DUAN Yi, LIU Qinming, LU Kaihua, et al. Progress in the Study of Bioactive Substances in Coffee and Health Effects[J]. Science and Technology of Food Industry, 2025, 46(7): 11−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060149.
Citation: DUAN Yi, LIU Qinming, LU Kaihua, et al. Progress in the Study of Bioactive Substances in Coffee and Health Effects[J]. Science and Technology of Food Industry, 2025, 46(7): 11−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060149.

Progress in the Study of Bioactive Substances in Coffee and Health Effects

More Information
  • Received Date: June 11, 2024
  • Available Online: January 24, 2025
  • Coffee is rich in various bioactive substances such as caffeine, trigonelline, chlorogenic acid, polysaccharides, and flavonoids, which exhibit diverse physiological activities and potential application values. Extensive research has shown that coffee is beneficial to human health. Regular coffee consumption can prevent chronic diseases including cardiovascular disease and type 2 diabetes. Secondly, coffee consumption is also associated with a reduced risk of developing some neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and dementia. However, the underlying mechanisms of these effects are still poorly understood. This article delves into three major categories of these substances: alkaloids, phenolic acid compounds, and terpenoid compounds. This article expounds on the health effects of the principal bioactive components in coffee from multiple angles, including immune regulation, microbiome modulation, and inflammation inhibition. This comprehensive review aims to provide a reference for the development and utilization of coffee's bioactive components, thereby contributing to the high-value utilization of coffee.
  • [1]
    高聂叶子, 娄志超, 杨世龙, 等. 世界咖啡产业竞争力评价及中国的对策[J]. 南方农村,2023,39(1):15−23. [GAO Nieyezi, LOU Zhichao, YANG Shilong, et al. Evaluation of world coffee industry competitiveness and China's countermeasures[J]. South China Rural Area,2023,39(1):15−23.] doi: 10.3969/j.issn.1008-2697.2023.1.nfnc202301004

    GAO Nieyezi, LOU Zhichao, YANG Shilong, et al. Evaluation of world coffee industry competitiveness and China's countermeasures[J]. South China Rural Area, 2023, 39(1): 15−23. doi: 10.3969/j.issn.1008-2697.2023.1.nfnc202301004
    [2]
    杨登辉. 2024年中国咖啡进出口贸易数据分析简报[EB/OL]

    2024-04-18]. https://mp.weixin.qq.com/s/bq_j8ftl15ZwkBD2RELuRw.
    [3]
    NAVEEN P, LINGARAJU H B, DEEPAK M, et al. Method development and validation for the determination of caffeine:An alkaloid from Coffea arabica by high-performance liquid chromatography method[J]. Pharmacognosy Research,2018,10(1):88−91.
    [4]
    CHEN X M. A review on coffee leaves:Phytochemicals, bioactivities and applications[J]. Critical Reviews in Food Science and Nutrition,2019,59(6):1008−1025. doi: 10.1080/10408398.2018.1546667
    [5]
    GELILA A, HEON-WOONG K, MIN-KI L, et al. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans:A new group of methyl hydroxycinnamoyl quinate[J]. Food Chemistry:X,2019,2(C):100033.
    [6]
    SUJITRA R, SUNATE S. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea[J]. Maejo International Journal of Science and Technology,2017,11(3):211−218.
    [7]
    MARTINS S C V, ARAÚJO W L, TOHGE T, et al. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield[J]. PLoS One,2017,9(4):e94862.
    [8]
    HIROAKI I, KOUJI I, ARIUNBOLD N, et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells[J]. The Prostate,2019,79(5):468−479. doi: 10.1002/pros.23753
    [9]
    BEATRIZ Sarri´a, SARA Mart´ınez-L´opez, RAQUEL Mateos, et al. Nutritional and metabolic diseases and conditions - type 2 diabetes; Investigators from spanish national research council (csic) target type 2 diabetes (long-term consumption of a green/roasted coffee blend positively affects glucose metabolism and insulin resistance in humans)[J]. Food Weekly News, 2016.
    [10]
    别玮, 祁正有, 曾侣斌, 等. 云南普洱咖啡的品质特性及其标准化现状[J]. 中国口岸科学技术,2023,5(S2):80−88. [BIE Wei, QI Zhengyou, ZENG Lübin, et al. Quality characteristics and standardization research of Pu'er coffee in Yunnan[J]. China Port Science and Technology,2023,5(S2):80−88.]

    BIE Wei, QI Zhengyou, ZENG Lübin, et al. Quality characteristics and standardization research of Pu'er coffee in Yunnan[J]. China Port Science and Technology, 2023, 5(S2): 80−88.
    [11]
    DIVIŠ P, POŘÍZKA J, KŘÍKALA J. The effect of coffee beans roasting on its chemical composition[J]. Potravinarstvo,2019,13(1):344−350. doi: 10.5219/1062
    [12]
    A LUDWIG I, N CLIFFORD M, J LEAN M E, et al. Coffee:Biochemistry and potential impact on health[J]. Food & Function,2014,5(8):1695−1717.
    [13]
    de MEJIA E G, RAMIREZ-MARES M V. Impact of caffeine and coffee on our health[J]. Trends in Endocrinology & Metabolism,2014,25(10):489−492.
    [14]
    SACHSE K T, JACKSON E K, WISNIEWSKI S R, et al. Increases in cerebrospinal fluid caffeine concentration are associated with favorable outcome after severe traumatic brain injury in humans[J]. Journal of Cerebral Blood Flow & Metabolism,2008,28(2):395−401.
    [15]
    ARNAUD M J. Pharmacokinetics and metabolism of natural methylxanthines in animal and man[J]. Handbook of Experimental Pharmacology,2011(200):33−91.
    [16]
    HUIHUI K, P J P, ANDREA K, et al. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor[J]. The Biochemical Journal,2008,414(3):441−452. doi: 10.1042/BJ20080489
    [17]
    KOSHIRO Y, ZHENG X, WANG M, et al. Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits[J]. Plant Science,2006,171(2):242−250. doi: 10.1016/j.plantsci.2006.03.017
    [18]
    ZHENG X, MATSUI A, ASHIHARA H. Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings[J]. Phytochemistry,2008,69(2):390−395. doi: 10.1016/j.phytochem.2007.08.008
    [19]
    YOSHINARI O, SATO H, IGARASHI K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(5):1033−1041. doi: 10.1271/bbb.80805
    [20]
    WANG H, ZHANG H, CAO F M, et al. Protection of insulin-like growth factor 1 on experimental peripheral neuropathy in diabetic mice[J]. Molecular Medicine Reports,2018,18(5):4577−4586.
    [21]
    LIU L, DU X H, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice[J]. European Journal of Pharmacology,2018,836:115−121. doi: 10.1016/j.ejphar.2018.08.025
    [22]
    SHARMA L, LONE N A, KNOTT R M, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy[J]. Food and Chemical Toxicology,2018,121:283−296. doi: 10.1016/j.fct.2018.09.011
    [23]
    ILAVENIL S, KIM D H, JEONG Y, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells[J]. Asian Pacific Journal of Tropical Medicine,2015,8(4):263−268. doi: 10.1016/S1995-7645(14)60328-X
    [24]
    邵金良, 刘兴勇, 杨东顺, 等. 咖啡及咖啡制品中葫芦巴碱、绿原酸和咖啡因含量比较分析[J]. 山西农业科学,2016,44(2):158−163. [SHAO Jinliang, LIU Xingyong, YANG Dongshun, et al. Comparative analysis on trigonelline, chlorogenic acid and caffeine content in coffee and its product[J]. Journal of Shanxi Agricultural Sciences,2016,44(2):158−163.] doi: 10.3969/j.issn.1002-2481.2016.02.07

    SHAO Jinliang, LIU Xingyong, YANG Dongshun, et al. Comparative analysis on trigonelline, chlorogenic acid and caffeine content in coffee and its product[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(2): 158−163. doi: 10.3969/j.issn.1002-2481.2016.02.07
    [25]
    LEE T, KANG I, KIM B, et al. Experimental pretreatment with chlorogenic acid prevents transient ischemia-induced cognitive decline and neuronal damage in the hippocampus through anti-oxidative and anti-inflammatory effects[J]. Molecules,2020,25(16):3578. doi: 10.3390/molecules25163578
    [26]
    ANGELONI G, GUERRINI L, MASELLA P, et al. What kind of coffee do you drink? An investigation on effects of eight different extraction methods[J]. Food Research International,2019,116:1327−1335. doi: 10.1016/j.foodres.2018.10.022
    [27]
    严颖, 赵慧, 邹立思, 等. 基于LC-Triple TOF MS/MS技术分析杜仲不同药用部位化学成分差异[J]. 质谱学报,2018,39(1):101−111. [YAN Ying, ZHAO Hui, ZHOU Lisi, et al. Difference of chemical constituents in different medicinal parts of eucommia ulmoides by LC-Triple TOF MS/MS[J]. Journal of Chinese Mass Spectrometry Society,2018,39(1):101−111.] doi: 10.7538/zpxb.2017.0032

    YAN Ying, ZHAO Hui, ZHOU Lisi, et al. Difference of chemical constituents in different medicinal parts of eucommia ulmoides by LC-Triple TOF MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(1): 101−111. doi: 10.7538/zpxb.2017.0032
    [28]
    BUŁDAK R J , TOMASZ H, MARCIN O, et al. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro[J]. Molecules (Basel, Switzerland),2018,23(12):3309. doi: 10.3390/molecules23123309
    [29]
    SANTANA-GÁLVEZ J, CISNEROS-ZEVALLOS L, JACOBO-VELÁZQUEZ D A. Chlorogenic acid:Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome[J]. Molecules,2017,22(3):358. doi: 10.3390/molecules22030358
    [30]
    WENWU L, JINGDA L, XUEMEI Z, et al. Current advances in naturally occurring caffeoylquinic acids:Structure, bioactivity and synthesis[J]. Journal of Agricultural and Food Chemistry,2020,68(39):10489−10516. doi: 10.1021/acs.jafc.0c03804
    [31]
    LU H J, TIAN Z M, CUI Y Y, et al. Chlorogenic acid:A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3130−3158. doi: 10.1111/1541-4337.12620
    [32]
    LI L, SU C, CHEN X, et al. Chlorogenic acids in cardiovascular disease:A review of Dietary consumption, pharmacology, and pharmacokinetics[J]. J Agric Food Chem,2020,68(24):6464−6484. doi: 10.1021/acs.jafc.0c01554
    [33]
    FADILA A K, J M F, EMILIA F, et al. Aquaculture and its by-products as a source of nutrients and bioactive compounds[J]. Advances in Food and Nutrition Research,2020,92:31−33.
    [34]
    PERRONE D, FARAH A, DONANGELO C M, et al. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars[J]. Food Chemistry,2007,106(2):859−867.
    [35]
    CHANYARIN SOMPORN A K P T. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor)[J]. International Journal of Food Science and Technology,2011,46(11):2287−2296. doi: 10.1111/j.1365-2621.2011.02748.x
    [36]
    TELLES S C, CORRÊA S M, FONSECA M A P D, et al. Thermal stability and sensory evaluation of a bioactive extract from roasted coffee (Coffea arabica) beans added at increasing concentrations to conventional bread[J]. Journal of Food Processing and Preservation,2021,45(11):e15955.
    [37]
    CASTRO M F V, ASSMANN C E, STEFANELLO N, et al. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats:Pivotal role of the cholinergic and purinergic signaling pathways[J]. The Journal of Nutritional Biochemistry,2023,115:109280. doi: 10.1016/j.jnutbio.2023.109280
    [38]
    MATEJCZYK M, ŚWISŁOCKA R, GOLONKO A, et al. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds[J]. Advances in Medical Sciences,2018,63(1):14−21. doi: 10.1016/j.advms.2017.07.003
    [39]
    KUMAR N, GOEL N. Phenolic acids:Natural versatile molecules with promising therapeutic applications[J]. Biotechnology Reports,2019,24:e370.
    [40]
    KIM Y H, KWON T, YANG H J, et al. Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein[J]. Protein Expression and Purification,2011,79(1):149−155. doi: 10.1016/j.pep.2011.04.013
    [41]
    BERNER M, KRUG D, BIHLMAIER C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis[J]. Journal of Bacteriology,2006,188(7):2666−2673. doi: 10.1128/JB.188.7.2666-2673.2006
    [42]
    CHOI O, WU C, KANG S Y, et al. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology,2011,38(10):1657−1665. doi: 10.1007/s10295-011-0954-3
    [43]
    LIN Y, YAN Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex[J]. Microbial Cell Factories,2012,11:1−9. doi: 10.1186/1475-2859-11-1
    [44]
    袁豆豆, 周秀琪, 庞雪晴, 等. 代谢工程改造酿酒酵母发酵生产咖啡酸[J]. 食品与发酵工业,2023,50(19):17−24. [YUAN Doudou, ZHOU Xiuqi, PANG Xueqing, et al. Metabolic engineering ofSaccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries,2023,50(19):17−24.]

    YUAN Doudou, ZHOU Xiuqi, PANG Xueqing, et al. Metabolic engineering of Saccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries, 2023, 50(19): 17−24.
    [45]
    SILVA M, BRAND A, NOVAES F, et al. Cafestol, kahweol and their acylated derivatives:Antitumor potential, pharmacokinetics, and chemopreventive profile[J]. Food Reviews International,2023,39(9):7048−7080. doi: 10.1080/87559129.2022.2141776
    [46]
    KITZBERGER C S G, dos SANTOS SCHOLZ M B, de TOLEDO BENASSI M. Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions[J]. Food Research International,2014,61:61−66. doi: 10.1016/j.foodres.2014.04.031
    [47]
    LAUKALEJA I, KRUMA Z. Influence of the roasting process on bioactive compounds and aroma profile in specialty coffee:A review[C]//Conference: 13th Baltic Conference on Food Science and Technology "FOOD. NUTRITION. WELL-BEING", 2019:1−12.
    [48]
    VIGNOLI J A, VIEGAS M C, BASSOLI D G, et al. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees[J]. Food Research International,2014,61:279−285. doi: 10.1016/j.foodres.2013.06.006
    [49]
    SRIDEVI V, GIRIDHAR P, RAVISHANKAR G A. Evaluation of roasting and brewing effect on antinutritional diterpenes-cafestol and kahweol in coffee[J]. Global Journal of Medical Research,2011,11(5):1−7.
    [50]
    NIGRA A D, de ALMEIDA B G D, PRUCCA C G, et al. Antitumor effects of freeze-dried Robusta coffee (Coffea canephora) extracts on breast cancer cell lines[J]. Oxidative Medicine and Cellular Longevity,2021,2021:1−16.
    [51]
    de SOUZA L D S, HORTA I P C, de SOUZA ROSA L, et al. Effect of the roasting levels of Coffea arabica L. extracts on their potential antioxidant capacity and antiproliferative activity in human prostate cancer cells[J]. RSC Advances,2020,10(50):30115−30126. doi: 10.1039/D0RA01179G
    [52]
    FARAH A. Coffee constituents[J]. Coffee:Emerging Health Effects and Disease Prevention,2012,1:22−58.
    [53]
    URGERT R, van der WEG G, KOSMEIJER-SCHUIL T G, et al. Levels of the cholesterol-elevating diterpenes cafestol and kahweol in various coffee brews[J]. Journal of Agricultural and Food Chemistry,1995,43(8):2167−2172. doi: 10.1021/jf00056a039
    [54]
    RENDÓN M Y, DOS SANTOS SCHOLZ M B, BRAGAGNOLO N. Physical characteristics of the paper filter and low cafestol content filter coffee brews[J]. Food Research International,2018,108:280−285. doi: 10.1016/j.foodres.2018.03.041
    [55]
    IRIONDO-DEHOND A, CORNEJO F S, FERNANDEZ-GOMEZ B, et al. Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds[J]. Nutrients,2019,11(6):1411. doi: 10.3390/nu11061411
    [56]
    ALCUBIERRE N, GRANADO-CASAS M, BOGDANOV P, et al. Caffeine and the risk of diabetic retinopathy in type 2 diabetes mellitus:Findings from clinical and experimental studies[J]. Nutrients,2023,15(5):1169. doi: 10.3390/nu15051169
    [57]
    HORRIGAN L A, KELLY J P, CONNOR T J. Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase a pathway[J]. Int Immunopharmacol,2004,4(10-11):1409−1417. doi: 10.1016/j.intimp.2004.06.005
    [58]
    喻敏. 电针对术后肠麻痹患者炎症反应及胃肠激素分泌的影响[D]. 南昌: 江西中医药大学, 2022. [YU Min. The effect of electroacupuncture onpostoperative ileus and its influenceon inflammation and gastrointestinalhormones secretion[D]. Nanchang: Jiangxi University of Chinese Medicine, 2022.]

    YU Min. The effect of electroacupuncture onpostoperative ileus and its influenceon inflammation and gastrointestinalhormones secretion[D]. Nanchang: Jiangxi University of Chinese Medicine, 2022.
    [59]
    RODAK K, BEBEN D, BIRSKA M, et al. Evaluating the neuroprotective potential of caffeinated coffee in the context of aluminum-induced neurotoxicity:Insights from a PC12 cell culture model[J]. Antioxidants (Basel),2024,13(3):342. doi: 10.3390/antiox13030342
    [60]
    王睿, 吴叶琪. 补充替代疗法治疗轮班工作睡眠障碍的研究现状[J]. 中国现代医生,2022,60(9):193−196. [WANG Rui, WU Yeqi. Research status of complementary and alternative therapy in treatment of shift work sleep disorders[J]. China Modern Doctor,2022,60(9):193−196.] doi: 10.3969/j.issn.1673-9701.2022.9.zwkjzlml-yyws202209047

    WANG Rui, WU Yeqi. Research status of complementary and alternative therapy in treatment of shift work sleep disorders[J]. China Modern Doctor, 2022, 60(9): 193−196. doi: 10.3969/j.issn.1673-9701.2022.9.zwkjzlml-yyws202209047
    [61]
    曾琬婷, 周丽婷, 贾茹, 等. 关白附炮制前后对缺血性中风沙鼠药效学和代谢组学的影响[J]. 辽宁中医药大学学报,2024,26(4):55−63. [ZENG Wanting, ZHOU Liting, JIA Ru, et al. Effect of Guanbaifu (Radix Aconiti Coreani) before and after processing on the metabolomics of gerbils with ischemic stroke[J]. Journal of Liaoning University of Traditional Chinese Medicine,2024,26(4):55−63.]

    ZENG Wanting, ZHOU Liting, JIA Ru, et al. Effect of Guanbaifu (Radix Aconiti Coreani) before and after processing on the metabolomics of gerbils with ischemic stroke[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2024, 26(4): 55−63.
    [62]
    胡岳云, 谢忠稳, 袁静静, 等. 茯苓配方浸膏对高脂饮食小鼠肥胖及脂质沉积的影响[J]. 安徽农业大学学报,2023,50(2):349−355. [HU Yueyun, XIE Zhongwen, YUAN Jingjing, et al. Effects of poria cocos wolf formula extracts on obesity and lipidosis in high-fat diet-induced mice[J]. Journal of Anhui Agricultural University,2023,50(2):349−355.]

    HU Yueyun, XIE Zhongwen, YUAN Jingjing, et al. Effects of poria cocos wolf formula extracts on obesity and lipidosis in high-fat diet-induced mice[J]. Journal of Anhui Agricultural University, 2023, 50(2): 349−355.
    [63]
    HEITMAN E, INGRAM D K. Cognitive and neuroprotective effects of chlorogenic acid[J]. Nutr Neurosci,2017,20(1):32−39. doi: 10.1179/1476830514Y.0000000146
    [64]
    NAVEED M, HEJAZI V, ABBAS M, et al. Chlorogenic acid (CGA):A pharmacological review and call for further research[J]. Biomed Pharmacother,2018,97:67−74. doi: 10.1016/j.biopha.2017.10.064
    [65]
    CASTALDO L, TORIELLO M, SESSA R, et al. Antioxidant and anti-Inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion[J]. Nutrients,2021,13(12):4368. doi: 10.3390/nu13124368
    [66]
    QIU Z, WANG K, JIANG C, et al. Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway[J]. Chem Biol Interact,2020,317:108946. doi: 10.1016/j.cbi.2020.108946
    [67]
    MOHAMADI N, SHARIFIFAR F, POURNAMDARI M, et al. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid[J]. J Diet Suppl,2018,15(2):207−222. doi: 10.1080/19390211.2017.1329244
    [68]
    LI Y, JIA X, TANG N, et al. Melanoidins, extracted from Chinese traditional vinegar powder, inhibit alcohol-induced inflammation and oxidative stress in macrophages via activation of SIRT1 and SIRT3[J]. Food Funct,2021,12(17):8120−8129. doi: 10.1039/D1FO00978H
    [69]
    CHAVEZ-GUTIERREZ L, SZARUGA M. Mechanisms of neurodegeneration-Insights from familial Alzheimer's disease[J]. Semin Cell Dev Biol,2020,105:75−85. doi: 10.1016/j.semcdb.2020.03.005
    [70]
    沈晓静, 字成庭, 辉绍良, 等. 咖啡化学成分及其生物活性研究进展[J]. 热带亚热带植物学报,2021,29(1):112−122. [SHEN Xiaojing, ZI Chengting, HUI Shaoliang, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany,2021,29(1):112−122.] doi: 10.11926/jtsb.4249

    SHEN Xiaojing, ZI Chengting, HUI Shaoliang, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany, 2021, 29(1): 112−122. doi: 10.11926/jtsb.4249
    [71]
    TAVARES C, SAKATA R K. Caffeine in the treatment of pain[J]. Brazilian Journal of Anesthesiology,2012,62(3):387−401. doi: 10.1016/S0034-7094(12)70139-3
    [72]
    JIANQING L, ZHOUREN G, GUICAI Y. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells[J]. Ultrasonics Sonochemistry,2021,76:105661. doi: 10.1016/j.ultsonch.2021.105661
    [73]
    CORETA-GOMES F M, LOPES G R, PASSOS C P, et al. In vitro hypocholesterolemic effect of coffee compounds[J]. Nutrients,2020,12(2):437. doi: 10.3390/nu12020437
    [74]
    GAN L, COOKSON M R, PETRUCELLI L, et al. Converging pathways in neurodegeneration, from genetics to mechanisms[J]. Nat Neurosci,2018,21(10):1300−1309. doi: 10.1038/s41593-018-0237-7
    [75]
    WANG C, ZHOU C, GUO T, et al. Current coffee consumption is associated with decreased striatal dopamine transporter availability in Parkinson's disease patients and healthy controls[J]. BMC Med,2023,21(1):272. doi: 10.1186/s12916-023-02994-5
    [76]
    ZHAO Y, LAI Y, KONIJNENBERG H, et al. Association of coffee consumption and prediagnostic caffeine metabolites with incident parkinson disease in a population-based cohort[J]. Neurology,2024,102(8):e209201. doi: 10.1212/WNL.0000000000209201
    [77]
    LEE K W, IM J Y, WOO J M, et al. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease[J]. Neurotherapeutics,2013,10(1):143−153. doi: 10.1007/s13311-012-0165-2
    [78]
    GAO X, ZHANG B, ZHENG Y, et al. Neuroprotective effect of chlorogenic acid on Parkinson's disease like symptoms through boosting the autophagy in zebrafish[J]. Eur J Pharmacol,2023,956:175950. doi: 10.1016/j.ejphar.2023.175950
    [79]
    SERRANO-POZO A, FROSCH M P, MASLIAH E, et al. Neuropathological alterations in Alzheimer disease[J]. Cold Spring Harb Perspect Med,2011,1(1):a6189. doi: 10.1101/cshperspect.a006189
    [80]
    MALAFAIA D, ALBUQUERQUE H, SILVA A. Amyloid-beta and tau aggregation dual-inhibitors:A synthetic and structure-activity relationship focused review[J]. Eur J Med Chem,2021,214:113209. doi: 10.1016/j.ejmech.2021.113209
    [81]
    MIRANDA A M, GOULART A C, BENSENOR I M, et al. Coffee consumption and risk of hypertension:A prospective analysis in the cohort study[J]. Clin Nutr,2021,40(2):542−549. doi: 10.1016/j.clnu.2020.05.052
    [82]
    STEFANELLO N, SPANEVELLO R M, PASSAMONTI S, et al. Coffee, caffeine, chlorogenic acid, and the purinergic system[J]. Food Chem Toxicol,2019,123:298−313. doi: 10.1016/j.fct.2018.10.005
    [83]
    王子晴, 姬辛娜, 陈倩. 癫痫体液生物标志物的研究进展[J]. 中国医学前沿杂志(电子版),2023,15(11):97−102. [WANG Ziqing, JI Xinna, CHEN Qian. Advances in the study of fluid biomarkers of epilepsy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version),2023,15(11):97−102.]

    WANG Ziqing, JI Xinna, CHEN Qian. Advances in the study of fluid biomarkers of epilepsy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2023, 15(11): 97−102.
    [84]
    HENSHALL D C. Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy[J]. Biochem Soc Trans,2007,35(Pt2):421−423.
    [85]
    de LANEROLLE N C, LEE T S. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy[J]. Epilepsy Behav,2005,7(2):190−203. doi: 10.1016/j.yebeh.2005.06.003
    [86]
    van VLIET E A, DA C A S, REDEKER S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy[J]. Brain,2007,130(Pt2):521−534.
    [87]
    CIARAMELLI C, PALMIOLI A, DE LUIGI A, et al. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts[J]. Food Chem,2018,252:171−180. doi: 10.1016/j.foodchem.2018.01.075
    [88]
    ALCAZAR M A, KAMIMURA N, SOUMYANATH A, et al. Caffeoylquinic acids:Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity[J]. Plant J,2021,107(5):1299−1319. doi: 10.1111/tpj.15390
    [89]
    BOETTCHER M I, BOLT H M, DREXLER H, et al. Excretion of mercapturic acids of acrylamide and glycidamide in human urine after single oral administration of deuterium-labelled acrylamide[J]. Arch Toxicol,2006,80(2):55−61. doi: 10.1007/s00204-005-0011-y
    [90]
    COLELLA M, ZINNI M, PANSIOT J, et al. Modulation of microglial activation by adenosine A2a receptor in animal models of perinatal brain injury[J]. Frontiers in Neurology,2018,9:605. doi: 10.3389/fneur.2018.00605
    [91]
    LIANG N, KITTS D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions[J]. Nutrients,2015,8(1):16. doi: 10.3390/nu8010016
    [92]
    SINGH C P, KUMAR S N, PUNITA S, et al. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis[J]. Phytotherapy Research:PTR,2012,26(8):1156−1165. doi: 10.1002/ptr.3684
    [93]
    NINGJIAN L, D K D. Chlorogenic acid (CGA) isomers alleviate interleukin 8 (IL-8) production in Caco-2 cells by decreasing phosphorylation of p38 and increasing cell integrity[J]. International Journal of Molecular Sciences,2018,19(12):3873. doi: 10.3390/ijms19123873
    [94]
    CHEN Jiali, LUO Yuheng, LI Yan, et al. Chlorogenic acid attenuates oxidative stress-induced intestinal epithelium injury by co-regulating the PI3K/Akt and IκBα/NF-κB signaling[J]. Antioxidants,2021,10(12):1915. doi: 10.3390/antiox10121915
    [95]
    KWAK S C, LEE C, KIM J, et al. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor Kappa-B ligand-induced nuclear factor of activated T cells c1 expression[J]. Biological and Pharmaceutical Bulletin,2013,36(11):1779−1786. doi: 10.1248/bpb.b13-00430
    [96]
    PASSOS C P, COSTA R M, FERREIRA S S, et al. Role of coffee caffeine and chlorogenic acids adsorption to polysaccharides with impact on brew immunomodulation effects[J]. Foods,2021,10(2):378. doi: 10.3390/foods10020378
    [97]
    MACHADO F, COIMBRA M A, CASTILLO M, et al. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox[J]. Crit Rev Food Sci Nutr, 2023:1-23.
    [98]
    REN Y, WANG C, XU J, et al. Cafestol and kahweol:A review on their bioactivities and pharmacological properties[J]. Int J Mol Sci,2019,20(17):4238. doi: 10.3390/ijms20174238
    [99]
    FARAH A. Coffee :production, quality and chemistry[M]. London: Royal Society of Chemistry, 2019.
    [100]
    MOREIRA A S, NUNES F M, DOMINGUES M R, et al. Coffee melanoidins:Structures, mechanisms of formation and potential health impacts[J]. Food Funct,2012,3(9):903−915. doi: 10.1039/c2fo30048f
    [101]
    FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food Funct,2011,2(2):117−123. doi: 10.1039/c0fo00156b
    [102]
    GNIECHWITZ D, REICHARDT N, BLAUT M, et al. Dietary fiber from coffee beverage:Degradation by human fecal microbiota[J]. J Agric Food Chem,2007,55(17):6989−6996. doi: 10.1021/jf070646b
    [103]
    DIAZ-RUBIO M E, SAURA-CALIXTO F. Beverages have an appreciable contribution to the intake of soluble dietary fibre:A study in the Spanish diet[J]. Int J Food Sci Nutr,2011,62(7):715−718. doi: 10.3109/09637486.2011.579950
    [104]
    REN S, WU M, GUO J, et al. Sterilization of polydimethylsiloxane surface with Chinese herb extract:A new antibiotic mechanism of chlorogenic acid[J]. Scientific Reports,2015,5(1):10464. doi: 10.1038/srep10464
    [105]
    SU M, LIU F, LUO Z, et al. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa[J]. Foodborne Pathogens and Disease,2019,16(12):823−830. doi: 10.1089/fpd.2019.2678
    [106]
    RAJASEKHARAN S K, RAMESH S, SATISH A S, et al. Antibiofilm and anti-β-lactamase activities of burdock root extract and chlorogenic acid against Klebsiella pneumoniae[J]. Journal of Microbiology and Biotechnology,2017,27(3):542−551. doi: 10.4014/jmb.1609.09043
    [107]
    WANG L, ZHANG Y, LIU Y, et al. Effects of chlorogenic acid on antimicrobial, antivirulence, and anti-quorum sensing of carbapenem-resistantKlebsiella pneumoniae[J]. Frontiers in Microbiology,2022,13:997310. doi: 10.3389/fmicb.2022.997310
    [108]
    MIAO M, XIANG L. Pharmacological action and potential targets of chlorogenic acid[J]. Advances in Pharmacology,2020,87:71−88.
    [109]
    DAN B, DAI H, ZHOU D, et al. Relationship between drug resistance characteristics and biofilm formation inKlebsiella pneumoniae strains[J]. Infection and Drug Resistance, 2023:985-998.
    [110]
    LOU Z, WANG H, ZHU S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. Journal of Food Science,2011,76(6):M398−M403.
    [111]
    ZHANG G, YANG Y, MEMON F U, et al. A natural antimicrobial agent:Analysis of antibacterial effect and mechanism of compound phenolic acid on Escherichia coli based on tandem mass tag proteomics[J]. Frontiers in Microbiology,2021,12:738896. doi: 10.3389/fmicb.2021.738896
    [112]
    LEE B, LEE D G. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli[J]. Free Radical Research,2018,52(5):605−615. doi: 10.1080/10715762.2018.1456658
    [113]
    COUTEAU D, MCCARTNEY A L, GIBSON G R, et al. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid[J]. J Appl Microbiol,2001,90(6):873−881. doi: 10.1046/j.1365-2672.2001.01316.x
    [114]
    MILLS C E, TZOUNIS X, ORUNA-CONCHA M J, et al. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth[J]. Br J Nutr,2015,113(8):1220−1227. doi: 10.1017/S0007114514003948
    [115]
    GROSSO G, MICEK A, GODOS J, et al. Long-term coffee consumption is associated with decreased incidence of new-onset hypertension:A dose-response meta-analysis[J]. Nutrients,2017,9(8):890. doi: 10.3390/nu9080890
    [116]
    KLEBER S A, MORESCO K S, MAUTONE G H, et al. Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats[J]. Phytother Res,2018,32(12):2466−2474. doi: 10.1002/ptr.6185
    [117]
    POON M, FARBER D L. The whole body as the system in systems immunology[J]. iScience,2020,23(9):101509. doi: 10.1016/j.isci.2020.101509
    [118]
    NOSALOVA G, PRISENZNAKOVA L, PAULOVICOVA E, et al. Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein[J]. Int J Biol Macromol,2011,49(4):493−497. doi: 10.1016/j.ijbiomac.2011.06.004
    [119]
    ACIKALIN B, SANLIER N. Coffee and its effects on the immune system[J]. Trends in Food Science & Technology,2021,114:625−632.
    [120]
    AKASH M S, REHMAN K, CHEN S. Effects of coffee on type 2 diabetes mellitus[J]. Nutrition,2014,30(7−8):755−763. doi: 10.1016/j.nut.2013.11.020
    [121]
    CARLSTROM M, LARSSON S C. Coffee consumption and reduced risk of developing type 2 diabetes:A systematic review with meta-analysis[J]. Nutr Rev,2018,76(6):395−417. doi: 10.1093/nutrit/nuy014
    [122]
    韩亚如. 二咖啡酰奎宁酸通过PI3K/Akt/HIF-1α信号通路减轻氧化应激所导致的H9c2心肌细胞损伤[D]. 呼和浩特:内蒙古医科大学, 2023. [HAN Yaru. Dicaffeoylquinic acids alleviates oxidative stress injury inH9c2 cardiomyocytes by activating PI3K/Akt/HIF-1ɑ signalling[D]. Hohhot:Inner Mongolia Medical College, 2023.]

    HAN Yaru. Dicaffeoylquinic acids alleviates oxidative stress injury inH9c2 cardiomyocytes by activating PI3K/Akt/HIF-1ɑ signalling[D]. Hohhot: Inner Mongolia Medical College, 2023.
    [123]
    World Health Organization. Cardiovascular diseases (CVDs)[EB/OL]. [2024-04-19]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
    [124]
    YANG J, YUAN Y, GU J, et al. Drug synthesis and analysis of an acetylcholinesterase inhibitor:A comprehensive medicinal chemistry experience for undergraduates[J]. Journal of Chemical Education,2021,98(3):991−995. doi: 10.1021/acs.jchemed.0c01223
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 蓝蔚青,刘淑婷,谢晶. 水产品保鲜方式的应用研究进展. 肉类研究. 2024(07): 55-62 .
    2. 陈惠萍,刘易晓,薛佳,陈鸿,卢盛佳,缪小兰,梁桉婕,段杉. 内源化学反应及细菌活动对冰温贮藏罗非鱼片腐败变质的贡献研究. 食品安全质量检测学报. 2023(19): 13-19 .
    3. 饶从稳,何亮银,林志灯,周莉,魏奇,林河通,韩坤煌. 大黄鱼的营养成分及其加工进展研究. 食品科技. 2023(12): 113-118 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return