Citation: | ZHENG Mengdi, XIN Jiaying, CUI Tianyu, et al. Research Progress of Mechanoenzyme Catalysis and its Application in Food Field[J]. Science and Technology of Food Industry, 2025, 46(11): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060261. |
[1] |
ALQAHTANI A S. Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis[J]. Journal of Molecular Liquids,2024,399:69−82.
|
[2] |
FEDRICO C, LIDIA L D, FRANCESCO D, et al. Mechanochemistry:New tools to navigate the uncharted territory of "impossible" reactions.[J]. ChemSusChem,2022,15(17):e202200362. doi: 10.1002/cssc.202200362
|
[3] |
JUARISTI E, AVILA-ORTIZ C G. Salient achievements in synthetic organic chemistry enabled by mechanochemical activation[J]. Synthesis,2023,55(16):2439−2459. doi: 10.1055/a-2085-3410
|
[4] |
FRIŠČIĆ T, MOTTILLO C, TITI H M. Mechanochemistry for synthesis[J]. Angewandte Chemie,2019,132(3):1030−1041.
|
[5] |
HOLLENBACH R, OCHSENREITHER K. Mechanoenzymatic reactions-challenges and perspectives[J]. ChemCatChem,2023,15(21):656−666.
|
[6] |
KOVER A, KRALJIĆ D, MARINARO R, et al. Processes for the valorization of food and agricultural wastes to value-added products:Recent practices and perspectives[J]. Systems Microbiology and Biomanufacturing,2021,2(1):50−66.
|
[7] |
HOLLENBACH R, OCHSENREITHER K, SYLDATK C. Enzymatic synthesis of glucose monodecanoate in a hydrophobic deep eutectic solvent[J]. International Journal of Molecular Sciences,2020,21(12):4342−4354. doi: 10.3390/ijms21124342
|
[8] |
PÉREZ-VENEGAS M, JUARISTI E. Mechanoenzymatic resolution of racemic chiral amines, a green technique for the synthesis of pharmaceutical building blocks[J]. Tetrahedron,2018,74(44):6453−6458. doi: 10.1016/j.tet.2018.09.029
|
[9] |
PYSER J B, CHAKRABARTY S, ROMERO E O, et al. State-of-the-art biocatalysis[J]. ACS Central Science,2021,7(7):1105−1116. doi: 10.1021/acscentsci.1c00273
|
[10] |
BEZBRADICA D, MIJIN D, SILER-MARINKOVIC S, et al. The Candida rugosa lipase catalyzed synthesis of amyl isobutyrate in organic solvent and solvent-free system:A kinetic study[J]. Journal of Molecular Catalysis B:Enzymatic,2006,38(1):11−16. doi: 10.1016/j.molcatb.2005.10.004
|
[11] |
AGUIEIRAS E C G, CAVALCANTI-OLIVEIRA E D, DE CASTRO A M, et al. Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process:Use of vegetable lipase and fermented solid as low-cost biocatalysts[J]. Fuel,2014,135:315−321. doi: 10.1016/j.fuel.2014.06.069
|
[12] |
CHEN Z, JACOBY W A, WAN C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings[J]. Bioresource Technology,2019,279:281−286. doi: 10.1016/j.biortech.2019.01.126
|
[13] |
FRIŠČIĆ T, TRASK A V, JONES W, et al. Screening for inclusion compounds and systematic construction of three‐component solids by liquid‐assisted grinding[J]. Angewandte Chemie,2006,118(45):7708−7712. doi: 10.1002/ange.200603235
|
[14] |
PÉREZ‐VENEGAS M, JUARISTI E. Mechanoenzymology:State of the art and challenges towards highly sustainable biocatalysis[J]. ChemSusChem,2021,14(13):2682−2688. doi: 10.1002/cssc.202100624
|
[15] |
FRIŠČIĆ T, CHILDS S L, RIZVI S A A, et al. The role of solvent in mechanochemical and sonochemical cocrystal formation:A solubility-based approach for predicting cocrystallisation outcome[J]. CrystEngComm,2009,11(3):418−426. doi: 10.1039/B815174A
|
[16] |
DARIO B, LUCIA M, FABRIZIA G. Mechanochemical preparation of co-crystals[J]. Chemical Society Reviews,2013,42(18):7638−7648. doi: 10.1039/c3cs60014a
|
[17] |
RIGHTMIRE N R, HANUSA T P. Advances in organometallic synthesis with mechanochemical methods[J]. Dalton Transactions,2016,45(6):2352−2362. doi: 10.1039/C5DT03866A
|
[18] |
KAABEL S, FRIŠČIĆ T, AUCLAIR K. Mechanoenzymatic transformations in the absence of bulk water:A more natural way of using enzymes[J]. ChemBioChem,2019,21(6):742−758.
|
[19] |
OSTADJOO S, HAMMERER F, DIETRICH K, et al. Efficient enzymatic hydrolysis of biomass hemicellulose in the absence of bulk water[J]. Molecules,2019,24(23):4206−4217. doi: 10.3390/molecules24234206
|
[20] |
CLIFFE M J, MOTTILLO C, STEIN R S, et al. Accelerated aging:A low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal-organic materials[J]. Chemical Science,2012,3(8):2495−2500. doi: 10.1039/C2SC20344H
|
[21] |
HAMMERER F, LOOTS L, DO J L, et al. Solvent‐free enzyme activity:Quick, high‐yielding mechanoenzymatic hydrolysis of cellulose into glucose[J]. Angewandte Chemie International Edition,2018,57(10):2621−2624. doi: 10.1002/anie.201711643
|
[22] |
THERIEN J P D, HAMMERER F, FRIŠČIĆ T, et al. Mechanoenzymatic breakdown of chitinous material to N‐acetylglucosamine:The benefits of a solventless environment[J]. ChemSusChem,2019,12(15):3481−3490. doi: 10.1002/cssc.201901310
|
[23] |
TAKACS L, MCHENRY J S. Temperature of the milling balls in shaker and planetary mills[J]. Journal of Materials Science,2006,41(16):5246−5249. doi: 10.1007/s10853-006-0312-4
|
[24] |
BOLT R R A, LEITCH J A, JONES A C, et al. Continuous flow mechanochemistry:Reactive extrusion as an enabling technology in organic synthesis[J]. Chemical Society Reviews,2022,51(11):4243−4260. doi: 10.1039/D1CS00657F
|
[25] |
ANDERSEN J, MACK J. Mechanochemistry and organic synthesis:From mystical to practical[J]. Green Chemistry,2018,20(7):1435−1443. doi: 10.1039/C7GC03797J
|
[26] |
BOLM C, HERNáNDEZ J G. From synthesis of amino acids and peptides to enzymatic catalysis:A bottom‐up approach in mechanochemistry[J]. ChemSusChem,2018,11(9):1410−1420. doi: 10.1002/cssc.201800113
|
[27] |
RODRÍGUEZ B, BRUCKMANN A, BOLM C. A highly efficient asymmetric organocatalytic aldol reaction in a ball mill[J]. Chemistry-A European Journal,2007,13(17):4710−4722. doi: 10.1002/chem.200700188
|
[28] |
HERNÁNDEZ J G, JUARISTI E. Asymmetric aldol reaction organocatalyzed by (S)-proline-containing dipeptides:Improved stereoinduction under solvent-free conditions[J]. The Journal of Organic Chemistry,2011,76(5):1464−1467. doi: 10.1021/jo1022469
|
[29] |
DECLERCK V, NUN P, MARTINEZ J, et al. Solvent‐free synthesis of peptides[J]. Angewandte Chemie International Edition,2009,48(49):9318−9321. doi: 10.1002/anie.200903510
|
[30] |
HERNÁNDEZ J G, FRINGS M, BOLM C. Mechanochemical enzymatic kinetic resolution of secondary alcohols under ball‐milling conditions[J]. ChemCatChem,2016,8(10):1769−1772. doi: 10.1002/cctc.201600455
|
[31] |
SPINELLA S, GANESH M, LO RE G, et al. Enzymatic reactive extrusion:Moving towards continuous enzyme-catalysed polyester polymerisation and processing[J]. Green Chemistry,2015,17(8):4146−4150. doi: 10.1039/C5GC00992H
|
[32] |
VAIDYA A A, HUSSAIN I, GAUGLER M, et al. Synthesis of graft copolymers of chitosan-poly(caprolactone) by lipase catalysed reactive extrusion[J]. Carbohydrate Polymers,2019,217:98−109. doi: 10.1016/j.carbpol.2019.03.081
|
[33] |
HE C Z, LI H B. Staphylokinase displays surprisingly low mechanical stability[J]. Langmuir:the ACS Journal of Surfaces and Colloids,2017,33(4):1077−1083. doi: 10.1021/acs.langmuir.6b04425
|
[34] |
WAHBA M I. Sodium bicarbonate-gelled chitosan beads as mechanically stable carriers for the covalent immobilization of enzymes[J]. Biotechnology Progress,2017,34(2):347−361.
|
[35] |
PÉREZ-VENEGAS M, TELLEZ-CRUZ M M, SOLORZA-FERIA O, et al. Thermal and mechanical stability of immobilized candida antarctica lipase B:An approximation to mechanochemical energetics in enzyme catalysis[J]. ChemCatChem,2019,12(3):803−811.
|
[36] |
HAMMERER F, OSTADJOO S, FRIŠČIĆ T, et al. Towards controlling the reactivity of enzymes in mechanochemistry:Inert surfaces protect β-glucosidase activity during ball milling[J]. ChemSusChem,2019,13(1):106−110.
|
[37] |
RODRIGUES R S, SANT'ANA A S, ROBERTO L F, et al. Solvent-free esterifications mediated by immobilized lipases:A review from thermodynamic and kinetic perspectives[J]. Catalysis Science & Technology,2021,11(17):5696−5711.
|
[38] |
ERIKA Z, NICOLAS J, LUDOVIC C, et al. Enzymatic synthesis of amphiphilic carbohydrate esters:Influence of physicochemical and biochemical parameters[J]. Biotechnology Reports,2021,30:631−641.
|
[39] |
ULLA W, SAUMYA D, LAURE K, et al. Selective enzymatic esterification of lignin model compounds in the ball mill[J]. Beilstein Journal of Organic Chemistry,2017,13:1788−1795. doi: 10.3762/bjoc.13.173
|
[40] |
GAMBOA-VELáZQUEZ G, JUARISTI E. Mechanoenzymology in the kinetic resolution of β-blockers:Propranolol as a case study[J]. ACS Organic & Inorganic Au,2022,2(4):343−350.
|
[41] |
PÉREZ-VENEGAS M, JUARISTI E. Mechanochemical and mechanoenzymatic synthesis of pharmacologically active compounds:A green perspective[J]. ACS Sustainable Chemistry & Engineering,2020,8(24):8881−8893.
|
[42] |
CARTER E M, AMBROSE-DEMPSTER E, WARD J M, et al. Mechanoenzymatic reactions with whole cell transaminases:Shaken, not stirred[J]. Green Chemistry,2022,24(9):3662−3666. doi: 10.1039/D2GC01006B
|
[43] |
BUTYAGIN Y P, STRELETSKII N A. The kinetics and energy balance of mechanochemical transformations[J]. Physics of the Solid State,2005,47(5):856−862. doi: 10.1134/1.1924845
|
[44] |
LI Z, JIANG Z, SU W. Fast, solvent-free, highly enantioselective three-component coupling of aldehydes, alkynes, and amines catalyzed by the copper(II)pybox complex under high-vibration ball-milling[J]. Green Chemistry,2015,17(4):2330−2334. doi: 10.1039/C5GC00079C
|
[45] |
ZHANG R, WANG Y, SONG X, et al. Eco-friendly mechanobiological assisted extraction of phenolic acids and flavonoids from chrysanthemum[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,186:113327. doi: 10.1016/j.jpba.2020.113327
|
[46] |
BYCHKOV A L, KOROLEV K G, LOMOVSKY O I. Obtaining mannanoligosaccharide preparations by means of the mechanoenzymatic hydrolysis of yeast biomass[J]. Applied Biochemistry and Biotechnology,2010,162(7):2008−2014. doi: 10.1007/s12010-010-8976-2
|
[47] |
SU W, XU W, POLYAKOV N E, et al. Zero-waste utilization and conversion of shrimp shell by mechanochemical method[J]. Journal of Cleaner Production,2023,425:28−38.
|
[48] |
GRüNINGER J, DELAVAULT A, OCHSENREITHER K. Enzymatic glycolipid surfactant synthesis from renewables[J]. Process Biochemistry,2019,87:45−54. doi: 10.1016/j.procbio.2019.09.023
|
[49] |
DELAVAULT A, OPOCHENSKA O, LANEQUE L, et al. Lipase-catalyzed production of sorbitol laurate in a “2-in-1” deep eutectic system:factors affecting the synthesis and scalability[J]. Molecules,2021,26(9):2759−2777. doi: 10.3390/molecules26092759
|
[50] |
HOLLENBACH R, BINDEREIF B, VAN DER SCHAAF U S, et al. Optimization of glycolipid synthesis in hydrophilic deep eutectic solvents[J]. Frontiers in Bioengineering and Biotechnology, 2020, 382-392.
|
[51] |
BUREK B O, DAWOOD A W H, HOLLMANN F, et al. Process intensification as game changer in enzyme catalysis[J]. Frontiers in Catalysis,2022,2:706−723.
|
[52] |
HOLLENBACH R, DELAVAULT A, GEBHARDT L, et al. Lipase-mediated mechanoenzymatic synthesis of sugar esters in dissolved unconventional and neat reaction systems[J]. ACS Sustainable Chemistry & Engineering,2022,10(31):10192−10202.
|
[53] |
张俊杰, 王鹏, 岳程程, 等. 淀粉-脂质复合物研究进展[J]. 中国粮油学报,2023,38(8):250−259. [ZHANG Junjie, WANG Peng, YUE Chengcheng, et al. Starch-lipid complexes:A comprehensive review[J]. Journal of the Chinese Cereals and Oils Association,2023,38(8):250−259.] doi: 10.3969/j.issn.1003-0174.2023.08.034
ZHANG Junjie, WANG Peng, YUE Chengcheng, et al. Starch-lipid complexes: A comprehensive review[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(8): 250−259. doi: 10.3969/j.issn.1003-0174.2023.08.034
|
[54] |
LIU J, GAO T, XIN J, et al. Unveiling optimal synthesis and structural insights of starch ferulate via the mechanoenzymatic method[J]. Foods,2023,12(20):3715−3730. doi: 10.3390/foods12203715
|
[55] |
ARDILA-FIERRO K J, CRAWFORD D E, KöRNER A, et al. Papain-catalysed mechanochemical synthesis of oligopeptides by milling and twin-screw extrusion:Application in the Juliá-Colonna enantioselective epoxidation[J]. Green Chemistry,2018,20(6):1262−1269. doi: 10.1039/C7GC03205F
|
[56] |
KUMAR H, BHARDWAJ K, SHARMA R, et al. Fruit and vegetable peels:Utilization of high value horticultural waste in novel industrial applications[J]. Molecules,2020,25(12):2812−2833. doi: 10.3390/molecules25122812
|
[57] |
AL AMIN LEAMON A K M, VENEGAS M P, ORSAT V, et al. Semisynthetic transformation of banana peel to enhance the conversion of sugars to 5-hydroxymethylfurfural[J]. Bioresource Technology,2022,362:127782. doi: 10.1016/j.biortech.2022.127782
|
[58] |
刘俊红, 王建成, 刘瑞芳, 等. 微波-超声波辅助酶解提取香菇中的呈味氨基酸[J]. 河南城建学院学报,2023,32(2):106−112. [LIU Junhong, WANG Jiancheng, LIU Ruifang, et al. Extraction of flavor amino acids from lentinula edodes by enzymatic hydrolysis assisted by ultrasound and microwave
J]. Journal of Henan University of Urban Construction,2023,32(2):106−112.
|
[59] |
杨美玉, 杨平平, 申秀娟, 等. 以氨基酸为基础的不同食品组方对小鼠抗疲劳能力的影响[J]. 食品科技,2019,44(12):94−98. [YANG Meiyu, YANG Pingping, SHEN Xiujuan, et al. Effects of different food groups based on amino acids on anti-fatigue ability of mice[J]. Food Science and Technology,2019,44(12):94−98.]
YANG Meiyu, YANG Pingping, SHEN Xiujuan, et al. Effects of different food groups based on amino acids on anti-fatigue ability of mice[J]. Food Science and Technology, 2019, 44(12): 94−98.
|
[60] |
BYCHKOVA E, POGOROVA V, GOSMAN D, et al. The mechanoenzymatic method for enhancing the biological value of condensed cream soups[J]. IOP Conference Series:Materials Science and Engineering,2021,1019(1):012041. doi: 10.1088/1757-899X/1019/1/012041
|
[61] |
马燕, 魏媛, 王冕, 等. 谷物酚酸合成途径及代谢调控研究进展[J]. 食品科学,2019,40(15):269−276. [MA Yan, WEI Yuan, WANG Mian, et al. A review of process in understand biosynthesis pathway and metabolic regulation of phenolic acids in cereals[J]. Food Science,2019,40(15):269−276.] doi: 10.7506/spkx1002-6630-20180918-198
MA Yan, WEI Yuan, WANG Mian, et al. A review of process in understand biosynthesis pathway and metabolic regulation of phenolic acids in cereals[J]. Food Science, 2019, 40(15): 269−276. doi: 10.7506/spkx1002-6630-20180918-198
|
[62] |
薛智敏, 闫何恋. 氯化胆碱类低共熔溶剂用于木质纤维素预处理的研究进展[J]. 林业工程学报,2024,9(1):32−44. [XUE Zhimin, YAN Helian. Advances on lignocellulose pretreatment by choline chloride-based deep eutectic solvents[J]. Journal of Forestry Engineering,2024,9(1):32−44.]
XUE Zhimin, YAN Helian. Advances on lignocellulose pretreatment by choline chloride-based deep eutectic solvents[J]. Journal of Forestry Engineering, 2024, 9(1): 32−44.
|
[63] |
ZHANG Q, LU Z, SU C, et al. High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent[J]. Bioresource Technology,2021,331:125015. doi: 10.1016/j.biortech.2021.125015
|
[64] |
XU W, ZHOU C, HU K, et al. Novel mechanoenzymatic strategy for lignin depolymerization[J]. Industrial & Engineering Chemistry Research,2023,62(46):19448−19458.
|
[65] |
HAMMERER F, OSTADJOO S, DIETRICH K, et al. Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment[J]. Green Chemistry,2020,22(12):3877−3884. doi: 10.1039/D0GC00903B
|
[66] |
VANDENBOSSCHE V, BRAULT J, VILAREM G, et al. A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder[J]. Industrial Crops and Products,2014,55:258−266. doi: 10.1016/j.indcrop.2014.02.022
|