Citation: | DUAN Yi, LIU Qinming, LU Kaihua, et al. Progress in the Study of Bioactive Substances in Coffee and Health Effects[J]. Science and Technology of Food Industry, 2025, 46(7): 11−21. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060149. |
[1] |
高聂叶子, 娄志超, 杨世龙, 等. 世界咖啡产业竞争力评价及中国的对策[J]. 南方农村,2023,39(1):15−23. [GAO Nieyezi, LOU Zhichao, YANG Shilong, et al. Evaluation of world coffee industry competitiveness and China's countermeasures[J]. South China Rural Area,2023,39(1):15−23.] doi: 10.3969/j.issn.1008-2697.2023.1.nfnc202301004
GAO Nieyezi, LOU Zhichao, YANG Shilong, et al. Evaluation of world coffee industry competitiveness and China's countermeasures[J]. South China Rural Area, 2023, 39(1): 15−23. doi: 10.3969/j.issn.1008-2697.2023.1.nfnc202301004
|
[2] |
杨登辉. 2024年中国咖啡进出口贸易数据分析简报[EB/OL]
2024-04-18]. https://mp.weixin.qq.com/s/bq_j8ftl15ZwkBD2RELuRw.
|
[3] |
NAVEEN P, LINGARAJU H B, DEEPAK M, et al. Method development and validation for the determination of caffeine:An alkaloid from Coffea arabica by high-performance liquid chromatography method[J]. Pharmacognosy Research,2018,10(1):88−91.
|
[4] |
CHEN X M. A review on coffee leaves:Phytochemicals, bioactivities and applications[J]. Critical Reviews in Food Science and Nutrition,2019,59(6):1008−1025. doi: 10.1080/10408398.2018.1546667
|
[5] |
GELILA A, HEON-WOONG K, MIN-KI L, et al. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans:A new group of methyl hydroxycinnamoyl quinate[J]. Food Chemistry:X,2019,2(C):100033.
|
[6] |
SUJITRA R, SUNATE S. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea[J]. Maejo International Journal of Science and Technology,2017,11(3):211−218.
|
[7] |
MARTINS S C V, ARAÚJO W L, TOHGE T, et al. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield[J]. PLoS One,2017,9(4):e94862.
|
[8] |
HIROAKI I, KOUJI I, ARIUNBOLD N, et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells[J]. The Prostate,2019,79(5):468−479. doi: 10.1002/pros.23753
|
[9] |
BEATRIZ Sarri´a, SARA Mart´ınez-L´opez, RAQUEL Mateos, et al. Nutritional and metabolic diseases and conditions - type 2 diabetes; Investigators from spanish national research council (csic) target type 2 diabetes (long-term consumption of a green/roasted coffee blend positively affects glucose metabolism and insulin resistance in humans)[J]. Food Weekly News, 2016.
|
[10] |
别玮, 祁正有, 曾侣斌, 等. 云南普洱咖啡的品质特性及其标准化现状[J]. 中国口岸科学技术,2023,5(S2):80−88. [BIE Wei, QI Zhengyou, ZENG Lübin, et al. Quality characteristics and standardization research of Pu'er coffee in Yunnan[J]. China Port Science and Technology,2023,5(S2):80−88.]
BIE Wei, QI Zhengyou, ZENG Lübin, et al. Quality characteristics and standardization research of Pu'er coffee in Yunnan[J]. China Port Science and Technology, 2023, 5(S2): 80−88.
|
[11] |
DIVIŠ P, POŘÍZKA J, KŘÍKALA J. The effect of coffee beans roasting on its chemical composition[J]. Potravinarstvo,2019,13(1):344−350. doi: 10.5219/1062
|
[12] |
A LUDWIG I, N CLIFFORD M, J LEAN M E, et al. Coffee:Biochemistry and potential impact on health[J]. Food & Function,2014,5(8):1695−1717.
|
[13] |
de MEJIA E G, RAMIREZ-MARES M V. Impact of caffeine and coffee on our health[J]. Trends in Endocrinology & Metabolism,2014,25(10):489−492.
|
[14] |
SACHSE K T, JACKSON E K, WISNIEWSKI S R, et al. Increases in cerebrospinal fluid caffeine concentration are associated with favorable outcome after severe traumatic brain injury in humans[J]. Journal of Cerebral Blood Flow & Metabolism,2008,28(2):395−401.
|
[15] |
ARNAUD M J. Pharmacokinetics and metabolism of natural methylxanthines in animal and man[J]. Handbook of Experimental Pharmacology,2011(200):33−91.
|
[16] |
HUIHUI K, P J P, ANDREA K, et al. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor[J]. The Biochemical Journal,2008,414(3):441−452. doi: 10.1042/BJ20080489
|
[17] |
KOSHIRO Y, ZHENG X, WANG M, et al. Changes in content and biosynthetic activity of caffeine and trigonelline during growth and ripening of Coffea arabica and Coffea canephora fruits[J]. Plant Science,2006,171(2):242−250. doi: 10.1016/j.plantsci.2006.03.017
|
[18] |
ZHENG X, MATSUI A, ASHIHARA H. Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings[J]. Phytochemistry,2008,69(2):390−395. doi: 10.1016/j.phytochem.2007.08.008
|
[19] |
YOSHINARI O, SATO H, IGARASHI K. Anti-diabetic effects of pumpkin and its components, trigonelline and nicotinic acid, on Goto-Kakizaki rats[J]. Bioscience, Biotechnology, and Biochemistry,2009,73(5):1033−1041. doi: 10.1271/bbb.80805
|
[20] |
WANG H, ZHANG H, CAO F M, et al. Protection of insulin-like growth factor 1 on experimental peripheral neuropathy in diabetic mice[J]. Molecular Medicine Reports,2018,18(5):4577−4586.
|
[21] |
LIU L, DU X H, ZHANG Z, et al. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice[J]. European Journal of Pharmacology,2018,836:115−121. doi: 10.1016/j.ejphar.2018.08.025
|
[22] |
SHARMA L, LONE N A, KNOTT R M, et al. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy[J]. Food and Chemical Toxicology,2018,121:283−296. doi: 10.1016/j.fct.2018.09.011
|
[23] |
ILAVENIL S, KIM D H, JEONG Y, et al. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells[J]. Asian Pacific Journal of Tropical Medicine,2015,8(4):263−268. doi: 10.1016/S1995-7645(14)60328-X
|
[24] |
邵金良, 刘兴勇, 杨东顺, 等. 咖啡及咖啡制品中葫芦巴碱、绿原酸和咖啡因含量比较分析[J]. 山西农业科学,2016,44(2):158−163. [SHAO Jinliang, LIU Xingyong, YANG Dongshun, et al. Comparative analysis on trigonelline, chlorogenic acid and caffeine content in coffee and its product[J]. Journal of Shanxi Agricultural Sciences,2016,44(2):158−163.] doi: 10.3969/j.issn.1002-2481.2016.02.07
SHAO Jinliang, LIU Xingyong, YANG Dongshun, et al. Comparative analysis on trigonelline, chlorogenic acid and caffeine content in coffee and its product[J]. Journal of Shanxi Agricultural Sciences, 2016, 44(2): 158−163. doi: 10.3969/j.issn.1002-2481.2016.02.07
|
[25] |
LEE T, KANG I, KIM B, et al. Experimental pretreatment with chlorogenic acid prevents transient ischemia-induced cognitive decline and neuronal damage in the hippocampus through anti-oxidative and anti-inflammatory effects[J]. Molecules,2020,25(16):3578. doi: 10.3390/molecules25163578
|
[26] |
ANGELONI G, GUERRINI L, MASELLA P, et al. What kind of coffee do you drink? An investigation on effects of eight different extraction methods[J]. Food Research International,2019,116:1327−1335. doi: 10.1016/j.foodres.2018.10.022
|
[27] |
严颖, 赵慧, 邹立思, 等. 基于LC-Triple TOF MS/MS技术分析杜仲不同药用部位化学成分差异[J]. 质谱学报,2018,39(1):101−111. [YAN Ying, ZHAO Hui, ZHOU Lisi, et al. Difference of chemical constituents in different medicinal parts of eucommia ulmoides by LC-Triple TOF MS/MS[J]. Journal of Chinese Mass Spectrometry Society,2018,39(1):101−111.] doi: 10.7538/zpxb.2017.0032
YAN Ying, ZHAO Hui, ZHOU Lisi, et al. Difference of chemical constituents in different medicinal parts of eucommia ulmoides by LC-Triple TOF MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(1): 101−111. doi: 10.7538/zpxb.2017.0032
|
[28] |
BUŁDAK R J , TOMASZ H, MARCIN O, et al. The impact of coffee and its selected bioactive compounds on the development and progression of colorectal cancer in vivo and in vitro[J]. Molecules (Basel, Switzerland),2018,23(12):3309. doi: 10.3390/molecules23123309
|
[29] |
SANTANA-GÁLVEZ J, CISNEROS-ZEVALLOS L, JACOBO-VELÁZQUEZ D A. Chlorogenic acid:Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome[J]. Molecules,2017,22(3):358. doi: 10.3390/molecules22030358
|
[30] |
WENWU L, JINGDA L, XUEMEI Z, et al. Current advances in naturally occurring caffeoylquinic acids:Structure, bioactivity and synthesis[J]. Journal of Agricultural and Food Chemistry,2020,68(39):10489−10516. doi: 10.1021/acs.jafc.0c03804
|
[31] |
LU H J, TIAN Z M, CUI Y Y, et al. Chlorogenic acid:A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(6):3130−3158. doi: 10.1111/1541-4337.12620
|
[32] |
LI L, SU C, CHEN X, et al. Chlorogenic acids in cardiovascular disease:A review of Dietary consumption, pharmacology, and pharmacokinetics[J]. J Agric Food Chem,2020,68(24):6464−6484. doi: 10.1021/acs.jafc.0c01554
|
[33] |
FADILA A K, J M F, EMILIA F, et al. Aquaculture and its by-products as a source of nutrients and bioactive compounds[J]. Advances in Food and Nutrition Research,2020,92:31−33.
|
[34] |
PERRONE D, FARAH A, DONANGELO C M, et al. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars[J]. Food Chemistry,2007,106(2):859−867.
|
[35] |
CHANYARIN SOMPORN A K P T. Effects of roasting degree on radical scavenging activity, phenolics and volatile compounds of Arabica coffee beans (Coffea arabica L. cv. Catimor)[J]. International Journal of Food Science and Technology,2011,46(11):2287−2296. doi: 10.1111/j.1365-2621.2011.02748.x
|
[36] |
TELLES S C, CORRÊA S M, FONSECA M A P D, et al. Thermal stability and sensory evaluation of a bioactive extract from roasted coffee (Coffea arabica) beans added at increasing concentrations to conventional bread[J]. Journal of Food Processing and Preservation,2021,45(11):e15955.
|
[37] |
CASTRO M F V, ASSMANN C E, STEFANELLO N, et al. Caffeic acid attenuates neuroinflammation and cognitive impairment in streptozotocin-induced diabetic rats:Pivotal role of the cholinergic and purinergic signaling pathways[J]. The Journal of Nutritional Biochemistry,2023,115:109280. doi: 10.1016/j.jnutbio.2023.109280
|
[38] |
MATEJCZYK M, ŚWISŁOCKA R, GOLONKO A, et al. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds[J]. Advances in Medical Sciences,2018,63(1):14−21. doi: 10.1016/j.advms.2017.07.003
|
[39] |
KUMAR N, GOEL N. Phenolic acids:Natural versatile molecules with promising therapeutic applications[J]. Biotechnology Reports,2019,24:e370.
|
[40] |
KIM Y H, KWON T, YANG H J, et al. Gene engineering, purification, crystallization and preliminary X-ray diffraction of cytochrome P450 p-coumarate-3-hydroxylase (C3H), the Arabidopsis membrane protein[J]. Protein Expression and Purification,2011,79(1):149−155. doi: 10.1016/j.pep.2011.04.013
|
[41] |
BERNER M, KRUG D, BIHLMAIER C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis[J]. Journal of Bacteriology,2006,188(7):2666−2673. doi: 10.1128/JB.188.7.2666-2673.2006
|
[42] |
CHOI O, WU C, KANG S Y, et al. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology,2011,38(10):1657−1665. doi: 10.1007/s10295-011-0954-3
|
[43] |
LIN Y, YAN Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex[J]. Microbial Cell Factories,2012,11:1−9. doi: 10.1186/1475-2859-11-1
|
[44] |
袁豆豆, 周秀琪, 庞雪晴, 等. 代谢工程改造酿酒酵母发酵生产咖啡酸[J]. 食品与发酵工业,2023,50(19):17−24. [YUAN Doudou, ZHOU Xiuqi, PANG Xueqing, et al. Metabolic engineering ofSaccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries,2023,50(19):17−24.]
YUAN Doudou, ZHOU Xiuqi, PANG Xueqing, et al. Metabolic engineering of Saccharomyces cerevisiae for biosynthesis of caffeic acid[J]. Food and Fermentation Industries, 2023, 50(19): 17−24.
|
[45] |
SILVA M, BRAND A, NOVAES F, et al. Cafestol, kahweol and their acylated derivatives:Antitumor potential, pharmacokinetics, and chemopreventive profile[J]. Food Reviews International,2023,39(9):7048−7080. doi: 10.1080/87559129.2022.2141776
|
[46] |
KITZBERGER C S G, dos SANTOS SCHOLZ M B, de TOLEDO BENASSI M. Bioactive compounds content in roasted coffee from traditional and modern Coffea arabica cultivars grown under the same edapho-climatic conditions[J]. Food Research International,2014,61:61−66. doi: 10.1016/j.foodres.2014.04.031
|
[47] |
LAUKALEJA I, KRUMA Z. Influence of the roasting process on bioactive compounds and aroma profile in specialty coffee:A review[C]//Conference: 13th Baltic Conference on Food Science and Technology "FOOD. NUTRITION. WELL-BEING", 2019:1−12.
|
[48] |
VIGNOLI J A, VIEGAS M C, BASSOLI D G, et al. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees[J]. Food Research International,2014,61:279−285. doi: 10.1016/j.foodres.2013.06.006
|
[49] |
SRIDEVI V, GIRIDHAR P, RAVISHANKAR G A. Evaluation of roasting and brewing effect on antinutritional diterpenes-cafestol and kahweol in coffee[J]. Global Journal of Medical Research,2011,11(5):1−7.
|
[50] |
NIGRA A D, de ALMEIDA B G D, PRUCCA C G, et al. Antitumor effects of freeze-dried Robusta coffee (Coffea canephora) extracts on breast cancer cell lines[J]. Oxidative Medicine and Cellular Longevity,2021,2021:1−16.
|
[51] |
de SOUZA L D S, HORTA I P C, de SOUZA ROSA L, et al. Effect of the roasting levels of Coffea arabica L. extracts on their potential antioxidant capacity and antiproliferative activity in human prostate cancer cells[J]. RSC Advances,2020,10(50):30115−30126. doi: 10.1039/D0RA01179G
|
[52] |
FARAH A. Coffee constituents[J]. Coffee:Emerging Health Effects and Disease Prevention,2012,1:22−58.
|
[53] |
URGERT R, van der WEG G, KOSMEIJER-SCHUIL T G, et al. Levels of the cholesterol-elevating diterpenes cafestol and kahweol in various coffee brews[J]. Journal of Agricultural and Food Chemistry,1995,43(8):2167−2172. doi: 10.1021/jf00056a039
|
[54] |
RENDÓN M Y, DOS SANTOS SCHOLZ M B, BRAGAGNOLO N. Physical characteristics of the paper filter and low cafestol content filter coffee brews[J]. Food Research International,2018,108:280−285. doi: 10.1016/j.foodres.2018.03.041
|
[55] |
IRIONDO-DEHOND A, CORNEJO F S, FERNANDEZ-GOMEZ B, et al. Bioaccesibility, metabolism, and excretion of lipids composing spent coffee grounds[J]. Nutrients,2019,11(6):1411. doi: 10.3390/nu11061411
|
[56] |
ALCUBIERRE N, GRANADO-CASAS M, BOGDANOV P, et al. Caffeine and the risk of diabetic retinopathy in type 2 diabetes mellitus:Findings from clinical and experimental studies[J]. Nutrients,2023,15(5):1169. doi: 10.3390/nu15051169
|
[57] |
HORRIGAN L A, KELLY J P, CONNOR T J. Caffeine suppresses TNF-alpha production via activation of the cyclic AMP/protein kinase a pathway[J]. Int Immunopharmacol,2004,4(10-11):1409−1417. doi: 10.1016/j.intimp.2004.06.005
|
[58] |
喻敏. 电针对术后肠麻痹患者炎症反应及胃肠激素分泌的影响[D]. 南昌: 江西中医药大学, 2022. [YU Min. The effect of electroacupuncture onpostoperative ileus and its influenceon inflammation and gastrointestinalhormones secretion[D]. Nanchang: Jiangxi University of Chinese Medicine, 2022.]
YU Min. The effect of electroacupuncture onpostoperative ileus and its influenceon inflammation and gastrointestinalhormones secretion[D]. Nanchang: Jiangxi University of Chinese Medicine, 2022.
|
[59] |
RODAK K, BEBEN D, BIRSKA M, et al. Evaluating the neuroprotective potential of caffeinated coffee in the context of aluminum-induced neurotoxicity:Insights from a PC12 cell culture model[J]. Antioxidants (Basel),2024,13(3):342. doi: 10.3390/antiox13030342
|
[60] |
王睿, 吴叶琪. 补充替代疗法治疗轮班工作睡眠障碍的研究现状[J]. 中国现代医生,2022,60(9):193−196. [WANG Rui, WU Yeqi. Research status of complementary and alternative therapy in treatment of shift work sleep disorders[J]. China Modern Doctor,2022,60(9):193−196.] doi: 10.3969/j.issn.1673-9701.2022.9.zwkjzlml-yyws202209047
WANG Rui, WU Yeqi. Research status of complementary and alternative therapy in treatment of shift work sleep disorders[J]. China Modern Doctor, 2022, 60(9): 193−196. doi: 10.3969/j.issn.1673-9701.2022.9.zwkjzlml-yyws202209047
|
[61] |
曾琬婷, 周丽婷, 贾茹, 等. 关白附炮制前后对缺血性中风沙鼠药效学和代谢组学的影响[J]. 辽宁中医药大学学报,2024,26(4):55−63. [ZENG Wanting, ZHOU Liting, JIA Ru, et al. Effect of Guanbaifu (Radix Aconiti Coreani) before and after processing on the metabolomics of gerbils with ischemic stroke[J]. Journal of Liaoning University of Traditional Chinese Medicine,2024,26(4):55−63.]
ZENG Wanting, ZHOU Liting, JIA Ru, et al. Effect of Guanbaifu (Radix Aconiti Coreani) before and after processing on the metabolomics of gerbils with ischemic stroke[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2024, 26(4): 55−63.
|
[62] |
胡岳云, 谢忠稳, 袁静静, 等. 茯苓配方浸膏对高脂饮食小鼠肥胖及脂质沉积的影响[J]. 安徽农业大学学报,2023,50(2):349−355. [HU Yueyun, XIE Zhongwen, YUAN Jingjing, et al. Effects of poria cocos wolf formula extracts on obesity and lipidosis in high-fat diet-induced mice[J]. Journal of Anhui Agricultural University,2023,50(2):349−355.]
HU Yueyun, XIE Zhongwen, YUAN Jingjing, et al. Effects of poria cocos wolf formula extracts on obesity and lipidosis in high-fat diet-induced mice[J]. Journal of Anhui Agricultural University, 2023, 50(2): 349−355.
|
[63] |
HEITMAN E, INGRAM D K. Cognitive and neuroprotective effects of chlorogenic acid[J]. Nutr Neurosci,2017,20(1):32−39. doi: 10.1179/1476830514Y.0000000146
|
[64] |
NAVEED M, HEJAZI V, ABBAS M, et al. Chlorogenic acid (CGA):A pharmacological review and call for further research[J]. Biomed Pharmacother,2018,97:67−74. doi: 10.1016/j.biopha.2017.10.064
|
[65] |
CASTALDO L, TORIELLO M, SESSA R, et al. Antioxidant and anti-Inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion[J]. Nutrients,2021,13(12):4368. doi: 10.3390/nu13124368
|
[66] |
QIU Z, WANG K, JIANG C, et al. Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway[J]. Chem Biol Interact,2020,317:108946. doi: 10.1016/j.cbi.2020.108946
|
[67] |
MOHAMADI N, SHARIFIFAR F, POURNAMDARI M, et al. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid[J]. J Diet Suppl,2018,15(2):207−222. doi: 10.1080/19390211.2017.1329244
|
[68] |
LI Y, JIA X, TANG N, et al. Melanoidins, extracted from Chinese traditional vinegar powder, inhibit alcohol-induced inflammation and oxidative stress in macrophages via activation of SIRT1 and SIRT3[J]. Food Funct,2021,12(17):8120−8129. doi: 10.1039/D1FO00978H
|
[69] |
CHAVEZ-GUTIERREZ L, SZARUGA M. Mechanisms of neurodegeneration-Insights from familial Alzheimer's disease[J]. Semin Cell Dev Biol,2020,105:75−85. doi: 10.1016/j.semcdb.2020.03.005
|
[70] |
沈晓静, 字成庭, 辉绍良, 等. 咖啡化学成分及其生物活性研究进展[J]. 热带亚热带植物学报,2021,29(1):112−122. [SHEN Xiaojing, ZI Chengting, HUI Shaoliang, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany,2021,29(1):112−122.] doi: 10.11926/jtsb.4249
SHEN Xiaojing, ZI Chengting, HUI Shaoliang, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany, 2021, 29(1): 112−122. doi: 10.11926/jtsb.4249
|
[71] |
TAVARES C, SAKATA R K. Caffeine in the treatment of pain[J]. Brazilian Journal of Anesthesiology,2012,62(3):387−401. doi: 10.1016/S0034-7094(12)70139-3
|
[72] |
JIANQING L, ZHOUREN G, GUICAI Y. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells[J]. Ultrasonics Sonochemistry,2021,76:105661. doi: 10.1016/j.ultsonch.2021.105661
|
[73] |
CORETA-GOMES F M, LOPES G R, PASSOS C P, et al. In vitro hypocholesterolemic effect of coffee compounds[J]. Nutrients,2020,12(2):437. doi: 10.3390/nu12020437
|
[74] |
GAN L, COOKSON M R, PETRUCELLI L, et al. Converging pathways in neurodegeneration, from genetics to mechanisms[J]. Nat Neurosci,2018,21(10):1300−1309. doi: 10.1038/s41593-018-0237-7
|
[75] |
WANG C, ZHOU C, GUO T, et al. Current coffee consumption is associated with decreased striatal dopamine transporter availability in Parkinson's disease patients and healthy controls[J]. BMC Med,2023,21(1):272. doi: 10.1186/s12916-023-02994-5
|
[76] |
ZHAO Y, LAI Y, KONIJNENBERG H, et al. Association of coffee consumption and prediagnostic caffeine metabolites with incident parkinson disease in a population-based cohort[J]. Neurology,2024,102(8):e209201. doi: 10.1212/WNL.0000000000209201
|
[77] |
LEE K W, IM J Y, WOO J M, et al. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease[J]. Neurotherapeutics,2013,10(1):143−153. doi: 10.1007/s13311-012-0165-2
|
[78] |
GAO X, ZHANG B, ZHENG Y, et al. Neuroprotective effect of chlorogenic acid on Parkinson's disease like symptoms through boosting the autophagy in zebrafish[J]. Eur J Pharmacol,2023,956:175950. doi: 10.1016/j.ejphar.2023.175950
|
[79] |
SERRANO-POZO A, FROSCH M P, MASLIAH E, et al. Neuropathological alterations in Alzheimer disease[J]. Cold Spring Harb Perspect Med,2011,1(1):a6189. doi: 10.1101/cshperspect.a006189
|
[80] |
MALAFAIA D, ALBUQUERQUE H, SILVA A. Amyloid-beta and tau aggregation dual-inhibitors:A synthetic and structure-activity relationship focused review[J]. Eur J Med Chem,2021,214:113209. doi: 10.1016/j.ejmech.2021.113209
|
[81] |
MIRANDA A M, GOULART A C, BENSENOR I M, et al. Coffee consumption and risk of hypertension:A prospective analysis in the cohort study[J]. Clin Nutr,2021,40(2):542−549. doi: 10.1016/j.clnu.2020.05.052
|
[82] |
STEFANELLO N, SPANEVELLO R M, PASSAMONTI S, et al. Coffee, caffeine, chlorogenic acid, and the purinergic system[J]. Food Chem Toxicol,2019,123:298−313. doi: 10.1016/j.fct.2018.10.005
|
[83] |
王子晴, 姬辛娜, 陈倩. 癫痫体液生物标志物的研究进展[J]. 中国医学前沿杂志(电子版),2023,15(11):97−102. [WANG Ziqing, JI Xinna, CHEN Qian. Advances in the study of fluid biomarkers of epilepsy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version),2023,15(11):97−102.]
WANG Ziqing, JI Xinna, CHEN Qian. Advances in the study of fluid biomarkers of epilepsy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2023, 15(11): 97−102.
|
[84] |
HENSHALL D C. Apoptosis signalling pathways in seizure-induced neuronal death and epilepsy[J]. Biochem Soc Trans,2007,35(Pt2):421−423.
|
[85] |
de LANEROLLE N C, LEE T S. New facets of the neuropathology and molecular profile of human temporal lobe epilepsy[J]. Epilepsy Behav,2005,7(2):190−203. doi: 10.1016/j.yebeh.2005.06.003
|
[86] |
van VLIET E A, DA C A S, REDEKER S, et al. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy[J]. Brain,2007,130(Pt2):521−534.
|
[87] |
CIARAMELLI C, PALMIOLI A, DE LUIGI A, et al. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts[J]. Food Chem,2018,252:171−180. doi: 10.1016/j.foodchem.2018.01.075
|
[88] |
ALCAZAR M A, KAMIMURA N, SOUMYANATH A, et al. Caffeoylquinic acids:Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity[J]. Plant J,2021,107(5):1299−1319. doi: 10.1111/tpj.15390
|
[89] |
BOETTCHER M I, BOLT H M, DREXLER H, et al. Excretion of mercapturic acids of acrylamide and glycidamide in human urine after single oral administration of deuterium-labelled acrylamide[J]. Arch Toxicol,2006,80(2):55−61. doi: 10.1007/s00204-005-0011-y
|
[90] |
COLELLA M, ZINNI M, PANSIOT J, et al. Modulation of microglial activation by adenosine A2a receptor in animal models of perinatal brain injury[J]. Frontiers in Neurology,2018,9:605. doi: 10.3389/fneur.2018.00605
|
[91] |
LIANG N, KITTS D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions[J]. Nutrients,2015,8(1):16. doi: 10.3390/nu8010016
|
[92] |
SINGH C P, KUMAR S N, PUNITA S, et al. Differential effects of chlorogenic acid on various immunological parameters relevant to rheumatoid arthritis[J]. Phytotherapy Research:PTR,2012,26(8):1156−1165. doi: 10.1002/ptr.3684
|
[93] |
NINGJIAN L, D K D. Chlorogenic acid (CGA) isomers alleviate interleukin 8 (IL-8) production in Caco-2 cells by decreasing phosphorylation of p38 and increasing cell integrity[J]. International Journal of Molecular Sciences,2018,19(12):3873. doi: 10.3390/ijms19123873
|
[94] |
CHEN Jiali, LUO Yuheng, LI Yan, et al. Chlorogenic acid attenuates oxidative stress-induced intestinal epithelium injury by co-regulating the PI3K/Akt and IκBα/NF-κB signaling[J]. Antioxidants,2021,10(12):1915. doi: 10.3390/antiox10121915
|
[95] |
KWAK S C, LEE C, KIM J, et al. Chlorogenic acid inhibits osteoclast differentiation and bone resorption by down-regulation of receptor activator of nuclear factor Kappa-B ligand-induced nuclear factor of activated T cells c1 expression[J]. Biological and Pharmaceutical Bulletin,2013,36(11):1779−1786. doi: 10.1248/bpb.b13-00430
|
[96] |
PASSOS C P, COSTA R M, FERREIRA S S, et al. Role of coffee caffeine and chlorogenic acids adsorption to polysaccharides with impact on brew immunomodulation effects[J]. Foods,2021,10(2):378. doi: 10.3390/foods10020378
|
[97] |
MACHADO F, COIMBRA M A, CASTILLO M, et al. Mechanisms of action of coffee bioactive compounds - a key to unveil the coffee paradox[J]. Crit Rev Food Sci Nutr, 2023:1-23.
|
[98] |
REN Y, WANG C, XU J, et al. Cafestol and kahweol:A review on their bioactivities and pharmacological properties[J]. Int J Mol Sci,2019,20(17):4238. doi: 10.3390/ijms20174238
|
[99] |
FARAH A. Coffee :production, quality and chemistry[M]. London: Royal Society of Chemistry, 2019.
|
[100] |
MOREIRA A S, NUNES F M, DOMINGUES M R, et al. Coffee melanoidins:Structures, mechanisms of formation and potential health impacts[J]. Food Funct,2012,3(9):903−915. doi: 10.1039/c2fo30048f
|
[101] |
FOGLIANO V, MORALES F J. Estimation of dietary intake of melanoidins from coffee and bread[J]. Food Funct,2011,2(2):117−123. doi: 10.1039/c0fo00156b
|
[102] |
GNIECHWITZ D, REICHARDT N, BLAUT M, et al. Dietary fiber from coffee beverage:Degradation by human fecal microbiota[J]. J Agric Food Chem,2007,55(17):6989−6996. doi: 10.1021/jf070646b
|
[103] |
DIAZ-RUBIO M E, SAURA-CALIXTO F. Beverages have an appreciable contribution to the intake of soluble dietary fibre:A study in the Spanish diet[J]. Int J Food Sci Nutr,2011,62(7):715−718. doi: 10.3109/09637486.2011.579950
|
[104] |
REN S, WU M, GUO J, et al. Sterilization of polydimethylsiloxane surface with Chinese herb extract:A new antibiotic mechanism of chlorogenic acid[J]. Scientific Reports,2015,5(1):10464. doi: 10.1038/srep10464
|
[105] |
SU M, LIU F, LUO Z, et al. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa[J]. Foodborne Pathogens and Disease,2019,16(12):823−830. doi: 10.1089/fpd.2019.2678
|
[106] |
RAJASEKHARAN S K, RAMESH S, SATISH A S, et al. Antibiofilm and anti-β-lactamase activities of burdock root extract and chlorogenic acid against Klebsiella pneumoniae[J]. Journal of Microbiology and Biotechnology,2017,27(3):542−551. doi: 10.4014/jmb.1609.09043
|
[107] |
WANG L, ZHANG Y, LIU Y, et al. Effects of chlorogenic acid on antimicrobial, antivirulence, and anti-quorum sensing of carbapenem-resistantKlebsiella pneumoniae[J]. Frontiers in Microbiology,2022,13:997310. doi: 10.3389/fmicb.2022.997310
|
[108] |
MIAO M, XIANG L. Pharmacological action and potential targets of chlorogenic acid[J]. Advances in Pharmacology,2020,87:71−88.
|
[109] |
DAN B, DAI H, ZHOU D, et al. Relationship between drug resistance characteristics and biofilm formation inKlebsiella pneumoniae strains[J]. Infection and Drug Resistance, 2023:985-998.
|
[110] |
LOU Z, WANG H, ZHU S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. Journal of Food Science,2011,76(6):M398−M403.
|
[111] |
ZHANG G, YANG Y, MEMON F U, et al. A natural antimicrobial agent:Analysis of antibacterial effect and mechanism of compound phenolic acid on Escherichia coli based on tandem mass tag proteomics[J]. Frontiers in Microbiology,2021,12:738896. doi: 10.3389/fmicb.2021.738896
|
[112] |
LEE B, LEE D G. Depletion of reactive oxygen species induced by chlorogenic acid triggers apoptosis-like death in Escherichia coli[J]. Free Radical Research,2018,52(5):605−615. doi: 10.1080/10715762.2018.1456658
|
[113] |
COUTEAU D, MCCARTNEY A L, GIBSON G R, et al. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid[J]. J Appl Microbiol,2001,90(6):873−881. doi: 10.1046/j.1365-2672.2001.01316.x
|
[114] |
MILLS C E, TZOUNIS X, ORUNA-CONCHA M J, et al. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth[J]. Br J Nutr,2015,113(8):1220−1227. doi: 10.1017/S0007114514003948
|
[115] |
GROSSO G, MICEK A, GODOS J, et al. Long-term coffee consumption is associated with decreased incidence of new-onset hypertension:A dose-response meta-analysis[J]. Nutrients,2017,9(8):890. doi: 10.3390/nu9080890
|
[116] |
KLEBER S A, MORESCO K S, MAUTONE G H, et al. Guarana (Paullinia cupana Mart.) alters gut microbiota and modulates redox status, partially via caffeine in Wistar rats[J]. Phytother Res,2018,32(12):2466−2474. doi: 10.1002/ptr.6185
|
[117] |
POON M, FARBER D L. The whole body as the system in systems immunology[J]. iScience,2020,23(9):101509. doi: 10.1016/j.isci.2020.101509
|
[118] |
NOSALOVA G, PRISENZNAKOVA L, PAULOVICOVA E, et al. Antitussive and immunomodulating activities of instant coffee arabinogalactan-protein[J]. Int J Biol Macromol,2011,49(4):493−497. doi: 10.1016/j.ijbiomac.2011.06.004
|
[119] |
ACIKALIN B, SANLIER N. Coffee and its effects on the immune system[J]. Trends in Food Science & Technology,2021,114:625−632.
|
[120] |
AKASH M S, REHMAN K, CHEN S. Effects of coffee on type 2 diabetes mellitus[J]. Nutrition,2014,30(7−8):755−763. doi: 10.1016/j.nut.2013.11.020
|
[121] |
CARLSTROM M, LARSSON S C. Coffee consumption and reduced risk of developing type 2 diabetes:A systematic review with meta-analysis[J]. Nutr Rev,2018,76(6):395−417. doi: 10.1093/nutrit/nuy014
|
[122] |
韩亚如. 二咖啡酰奎宁酸通过PI3K/Akt/HIF-1α信号通路减轻氧化应激所导致的H9c2心肌细胞损伤[D]. 呼和浩特:内蒙古医科大学, 2023. [HAN Yaru. Dicaffeoylquinic acids alleviates oxidative stress injury inH9c2 cardiomyocytes by activating PI3K/Akt/HIF-1ɑ signalling[D]. Hohhot:Inner Mongolia Medical College, 2023.]
HAN Yaru. Dicaffeoylquinic acids alleviates oxidative stress injury inH9c2 cardiomyocytes by activating PI3K/Akt/HIF-1ɑ signalling[D]. Hohhot: Inner Mongolia Medical College, 2023.
|
[123] |
World Health Organization. Cardiovascular diseases (CVDs)[EB/OL]. [2024-04-19]. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
|
[124] |
YANG J, YUAN Y, GU J, et al. Drug synthesis and analysis of an acetylcholinesterase inhibitor:A comprehensive medicinal chemistry experience for undergraduates[J]. Journal of Chemical Education,2021,98(3):991−995. doi: 10.1021/acs.jchemed.0c01223
|