.890314
|
[11] |
YEH W L, HSU Y J, HO C S, et al. Lactobacillus plantarum Pl-02 supplementation combined with resistance training improved muscle mass, force, and exercise performance in mice[J]. Frontiers in Nutrition,2022,9:896503. doi: 10.3389/fnut.2022.896503
|
[12] |
SUN Z H, HARRIS H M, MCCANN A, et al. Expanding the biotechnology potential of Lactobacilli through comparative genomics of 213 strains and associated genera[J]. Nature Communications,2015,6(1):8322−8334. doi: 10.1038/ncomms9322
|
[13] |
CASTRO M, ASSMANN C, STEFANELLO N, et al. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats:Pivotal role of the cholinergic and purinergic signaling pathways[J]. Journal of Nutrition and Biochemistry, 2023, 115:109280.
|
[14] |
DESBONNET L, CLARKE G, TRAPLIN A, et al. Gut microbiota depletion from early adolescence in mice:Implications for brain and behaviour[J]. Brain Behavior Immunity, 2015, 48:165−173.
|
[15] |
岑燕霞, 梁玉才, 曾江赢, 等. 食源复方黄精组合物水提液对小鼠抗疲劳作用的研究[J], 2025, 46(2): 343-348. [CEN Yanxia, LIANG Yucai, ZENG Jiangying, et al. Anti-fatigue effect of water extract offood as medicine compoundpolygonati rhizoma composition on mice[J], 2025, 46(2): 343-348.]
CEN Yanxia, LIANG Yucai, ZENG Jiangying, et al. Anti-fatigue effect of water extract offood as medicine compoundpolygonati rhizoma composition on mice[J], 2025, 46(2): 343-348.
|
[16] |
SIES H. Oxidative stress:a concept in redox biology and medicine[J]. Redox Biology, 2015, 4:180−183.
|
[17] |
SIES H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress:Oxidative eustress[J]. Redox Biology,2017,11:613−619. doi: 10.1016/j.redox.2016.12.035
|
[18] |
VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry Cell Biology,2007,39(1):44−84. doi: 10.1016/j.biocel.2006.07.001
|
[19] |
HE L, HE T, FARRAR S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cell Physiology Biochemistry,2017,44(2):532−553. doi: 10.1159/000485089
|
[20] |
FORMAN H J, ZHANG H. Targeting oxidative stress in disease:promise and limitations of antioxidant therapy[J]. Nature Reviews. Drug Discovery,2021,20(9):689−709. doi: 10.1038/s41573-021-00233-1
|
[21] |
NOGUEIRA C W, BARBOSA N V, ROCHA J. Toxicology and pharmacology of synthetic organoselenium compounds:An update[J]. Archives of Toxicology,2021,95(4):1179−1226. doi: 10.1007/s00204-021-03003-5
|
[22] |
SHAH S J, BORLAUG B A, KITZMAN D W, et al. Research priorities for heart failure with preserved ejection fraction:national heart, lung, and blood institute working group summary[J]. Circulation,2020,141(12):1001−1026. doi: 10.1161/CIRCULATIONAHA.119.041886
|
[23] |
HACKER G. Apoptosis in infection[J]. Microbes Infection,2018,20(9−10):552−559. doi: 10.1016/j.micinf.2017.10.006
|
[24] |
ANDRESKA T, AUFMKOLK S, SAUER M, et al. High abundance of BDNF within glutamatergic presynapses of cultured hippocampal neurons[J]. Frontiers in Cellular Neuroscience,2014,8:107.
|
[25] |
PARKHURST C N, YANG G, NINAN I, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor[J]. Cell,2013,155(7):1596−1609. doi: 10.1016/j.cell.2013.11.030
|
[26] |
MIURA S, KAI Y, TADAISHI M, et al. Marked phenotypic differences of endurance performance and exercise-induced oxygen consumption between AMPK and LKB1 deficiency in mouse skeletal muscle:changes occurring in the diaphragm[J]. American Journal of Physiology Endocrinology and Metabolism,2013,305(2):E213−E229. doi: 10.1152/ajpendo.00114.2013
|
[27] |
BAZZONI G, MARTINEZ-ESTRADA O M, ORSENIGO F, et al. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin[J]. The Journal of Biological Chemistry,2000,275(27):327−339.
|
[28] |
ULLUWISHEWA D, ANDERSON R C, MCNABB W C, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components[J]. The Journal of Nutrition,2011,141(5):148−159.
|
[29] |
SHENG Kangliang, XU Yifan, KONG Xiaowei, et al. Probiotic Bacillus cereus alleviates dextran sulfate sodium-induced colitis in mice through improvement of the intestinal barrier function, anti-inflammation, and gut microbiota modulation[J]. Journal of Agricultural and Food Chemistry,2021,69:14810−14823. doi: 10.1021/acs.jafc.1c03375
|
[30] |
KWEK E, YAN C, DING H, et al. Effects of hawthorn seed oil on plasma cholesterol and gut microbiota[J]. Nutrition Metabolism,2022,19:55−61. doi: 10.1186/s12986-022-00690-4
|
[31] |
SHOME M, SONG L S, WILLIAMS S, et al. Serological profiling of Crohn’s disease and ulcerative colitis patients reveals anti-microbial antibody signatures[J]. World Journal of Gastroenterology,2022,28:4089−4101. doi: 10.3748/wjg.v28.i30.4089
|