CAO Wanxue, LI Jiao, TAO Qiang, et al. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry, 2025, 46(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060247.
Citation: CAO Wanxue, LI Jiao, TAO Qiang, et al. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry, 2025, 46(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060247.

Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase

More Information
  • Received Date: June 16, 2024
  • Available Online: March 05, 2025
  • Objectives: This study aimed to optimize the selenization process of polysaccharides derived from Dendrobium huoshanense (DHP) and to investigate the inhibitory effects and mechanisms of both DHP and selenium-enriched DHP (Se-DHP) on α-amylase activity. Methods: To investigate the impact of factors such as the mass ratio of sodium selenite to DHP, reaction time, nitric acid concentration, and reaction temperature on the selenium content in Se-DHP, a single factor experiment was conducted. Optimization of the Se-DHP preparation conditions was achieved using response surface methodology, with selenium content as the response variable. Additionally, the inhibitory effects of DHP and Se-DHP on α-amylase activity were compared, and their inhibition mechanisms were examined through fluorescence quenching experiments. Results: The optimal conditions for selenization were identified as follows: reaction temperature of 70 ℃, reaction time of 460 minutes, a mass ratio of sodium selenite to DHP of 1:1, and a nitric acid concentration of 0.5%. Under these conditions, the selenium content in Se-DHP was 9223.51 μg/g, closely matching the predicted value of 9280.59 μg/g. Compared to DHP, Se-DHP demonstrated a significantly enhanced inhibitory effect on α-amylase. Fluorescence spectroscopy revealed that both DHP and Se-DHP exhibited static quenching mode for α-amylase. Conclusions: The findings provide a theoretical framework for the preparation of Se-DHP with high-selenium content and offer a reference for the potential use of selenium polysaccharides from DHP as a new selenium supplement in medicinal and nutritional applications.
  • [1]
    CHENG L, WANG Y, HE X, et al. Preparation, structural characterization and bioactivities of Se-containing polysaccharide:A review[J]. International Journal of Biological Macromolecules,2018,120:82−92. doi: 10.1016/j.ijbiomac.2018.07.106
    [2]
    铁梅, 李闯, 费金岩, 等. 富硒金针菇子实体中硒多糖的分离纯化技术及红外光谱研究[J]. 分析测试学报,2008,17(2):158−161. [TIE M, LI C, FEI J Y, et al. Study on the purification and IR spectroscopy of Se-polysaccharides in selenium-enriched Flammulina velutipe[J]. Journal of Instrumental Analysis,2008,17(2):158−161.] doi: 10.3969/j.issn.1004-4957.2008.02.011

    TIE M, LI C, FEI J Y, et al. Study on the purification and IR spectroscopy of Se-polysaccharides in selenium-enriched Flammulina velutipe[J]. Journal of Instrumental Analysis, 2008, 17(2): 158−161. doi: 10.3969/j.issn.1004-4957.2008.02.011
    [3]
    GAO Z, CHEN J, QIU S, et al. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity[J]. Carbohydrate Polymers,2016,136:560−569. doi: 10.1016/j.carbpol.2015.09.065
    [4]
    WANG J, LI Q, BAO A, et al. Synthesis of selenium-containing Artemisia sphaerocephala polysaccharides:Solution conformation and anti-tumor activities in vitro[J]. Carbohydrate Polymers,2016,152:70−78. doi: 10.1016/j.carbpol.2016.06.090
    [5]
    张超. 硒化枸杞多糖的制备、抗氧化及保肝作用研究[D]. 呼和浩特:内蒙古农业大学, 2020. [ZHANG C. Study of preparation, antioxidation and liver protection of selenizing Lycium barbarum polysaccharide[D]. Hohhot:Inner Mongolia Agricultural University, 2020.]

    ZHANG C. Study of preparation, antioxidation and liver protection of selenizing Lycium barbarum polysaccharide[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
    [6]
    苏玉春, 向应欣, 汪珈羽, 等. 响应面优化毛头鬼伞产漆酶培养条件及酶学特性[J]. 吉林农业大学学报,2024,46:1−11. [SU Y C, XIANG Y X, WANG J Y, et al. Optimization of culture conditions for laccase-producing from Coprinus comatus by response surface methodology[J]. Journal of Jilin Agricultural University,2024,46:1−11.]

    SU Y C, XIANG Y X, WANG J Y, et al. Optimization of culture conditions for laccase-producing from Coprinus comatus by response surface methodology[J]. Journal of Jilin Agricultural University, 2024, 46: 1−11.
    [7]
    国家药典委员会. 中华人民共和国药典[M]. 一部. 北京:中国医药科技出版社, 2015. [National Pharmacopoeia Commission. Chinese Pharmacopoeia[M]. Part1. Beijing:China Medical Science and Technology Press, 2015.]

    National Pharmacopoeia Commission. Chinese Pharmacopoeia[M]. Part1. Beijing: China Medical Science and Technology Press, 2015.
    [8]
    周则刚, 杨静. 霍山石斛组培快繁技术研究[J]. 现代园艺,2015,29(24):12. [ZHOU Z G, YANG J. Research on tissue culture and rapid propagation technology of Dendrobium huoshanense[J]. Modern Horticulture,2015,29(24):12.] doi: 10.3969/j.issn.1006-4958.2015.24.007

    ZHOU Z G, YANG J. Research on tissue culture and rapid propagation technology of Dendrobium huoshanense[J]. Modern Horticulture, 2015, 29(24): 12. doi: 10.3969/j.issn.1006-4958.2015.24.007
    [9]
    童晨曦, 齐蕾. 霍山石斛的研究进展及可持续发展[J]. 医学综述,2015,21(24):4512−4514. [TONG C X, QI L. Research advances and sustainability of Dendrobium huoshanense[J]. Medical Recapitulate,2015,21(24):4512−4514.] doi: 10.3969/j.issn.1006-2084.2015.24.033

    TONG C X, QI L. Research advances and sustainability of Dendrobium huoshanense[J]. Medical Recapitulate, 2015, 21(24): 4512−4514. doi: 10.3969/j.issn.1006-2084.2015.24.033
    [10]
    邓光辉, 俞年军, 王妍妍, 等. 霍山石斛活性成分对肝脏疾病作用及其机制研究进展[J]. 中草药,2022,53(21):6959−6967. [DENG G H, YU N J, WANG Y Y, et al. Research progress on effect and mechanism of Dendrobium huoshanense and its active components against liver diseases[J]. Chinese Traditional and Herbal Drugs,2022,53(21):6959−6967.] doi: 10.7501/j.issn.0253-2670.2022.21.034

    DENG G H, YU N J, WANG Y Y, et al. Research progress on effect and mechanism of Dendrobium huoshanense and its active components against liver diseases[J]. Chinese Traditional and Herbal Drugs, 2022, 53(21): 6959−6967. doi: 10.7501/j.issn.0253-2670.2022.21.034
    [11]
    李绍洋, 许永, 李秀春. 霍山石斛有效成分和药理作用研究进展[J]. 安徽中医药大学学报,2023,42(4):101−104. [LI S Y, XU Y, LI X C. Research progress on active ingredients and pharmacological effects of Dendrobium huoshanense[J]. Journal of Anhui University of Chinese Medicine,2023,42(4):101−104.] doi: 10.3969/j.issn.2095-7246.2023.04.022

    LI S Y, XU Y, LI X C. Research progress on active ingredients and pharmacological effects of Dendrobium huoshanense[J]. Journal of Anhui University of Chinese Medicine, 2023, 42(4): 101−104. doi: 10.3969/j.issn.2095-7246.2023.04.022
    [12]
    龚晓钟. 硒化黄芪多糖与硒化葡聚糖的研究——硒化条件选择[J]. 深圳大学学报,1997,14(4):70−77. [GONG X Z. Studies on seleno astragalan and selenodextran−−optimization of seleno-reaction conditions[J]. Shenzhen University Journal,1997,14(4):70−77.]

    GONG X Z. Studies on seleno astragalan and selenodextran−−optimization of seleno-reaction conditions[J]. Shenzhen University Journal, 1997, 14(4): 70−77.
    [13]
    WANG L, ZHANG P Z, SHEN J W, et al. Physicochemical properties and bioactivities of original and Se-enriched polysaccharides with different molecular weights extracted from Pleurotus ostreatus[J]. International Journal Biological Macromolecules,2019,141:150−160. doi: 10.1016/j.ijbiomac.2019.08.250
    [14]
    ZHU J, YU C, HAN Z, et al. Comparative analysis of existence form for selenium and structural characteristics in artificial selenium-enriched and synthetic selenized green tea polysaccharides[J]. International Journal Biological Macromolecules,2020,154:1408−1418. doi: 10.1016/j.ijbiomac.2019.11.022
    [15]
    ZHAO M, BAI J, BU X, et al. Characterization of selenized polysaccharides from Ribes nigrum L. and its inhibitory effects on α-amylase and α-glucosidase[J]. Carbohydrate Polymers,2021,259:117729. doi: 10.1016/j.carbpol.2021.117729
    [16]
    XIAO H, CHEN C, LI C, et al. Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum[J]. International Journal Biological Macromolecules,2019,132:308−315. doi: 10.1016/j.ijbiomac.2019.03.138
    [17]
    GU S, SUN H, ZHANG X, et al. Structural characterization and inhibitions on α-glucosidase and α-amylase of alkali-extracted water-soluble polysaccharide from Annona squamosa residue[J]. International Journal Biological Macromolecules,2021,166:730−740. doi: 10.1016/j.ijbiomac.2020.10.230
    [18]
    SUN L, MIAO M. Dietary polyphenols modulate starch digestion and glycaemic level:A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(4):541−555. doi: 10.1080/10408398.2018.1544883
    [19]
    WANG S, LI Y, HUANG D, et al. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase[J]. Food Chemistry,2022,372:131334. doi: 10.1016/j.foodchem.2021.131334
    [20]
    LI C, LI X, YOU L, et al. Fractionation, preliminary structural characterization and bioactivities of polysaccharides from Sargassum pallidum[J]. Carbohydrate Polymers,2017,155:261−270. doi: 10.1016/j.carbpol.2016.08.075
    [21]
    ZHAN Q, CHEN Y, GUO Y, et al. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit[J]. International Journal Biological Macromolecules,2022,206:242−254. doi: 10.1016/j.ijbiomac.2022.02.149
    [22]
    温启华, 陆逸昊, 杨露芳, 等. 硒化天麻多糖的制备、结构表征及其抗氧化活性评价[J]. 食品工业科技,2024,45(3):18−30. [WEN Q H, LU Y H, YANG L F, et al. Preparation, structure characterization and antioxidant activity evaluation of selenized Gastrodia elata polysaccharides[J]. Science and Technology of Food Industry,2024,45(3):18−30.]

    WEN Q H, LU Y H, YANG L F, et al. Preparation, structure characterization and antioxidant activity evaluation of selenized Gastrodia elata polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(3): 18−30.
    [23]
    CHEN W, CHEN J, WU H, et al. Optimization of selenylation conditions for a pectic polysaccharide and its structural characteristic[J]. International Journal Biological Macromolecules,2014,69:244−251. doi: 10.1016/j.ijbiomac.2014.05.046
    [24]
    涂玲飞, 李焱, 张振. 响应面优化硒化白及多糖的制备工艺及其体外抗氧化活性研究[J]. 食品工业科技,2024,45(7):244−253. [TU L F, L Y, ZHANG Z. Optimization of selenized Bletilla striata polysaccharides preparation by response surface methodology and determination of the antioxidant activity in vitro[J]. Science and Technology of Food Industry,2024,45(7):244−253.]

    TU L F, L Y, ZHANG Z. Optimization of selenized Bletilla striata polysaccharides preparation by response surface methodology and determination of the antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2024, 45(7): 244−253.
    [25]
    李丽彩, 王留成, 程相林, 等. 紫外分光光度法测定富硒麦芽中微量元素硒的含量[J]. 应用化工,2016,45(4):771−774. [LI L C, WANG L C, CHENG X L, et al. Determination of trace element selenium in selenium-rich malt with ultraviolet spectrophotometric method[J]. Applided Chemical Industry,2016,45(4):771−774.]

    LI L C, WANG L C, CHENG X L, et al. Determination of trace element selenium in selenium-rich malt with ultraviolet spectrophotometric method[J]. Applided Chemical Industry, 2016, 45(4): 771−774.
    [26]
    XU Y, ZHANG L, YANG Y, et al. Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant[J]. Carbohydrate Polymers,2015,117:895−902. doi: 10.1016/j.carbpol.2014.10.032
    [27]
    周一鸣, 马思佳, 蒋晴怡, 等. 苦荞中芦丁和槲皮素对淀粉消化酶的抑制能力[J]. 食品科学,2022,43(18):30−37. [ZHOU Y M, MA S J, JIANG Q Y, et al. Inhibition of starch-digesting enzymes by rutin and quercetin in tartary buckwheat[J]. Food Science,2022,43(18):30−37.] doi: 10.7506/spkx1002-6630-20210820-256

    ZHOU Y M, MA S J, JIANG Q Y, et al. Inhibition of starch-digesting enzymes by rutin and quercetin in tartary buckwheat[J]. Food Science, 2022, 43(18): 30−37. doi: 10.7506/spkx1002-6630-20210820-256
    [28]
    秦朝凤, 李姣, 郝经文, 等. 芦荟大黄素对α-葡萄糖苷酶的抑制机理及其与阿卡波糖的协同作用[J]. 食品科学,2024,45(8):37−44. [QIN C F, LI J, HAO J W, et al. Inhibitory mechanism of aloe emodin on α-glucosidase and synergistic effect with acarbose[J]. Food Science,2024,45(8):37−44.] doi: 10.7506/spkx1002-6630-20230530-281

    QIN C F, LI J, HAO J W, et al. Inhibitory mechanism of aloe emodin on α-glucosidase and synergistic effect with acarbose[J]. Food Science, 2024, 45(8): 37−44. doi: 10.7506/spkx1002-6630-20230530-281
    [29]
    REN G, LI K, HU Y, et al. Optimization of selenizing conditions for seleno-lentinan and its characteristics[J]. International Journal Biological Macromolecules,2015,81:249−258. doi: 10.1016/j.ijbiomac.2015.08.012
    [30]
    禹晓婷, 苏伟, 齐琦, 等. 响应面优化药食同源基质制曲工艺及酒体成分分析[J]. 食品科学,2019,40(12):123−130. [YU X T, SU W, QI Q, et al. Optimization of koji-making with culinary medicinal matrices by response surface methodology and component analysis of rice wine[J]. Food Science,2019,40(12):123−130.] doi: 10.7506/spkx1002-6630-20180701-010

    YU X T, SU W, QI Q, et al. Optimization of koji-making with culinary medicinal matrices by response surface methodology and component analysis of rice wine[J]. Food Science, 2019, 40(12): 123−130. doi: 10.7506/spkx1002-6630-20180701-010
    [31]
    王峙力, 王鑫, 韩烨, 等. 甜玉米芯硒多糖的制备及其对淀粉酶抑制作用[J]. 包装工程,2021,42(21):33−41. [WANG Z L, WANG X, HAN Y, et al. Preparation of selenium polysaccharide from sweet corncob and its inhibitory effect on amylase[J]. Packaging Engineering,2021,42(21):33−41.]

    WANG Z L, WANG X, HAN Y, et al. Preparation of selenium polysaccharide from sweet corncob and its inhibitory effect on amylase[J]. Packaging Engineering, 2021, 42(21): 33−41.
    [32]
    姚琳琳, 任蕊蕊, 李菁岚, 等. 连翘多糖纳米硒的制备及体外抗氧化和降血糖能力[J]. 精细化工,2024,41:1−11. [YAO L L, REN R R, LI J L, et al. Preparation, characterization, antioxidant and hypoglycemic ability of polysaccharide nano-selenium from Forsythia suspensa in vitro[J]. Fine Chemicals,2024,41:1−11.]

    YAO L L, REN R R, LI J L, et al. Preparation, characterization, antioxidant and hypoglycemic ability of polysaccharide nano-selenium from Forsythia suspensa in vitro[J]. Fine Chemicals, 2024, 41: 1−11.
    [33]
    HAN L, FANG C, ZHU R, et al. Inhibitory effect of phloretin on α-glucosidase:Kinetics, interaction mechanism and molecular docking[J]. International Journal Biological Macromolecules,2017,95:520−527. doi: 10.1016/j.ijbiomac.2016.11.089
    [34]
    DAI T, LI T, HE X, et al. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase:A spectroscopy and molecular simulation study[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2020,230:118023. doi: 10.1016/j.saa.2019.118023
    [35]
    梁译文. 荧光猝灭及分子对接技术研究抗抑郁药等小分子药物与血清白蛋白的作用机理[D]. 石家庄:河北医科大学, 2023. [LIANG Y W. Fluorescence quenching and molecular docking to study themechanism of action of small molecule drugs such as antidepressants with serum albumin[D]. Shijiazhuang:Hebei Medical University, 2023.]

    LIANG Y W. Fluorescence quenching and molecular docking to study themechanism of action of small molecule drugs such as antidepressants with serum albumin[D]. Shijiazhuang: Hebei Medical University, 2023.
    [36]
    XIA H, LV C, LU Y, et al. Natural deep eutectic ready to use extract of astilbin:Super high in vitro bioaccessibility, α-amylase and α-glucosidase enzyme inhibition kinetics[J]. Food Research International,2023,173:113368. doi: 10.1016/j.foodres.2023.113368

Catalog

    Article Metrics

    Article views (25) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return