ZHENG Mengdi, XIN Jiaying, CUI Tianyu, et al. Research Progress of Mechanoenzyme Catalysis and its Application in Food Field[J]. Science and Technology of Food Industry, 2025, 46(11): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060261.
Citation: ZHENG Mengdi, XIN Jiaying, CUI Tianyu, et al. Research Progress of Mechanoenzyme Catalysis and its Application in Food Field[J]. Science and Technology of Food Industry, 2025, 46(11): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060261.

Research Progress of Mechanoenzyme Catalysis and its Application in Food Field

More Information
  • Received Date: June 17, 2024
  • Available Online: March 25, 2025
  • Mechanoenzyme catalysis is a promising biocatalysis technology for producing value-added products in a sustainable and environment friendly manner. This approach can significantly improve the reaction efficiency, reduce the use of solvents and enhance the stability of enzymes in solvent-free system by mechanochemical means, in line with the concept of green chemistry and sustainable development. In this paper, the reaction system, reaction mode, influencing factors, the principle of enzyme stability under mechanical action and the application of mechanoenzyme catalysis in the synthesis of food additives, extraction of functional components and degradation of by-products of food processing are reviewed, and the advantages of mechanoenzyme catalysis in the field of food are demonstrated from the perspective of green chemistry. Finally, the challenges and future development directions of mechanoenzyme catalysis are discussed.
  • [1]
    ALQAHTANI A S. Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis[J]. Journal of Molecular Liquids,2024,399:69−82.
    [2]
    FEDRICO C, LIDIA L D, FRANCESCO D, et al. Mechanochemistry:New tools to navigate the uncharted territory of "impossible" reactions.[J]. ChemSusChem,2022,15(17):e202200362. doi: 10.1002/cssc.202200362
    [3]
    JUARISTI E, AVILA-ORTIZ C G. Salient achievements in synthetic organic chemistry enabled by mechanochemical activation[J]. Synthesis,2023,55(16):2439−2459. doi: 10.1055/a-2085-3410
    [4]
    FRIŠČIĆ T, MOTTILLO C, TITI H M. Mechanochemistry for synthesis[J]. Angewandte Chemie,2019,132(3):1030−1041.
    [5]
    HOLLENBACH R, OCHSENREITHER K. Mechanoenzymatic reactions-challenges and perspectives[J]. ChemCatChem,2023,15(21):656−666.
    [6]
    KOVER A, KRALJIĆ D, MARINARO R, et al. Processes for the valorization of food and agricultural wastes to value-added products:Recent practices and perspectives[J]. Systems Microbiology and Biomanufacturing,2021,2(1):50−66.
    [7]
    HOLLENBACH R, OCHSENREITHER K, SYLDATK C. Enzymatic synthesis of glucose monodecanoate in a hydrophobic deep eutectic solvent[J]. International Journal of Molecular Sciences,2020,21(12):4342−4354. doi: 10.3390/ijms21124342
    [8]
    PÉREZ-VENEGAS M, JUARISTI E. Mechanoenzymatic resolution of racemic chiral amines, a green technique for the synthesis of pharmaceutical building blocks[J]. Tetrahedron,2018,74(44):6453−6458. doi: 10.1016/j.tet.2018.09.029
    [9]
    PYSER J B, CHAKRABARTY S, ROMERO E O, et al. State-of-the-art biocatalysis[J]. ACS Central Science,2021,7(7):1105−1116. doi: 10.1021/acscentsci.1c00273
    [10]
    BEZBRADICA D, MIJIN D, SILER-MARINKOVIC S, et al. The Candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system:A kinetic study[J]. Journal of Molecular Catalysis B:Enzymatic,2006,38(1):11−16. doi: 10.1016/j.molcatb.2005.10.004
    [11]
    AGUIEIRAS E C G, CAVALCANTI-OLIVEIRA E D, DE CASTRO A M, et al. Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process:Use of vegetable lipase and fermented solid as low-cost biocatalysts[J]. Fuel,2014,135:315−321. doi: 10.1016/j.fuel.2014.06.069
    [12]
    CHEN Z, JACOBY W A, WAN C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology,2019,279:281−286. doi: 10.1016/j.biortech.2019.01.126
    [13]
    FRIŠČIĆ T, TRASK A V, JONES W, et al. Screening for inclusion compounds and systematic construction of three‐component solids by liquid‐assisted grinding[J]. Angewandte Chemie,2006,118(45):7708−7712. doi: 10.1002/ange.200603235
    [14]
    PÉREZ‐VENEGAS M, JUARISTI E. Mechanoenzymology:State of the art and challenges towards highly sustainable biocatalysis[J]. ChemSusChem,2021,14(13):2682−2688. doi: 10.1002/cssc.202100624
    [15]
    FRIŠČIĆ T, CHILDS S L, RIZVI S A A, et al. The role of solvent in mechanochemical and sonochemical cocrystal formation:A solubility-based approach for predicting cocrystallisation outcome[J]. CrystEngComm,2009,11(3):418−426. doi: 10.1039/B815174A
    [16]
    DARIO B, LUCIA M, FABRIZIA G. Mechanochemical preparation of co-crystals[J]. Chemical Society Reviews,2013,42(18):7638−7648. doi: 10.1039/c3cs60014a
    [17]
    RIGHTMIRE N R, HANUSA T P. Advances in organometallic synthesis with mechanochemical methods[J]. Dalton Transactions,2016,45(6):2352−2362. doi: 10.1039/C5DT03866A
    [18]
    KAABEL S, FRIŠČIĆ T, AUCLAIR K. Mechanoenzymatic transformations in the absence of bulk water:A more natural way of using enzymes[J]. ChemBioChem,2019,21(6):742−758.
    [19]
    OSTADJOO S, HAMMERER F, DIETRICH K, et al. Efficient enzymatic hydrolysis of biomass hemicellulose in the absence of bulk water[J]. Molecules,2019,24(23):4206−4217. doi: 10.3390/molecules24234206
    [20]
    CLIFFE M J, MOTTILLO C, STEIN R S, et al. Accelerated aging:A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials[J]. Chemical Science,2012,3(8):2495−2500. doi: 10.1039/C2SC20344H
    [21]
    HAMMERER F, LOOTS L, DO J L, et al. Solvent‐free enzyme activity:Quick, high‐yielding mechanoenzymatic hydrolysis of cellulose into glucose[J]. Angewandte Chemie International Edition,2018,57(10):2621−2624. doi: 10.1002/anie.201711643
    [22]
    THERIEN J P D, HAMMERER F, FRIŠČIĆ T, et al. Mechanoenzymatic breakdown of chitinous material to N‐acetylglucosamine:The benefits of a solventless environment[J]. ChemSusChem,2019,12(15):3481−3490. doi: 10.1002/cssc.201901310
    [23]
    TAKACS L, MCHENRY J S. Temperature of the milling balls in shaker and planetary mills[J]. Journal of Materials Science,2006,41(16):5246−5249. doi: 10.1007/s10853-006-0312-4
    [24]
    BOLT R R A, LEITCH J A, JONES A C, et al. Continuous flow mechanochemistry:Reactive extrusion as an enabling technology in organic synthesis[J]. Chemical Society Reviews,2022,51(11):4243−4260. doi: 10.1039/D1CS00657F
    [25]
    ANDERSEN J, MACK J. Mechanochemistry and organic synthesis:From mystical to practical[J]. Green Chemistry,2018,20(7):1435−1443. doi: 10.1039/C7GC03797J
    [26]
    BOLM C, HERNáNDEZ J G. From synthesis of amino acids and peptides to enzymatic catalysis:A bottom‐up approach in mechanochemistry[J]. ChemSusChem,2018,11(9):1410−1420. doi: 10.1002/cssc.201800113
    [27]
    RODRÍGUEZ B, BRUCKMANN A, BOLM C. A highly efficient asymmetric organocatalytic aldol reaction in a ball mill[J]. Chemistry-A European Journal,2007,13(17):4710−4722. doi: 10.1002/chem.200700188
    [28]
    HERNÁNDEZ J G, JUARISTI E. Asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides:Improved stereoinduction under solvent-free conditions[J]. The Journal of Organic Chemistry,2011,76(5):1464−1467. doi: 10.1021/jo1022469
    [29]
    DECLERCK V, NUN P, MARTINEZ J, et al. Solvent‐free synthesis of peptides[J]. Angewandte Chemie International Edition,2009,48(49):9318−9321. doi: 10.1002/anie.200903510
    [30]
    HERNÁNDEZ J G, FRINGS M, BOLM C. Mechanochemical enzymatic kinetic resolution of secondary alcohols under ball‐milling conditions[J]. ChemCatChem,2016,8(10):1769−1772. doi: 10.1002/cctc.201600455
    [31]
    SPINELLA S, GANESH M, LO RE G, et al. Enzymatic reactive extrusion:Moving towards continuous enzyme-catalysed polyester polymerisation and processing[J]. Green Chemistry,2015,17(8):4146−4150. doi: 10.1039/C5GC00992H
    [32]
    VAIDYA A A, HUSSAIN I, GAUGLER M, et al. Synthesis of graft copolymers of chitosan-poly(caprolactone) by lipase catalysed reactive extrusion[J]. Carbohydrate Polymers,2019,217:98−109. doi: 10.1016/j.carbpol.2019.03.081
    [33]
    HE C Z, LI H B. Staphylokinase displays surprisingly low mechanical stability[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(4):1077−1083. doi: 10.1021/acs.langmuir.6b04425
    [34]
    WAHBA M I. Sodium bicarbonate-gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes[J]. Biotechnology Progress,2017,34(2):347−361.
    [35]
    PÉREZ-VENEGAS M, TELLEZ-CRUZ M M, SOLORZA-FERIA O, et al. Thermal and mechanical stability of immobilized candida antarctica lipase B:An approximation to mechanochemical energetics in enzyme catalysis[J]. ChemCatChem,2019,12(3):803−811.
    [36]
    HAMMERER F, OSTADJOO S, FRIŠČIĆ T, et al. Towards controlling the reactivity of enzymes in mechanochemistry:Inert surfaces protect β-glucosidase activity during ball milling[J]. ChemSusChem,2019,13(1):106−110.
    [37]
    RODRIGUES R S, SANT'ANA A S, ROBERTO L F, et al. Solvent-free esterifications mediated by immobilized lipases:A review from thermodynamic and kinetic perspectives[J]. Catalysis Science & Technology,2021,11(17):5696−5711.
    [38]
    ERIKA Z, NICOLAS J, LUDOVIC C, et al. Enzymatic synthesis of amphiphilic carbohydrate esters:Influence of physicochemical and biochemical parameters[J]. Biotechnology Reports,2021,30:631−641.
    [39]
    ULLA W, SAUMYA D, LAURE K, et al. Selective enzymatic esterification of lignin model compounds in the ball mill[J]. Beilstein Journal of Organic Chemistry,2017,13:1788−1795. doi: 10.3762/bjoc.13.173
    [40]
    GAMBOA-VELáZQUEZ G, JUARISTI E. Mechanoenzymology in the kinetic resolution of β-blockers:Propranolol as a case study[J]. ACS Organic & Inorganic Au,2022,2(4):343−350.
    [41]
    PÉREZ-VENEGAS M, JUARISTI E. Mechanochemical and mechanoenzymatic synthesis of pharmacologically active compounds:A green perspective[J]. ACS Sustainable Chemistry & Engineering,2020,8(24):8881−8893.
    [42]
    CARTER E M, AMBROSE-DEMPSTER E, WARD J M, et al. Mechanoenzymatic reactions with whole cell transaminases:Shaken, not stirred[J]. Green Chemistry,2022,24(9):3662−3666. doi: 10.1039/D2GC01006B
    [43]
    BUTYAGIN Y P, STRELETSKII N A. The kinetics and energy balance of mechanochemical transformations[J]. Physics of the Solid State,2005,47(5):856−862. doi: 10.1134/1.1924845
    [44]
    LI Z, JIANG Z, SU W. Fast, solvent-free, highly enantioselective three-component coupling of aldehydes, alkynes, and amines catalyzed by the copper(II)pybox complex under high-vibration ball-milling[J]. Green Chemistry,2015,17(4):2330−2334. doi: 10.1039/C5GC00079C
    [45]
    ZHANG R, WANG Y, SONG X, et al. Eco-friendly mechanobiological assisted extraction of phenolic acids and flavonoids from chrysanthemum[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,186:113327. doi: 10.1016/j.jpba.2020.113327
    [46]
    BYCHKOV A L, KOROLEV K G, LOMOVSKY O I. Obtaining mannanoligosaccharide preparations by means of the mechanoenzymatic hydrolysis of yeast biomass[J]. Applied Biochemistry and Biotechnology,2010,162(7):2008−2014. doi: 10.1007/s12010-010-8976-2
    [47]
    SU W, XU W, POLYAKOV N E, et al. Zero-waste utilization and conversion of shrimp shell by mechanochemical method[J]. Journal of Cleaner Production,2023,425:28−38.
    [48]
    GRüNINGER J, DELAVAULT A, OCHSENREITHER K. Enzymatic glycolipid surfactant synthesis from renewables[J]. Process Biochemistry,2019,87:45−54. doi: 10.1016/j.procbio.2019.09.023
    [49]
    DELAVAULT A, OPOCHENSKA O, LANEQUE L, et al. Lipase-catalyzed production of sorbitol laurate in a “2-in-1” deep eutectic system:factors affecting the synthesis and scalability[J]. Molecules,2021,26(9):2759−2777. doi: 10.3390/molecules26092759
    [50]
    HOLLENBACH R, BINDEREIF B, VAN DER SCHAAF U S, et al. Optimization of glycolipid synthesis in hydrophilic deep eutectic solvents[J]. Frontiers in Bioengineering and Biotechnology, 2020, 382-392.
    [51]
    BUREK B O, DAWOOD A W H, HOLLMANN F, et al. Process intensification as game changer in enzyme catalysis[J]. Frontiers in Catalysis,2022,2:706−723.
    [52]
    HOLLENBACH R, DELAVAULT A, GEBHARDT L, et al. Lipase-mediated mechanoenzymatic synthesis of sugar esters in dissolved unconventional and neat reaction systems[J]. ACS Sustainable Chemistry & Engineering,2022,10(31):10192−10202.
    [53]
    张俊杰, 王鹏, 岳程程, 等. 淀粉-脂质复合物研究进展[J]. 中国粮油学报,2023,38(8):250−259. [ZHANG Junjie, WANG Peng, YUE Chengcheng, et al. Starch-lipid complexes:A comprehensive review[J]. Journal of the Chinese Cereals and Oils Association,2023,38(8):250−259.] doi: 10.3969/j.issn.1003-0174.2023.08.034

    ZHANG Junjie, WANG Peng, YUE Chengcheng, et al. Starch-lipid complexes: A comprehensive review[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(8): 250−259. doi: 10.3969/j.issn.1003-0174.2023.08.034
    [54]
    LIU J, GAO T, XIN J, et al. Unveiling optimal synthesis and structural insights of starch ferulate via the mechanoenzymatic method[J]. Foods,2023,12(20):3715−3730. doi: 10.3390/foods12203715
    [55]
    ARDILA-FIERRO K J, CRAWFORD D E, KöRNER A, et al. Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion:Application in the Juliá-Colonna enantioselective epoxidation[J]. Green Chemistry,2018,20(6):1262−1269. doi: 10.1039/C7GC03205F
    [56]
    KUMAR H, BHARDWAJ K, SHARMA R, et al. Fruit and vegetable peels:Utilization of high value horticultural waste in novel industrial applications[J]. Molecules,2020,25(12):2812−2833. doi: 10.3390/molecules25122812
    [57]
    AL AMIN LEAMON A K M, VENEGAS M P, ORSAT V, et al. Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural[J]. Bioresource Technology,2022,362:127782. doi: 10.1016/j.biortech.2022.127782
    [58]
    刘俊红, 王建成, 刘瑞芳, 等. 微波-超声波辅助酶解提取香菇中的呈味氨基酸[J]. 河南城建学院学报,2023,32(2):106−112. [LIU Junhong, WANG Jiancheng, LIU Ruifang, et al. Extraction of flavor amino acids from lentinula edodes by enzymatic hydrolysis assisted by ultrasound and microwave

    J]. Journal of Henan University of Urban Construction,2023,32(2):106−112.
    [59]
    杨美玉, 杨平平, 申秀娟, 等. 以氨基酸为基础的不同食品组方对小鼠抗疲劳能力的影响[J]. 食品科技,2019,44(12):94−98. [YANG Meiyu, YANG Pingping, SHEN Xiujuan, et al. Effects of different food groups based on amino acids on anti-fatigue ability of mice[J]. Food Science and Technology,2019,44(12):94−98.]

    YANG Meiyu, YANG Pingping, SHEN Xiujuan, et al. Effects of different food groups based on amino acids on anti-fatigue ability of mice[J]. Food Science and Technology, 2019, 44(12): 94−98.
    [60]
    BYCHKOVA E, POGOROVA V, GOSMAN D, et al. The mechanoenzymatic method for enhancing the biological value of condensed cream soups[J]. IOP Conference Series:Materials Science and Engineering,2021,1019(1):012041. doi: 10.1088/1757-899X/1019/1/012041
    [61]
    马燕, 魏媛, 王冕, 等. 谷物酚酸合成途径及代谢调控研究进展[J]. 食品科学,2019,40(15):269−276. [MA Yan, WEI Yuan, WANG Mian, et al. A review of process in understand biosynthesis pathway and metabolic regulation of phenolic acids in cereals[J]. Food Science,2019,40(15):269−276.] doi: 10.7506/spkx1002-6630-20180918-198

    MA Yan, WEI Yuan, WANG Mian, et al. A review of process in understand biosynthesis pathway and metabolic regulation of phenolic acids in cereals[J]. Food Science, 2019, 40(15): 269−276. doi: 10.7506/spkx1002-6630-20180918-198
    [62]
    薛智敏, 闫何恋. 氯化胆碱类低共熔溶剂用于木质纤维素预处理的研究进展[J]. 林业工程学报,2024,9(1):32−44. [XUE Zhimin, YAN Helian. Advances on lignocellulose pretreatment by choline chloride-based deep eutectic solvents[J]. Journal of Forestry Engineering,2024,9(1):32−44.]

    XUE Zhimin, YAN Helian. Advances on lignocellulose pretreatment by choline chloride-based deep eutectic solvents[J]. Journal of Forestry Engineering, 2024, 9(1): 32−44.
    [63]
    ZHANG Q, LU Z, SU C, et al. High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent[J]. Bioresource Technology,2021,331:125015. doi: 10.1016/j.biortech.2021.125015
    [64]
    XU W, ZHOU C, HU K, et al. Novel mechanoenzymatic strategy for lignin depolymerization[J]. Industrial & Engineering Chemistry Research,2023,62(46):19448−19458.
    [65]
    HAMMERER F, OSTADJOO S, DIETRICH K, et al. Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment[J]. Green Chemistry,2020,22(12):3877−3884. doi: 10.1039/D0GC00903B
    [66]
    VANDENBOSSCHE V, BRAULT J, VILAREM G, et al. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder[J]. Industrial Crops and Products,2014,55:258−266. doi: 10.1016/j.indcrop.2014.02.022

Catalog

    Article Metrics

    Article views (11) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return