Citation: | ZHAO Xiaopeng, DONG Dan, TAN Boxuan, et al. Mechanism of Litchi Semen Extract in Preventing Exercise-induced Muscle Damage Based on Network Pharmacology and in Vivo and in Vitro Experiments[J]. Science and Technology of Food Industry, 2025, 46(10): 371−382. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060142. |
[1] |
CABALLERO-GARCÍA A, NORIEGA-GONZÁLEZ D C, ROCHE E, et al. Effects of l-carnitine intake on exercise-induced muscle damage and oxidative stress:A narrative scoping review[J]. Nutrients,2023,15(11):2587. doi: 10.3390/nu15112587
|
[2] |
OWENS D J, TWIST C, COBLEY J N, et al. Exercise-induced muscle damage:What is it, what causes it and what are the nutritional solutions?[J]. European Journal of Sport Science,2019,19(1):71−85. doi: 10.1080/17461391.2018.1505957
|
[3] |
雷尚文, 元宝华, 刘学睿, 等. 中医药疗法治疗运动性骨骼肌损伤作用机制的研究进展[J]. 中医正骨,2024,36(1):57−62,68. [LEI S W, YUAN B H, LIU X R, et al. Research progress on the mechanism of traditional chinese medicine therapy in the treatment of exercise-induced skeletal muscle injury[J]. Chinese Medicine Zhenggu,2024,36(1):57−62,68.] doi: 10.3969/j.issn.1001-6015.2024.01.010
LEI S W, YUAN B H, LIU X R, et al. Research progress on the mechanism of traditional chinese medicine therapy in the treatment of exercise-induced skeletal muscle injury[J]. Chinese Medicine Zhenggu, 2024, 36(1): 57−62,68. doi: 10.3969/j.issn.1001-6015.2024.01.010
|
[4] |
TORRES R, RIBEIRO F, ALBERTO DUARTE J, et al. Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage:Systematic review and meta-analysis [J]. Physical Therapy in Sport :Official Journal of the Association of Chartered Physiotherapists in Sports Medicine, 2012, 13(2):101-114.
|
[5] |
BAZZUCCHI I, PATRIZIO F, CECI R, et al. The effects of quercetin supplementation on eccentric exercise-induced muscle damage[J]. Nutrients,2019,11(1):205. doi: 10.3390/nu11010205
|
[6] |
CHEN H Y, CHEN Y C, TUNG K, et al. Effects of caffeine and sex on muscle performance and delayed-onset muscle soreness after exercise-induced muscle damage:A double-blind randomized trial[J]. Journal of Applied Physiology, 2019, 127(3):798-805.
|
[7] |
WHITE S H, WARREN L K. Submaximal exercise training, more than dietary selenium supplementation, improves antioxidant status and ameliorates exercise-induced oxidative damage to skeletal muscle in young equine athletes[J]. Journal of Animal Science,2017,95(2):657-670. doi: 10.1093/jas/skaa065
|
[8] |
MURPHY R M, DUTKA T L, HORVATH D, et al. Ca2+-dependent proteolysis of junctophilin-1 and junctophilin-2 in skeletal and cardiac muscle[J]. The Journal of Physiology,2013,591(3):719−729. doi: 10.1113/jphysiol.2012.243279
|
[9] |
国春鼎, 杨军霞, 李鹏程, 等. 萝卜硫素通过抑制pink1/parkin信号通路介导的线粒体自噬减轻力竭运动诱导的骨骼肌损伤和疲劳[J]. 中国食品卫生杂志,2022,34(6):1158−1165. [GUO C D, YANG J X, LI P C, et al. Sulforaphane Alleviates exhaustive exercise-induced skeletal muscle injury and fatigue by inhibiting mitophagy mediated by PINK1/Parkin signaling pathway[J]. China Journal of Food Hygiene,2022,34(6):1158−1165.]
GUO C D, YANG J X, LI P C, et al. Sulforaphane Alleviates exhaustive exercise-induced skeletal muscle injury and fatigue by inhibiting mitophagy mediated by PINK1/Parkin signaling pathway[J]. China Journal of Food Hygiene, 2022, 34(6): 1158−1165.
|
[10] |
RA S G, MIYAZAKI T, KOJIMA R, et al. Effect of bcaa supplement timing on exercise-induced muscle soreness and damage:A pilot placebo-controlled double-blind study[J]. The Journal of Sports Medicine and Physical Fitness,2018,58(11):1582−1591.
|
[11] |
FEDEWA M V, SPENCER S O, WILLIAMS T D, et al. Effect of branched-chain amino acid supplementation on muscle soreness following exercise:A meta-analysis[J]. International Journal for Vitamin and Nutrition Research,2019,89(5−6):348−356. doi: 10.1024/0300-9831/a000543
|
[12] |
MS S A B, WALDMAN PH D H, KRINGS PH D B, et al. Effect of curcumin supplementation on exercise-induced oxidative stress, inflammation, muscle damage, and muscle soreness[J]. Journal of Dietary Supplements,2020,17(4):401−414. doi: 10.1080/19390211.2019.1604604
|
[13] |
DA SILVA W, MACHADO Á S, SOUZA M A, et al. Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage[J]. Physiology & Behavior,2018,194:77−82.
|
[14] |
MAN S L, MA J, YAO J W, et al. Systemic perturbations of key metabolites in type 2 diabetic rats treated by polyphenol extracts from litchi chinensis seeds[J]. Journal of Agricultural and Food Chemistry,2017,65(35):7698−7704. doi: 10.1021/acs.jafc.7b02206
|
[15] |
PAN M H, LI M Y, TSAI M L, et al. A mixture of citrus polymethoxyflavones, green tea polyphenols and lychee extracts attenuates adipogenesis in 3t3-l1 adipocytes and obesity-induced adipose inflammation in mice[J]. Food & Function,2019,10(12):7667−7677.
|
[16] |
LEE W Y, LEE C Y, KIM Y S, et al. The methodological trends of traditional herbal medicine employing network pharmacology[J]. Biomolecules,2019,9(8):362. doi: 10.3390/biom9080362
|
[17] |
LI S, ZHANG B. Traditional chinese medicine network pharmacology:Theory, methodology and application[J]. Chinese Journal of Natural Medicines,2013,11(2):110−120. doi: 10.1016/S1875-5364(13)60037-0
|
[18] |
YAO Y, LIU T H, YIN L J, et al. Polyphenol-rich extract from litchi chinensis seeds alleviates hypertension-induced renal damage in rats[J]. Journal of Agricultural and Food Chemistry,2021,69(7):2138−2148. doi: 10.1021/acs.jafc.0c07046
|
[19] |
CHANG M, ZHU D, CHEN Y J, et al. Total flavonoids of litchi seed attenuate prostate cancer progression via inhibiting akt/mtor and NF-KB signaling pathways[J]. Frontiers in Pharmacology,2021,12:758219. doi: 10.3389/fphar.2021.758219
|
[20] |
KIM Y A, OH S H, LEE G H, et al. Platycodon grandiflorum-derived saponin attenuates the eccentric exercise-induced muscle damage[J]. Food and Chemical Toxicology, 2018, 112:150-156.
|
[21] |
XIA Z, CHOLEWA J, ZHAO Y, et al. Hypertrophy-promoting effects of leucine supplementation and moderate intensity aerobic exercise in pre-senescent mice[J]. Nutrients,2016,8(5):246. doi: 10.3390/nu8050246
|
[22] |
RU J L, LI P, WANG J N, et al. Tcmsp:A database of systems pharmacology for drug discovery from herbal medicines[J]. Journal of Cheminformatics,2014,6:13. doi: 10.1186/1758-2946-6-13
|
[23] |
XIANG J Y, CHI Y Y, HAN J X, et al. Litchi chinensis seed prevents obesity and modulates the gut microbiota and mycobiota compositions in high-fat diet-induced obese zebrafish[J]. Food & Function,2022,13(5):2832−2845.
|
[24] |
CHUKWUMA C I, IZU G O, CHUKWUMA M S, et al. A review on the medicinal potential, toxicology, and phytochemistry of litchi fruit peel and seed[J]. Journal of Food Biochemistry,2021,45(12):e13997.
|
[25] |
YAO P, GAO Y, SIMAL-GANDARA J, et al. Litchi (Litchi chinensis sonn.):A comprehensive review of phytochemistry, medicinal properties, and product development[J]. Food & Function,2021,12(20):9527−9548.
|
[26] |
CAO S, HAN Y, LI Q, et al. Mapping pharmacological network of multi-targeting litchi ingredients in cancer therapeutics[J]. Frontiers in Pharmacology,2020,11:451. doi: 10.3389/fphar.2020.00451
|
[27] |
IBRAHIM S R, MOHAMED G A. Litchi chinensis:Medicinal uses, phytochemistry, and pharmacology[J]. Journal of Ethnopharmacology,2015,174:492−513. doi: 10.1016/j.jep.2015.08.054
|
[28] |
KIM S, CHEN J, CHENG T J, et al. Pubchem in 2021:New data content and improved web interfaces[J]. Nucleic Acids Research,2021,49(D1):D1388−D1395. doi: 10.1093/nar/gkaa971
|
[29] |
DAINA A, MICHIELIN O, ZOETE V. Swisstargetprediction:Updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research,2019,47(W1):W357−W364. doi: 10.1093/nar/gkz382
|
[30] |
WANG X, SHEN Y, WANG S, et al. Pharmmapper 2017 update:A web server for potential drug target identification with a comprehensive target pharmacophore database[J]. Nucleic Acids Research,2017,45(W1):W356−w360. doi: 10.1093/nar/gkx374
|
[31] |
MENDEZ D, GAULTON A, BENTO A P, et al. Chembl:Towards direct deposition of bioassay data[J]. Nucleic Acids Research,2019,47(D1):D930−D940. doi: 10.1093/nar/gky1075
|
[32] |
BARRETT T, WILHITE S E, LEDOUX P, et al. Ncbi geo:Archive for functional genomics data sets--update [J]. Nucleic Acids Research, 2013, 41:D991−D995.
|
[33] |
WARREN G L, SUMMAN M, GAO X, et al. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models[J]. The Journal of Physiology, 2007, 582(Pt 2):825-841.
|
[34] |
Uniprot:The universal protein knowledgebase in 2021[J]. Nucleic Acids Research, 2021, 49(D1):D480-D489.
|
[35] |
SZKLARCZYK D, GABLE A L, LYON D, et al. String v11:Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research,2019,47(D1):D607−D613. doi: 10.1093/nar/gky1131
|
[36] |
HUANG DA W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using david bioinformatics resources[J]. Nature Protocols,2009,4(1):44−57. doi: 10.1038/nprot.2008.211
|
[37] |
LUO W, BROUWER C. Pathview:An r/bioconductor package for pathway-based data integration and visualization[J]. Bioinformatics (Oxford, England),2013,29(14):1830−1.
|
[38] |
CHEN X L, LIANG D H, HUANG Z Q, et al. Anti-fatigue effect of quercetin on enhancing muscle function and antioxidant capacity[J]. Journal of Food Biochemistry,2021,45(11):e13968.
|
[39] |
SHIBUYA S C, WATANABE K, SAKURABA D, et al. Natural compounds that enhance motor function in a mouse model of muscle fatigue[J]. Biomedicines,2022,10(12):3073. doi: 10.3390/biomedicines10123073
|
[40] |
BEYFUSS K, HOOD D A. A systematic review of p53 regulation of oxidative stress in skeletal muscle[J]. Redox Report:Communications in Free Radical Research, 2018, 23(1):100−117.
|
[41] |
KUMARI R, JAT P. Mechanisms of cellular senescence:Cell cycle arrest and senescence associated secretory phenotype[J]. Frontiers in Cell and Developmental Biology,2021,9:645593. doi: 10.3389/fcell.2021.645593
|
1. |
何荣军,田淑杰,朱洲谊,刘世柱,孙培龙. 机械化学法制备硬脂酸淀粉酯的研究. 核农学报. 2025(04): 763-772 .
![]() | |
2. |
杨家添,苗雨,孙宁钊,陈渊,胡华宇. 响应面法维生素E/淀粉酯微胶囊制备工艺的优化及表征. 现代化工. 2024(05): 93-97+105 .
![]() | |
3. |
杨家添,苗雨,韦梦婷,卢广源,陈渊,胡华宇. 机械活化协同固相法制备羧甲基多孔淀粉及其在粉末酱油中的应用. 食品工业科技. 2024(12): 215-224 .
![]() | |
4. |
张灿,高玲玲,何梦影,张康逸. 淀粉脂质复合体的构建及其Pickering乳液性能表征. 粮食与油脂. 2024(06): 28-33 .
![]() |