Citation: | LIU Xiaofei, JIA Chunyan, LI Xiang, et al. Research Progress on the Effect of Modified Starch on the Quality of Rice Noodles[J]. Science and Technology of Food Industry, 2025, 46(8): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060140. |
[1] |
LI C M, YOU Y X, CHEN D G, et al. A systematic review of rice noodles:Raw material, processing method and quality improvement[J]. Trends in Food Science & Technology,2021,107(1):389−400.
|
[2] |
SEN S, CHAKRABORTY R, KALITA P. Rice-not just a staple food:A comprehensive review on its phytochemicals and therapeutic potential[J]. Trends in Food Science & Technology,2020,97:265−285.
|
[3] |
ZHANG J Y, ZHAO F F, LI C M, et al. Acceleration mechanism of the rehydration process of dried rice noodles by the porous structure[J]. Food Chemistry,2024,431:137050. doi: 10.1016/j.foodchem.2023.137050
|
[4] |
KASUNMALA I G G, NAVARATNE S B, WICKRAMASINGHE I. Effect of process modifications and binding materials on textural properties of rice noodles[J]. International Journal of Gastronomy and Food Science,2020,21:100217. doi: 10.1016/j.ijgfs.2020.100217
|
[5] |
刘心爱, 李莎艳, 侬章梅, 等. 云南蒙自过桥米线的品质测定[J]. 食品安全导刊,2023(34):104−109. [LIU X A, LI S Y, NONG Z M, et al. Quality determination of Yunnan mengzi cross-bridge rice noodles[J]. China Food Safety Magazine,2023(34):104−109.] doi: 10.3969/j.issn.1674-0270.spaqdk202334035
LIU X A, LI S Y, NONG Z M, et al. Quality determination of Yunnan mengzi cross-bridge rice noodles[J]. China Food Safety Magazine, 2023(34): 104−109. doi: 10.3969/j.issn.1674-0270.spaqdk202334035
|
[6] |
董志雄, 郑恺, 丁文平, 等. RS2型抗性淀粉对米线品质及消化特性的影响[J]. 食品科技,2023,48(6):131−138. [DONG Z X, ZHENG K, DING W P, et al. Effects of RS2 resistant starch on the quality and digestive characteristics of rice noodles[J]. Food Science and Technology,2023,48(6):131−138.]
DONG Z X, ZHENG K, DING W P, et al. Effects of RS2 resistant starch on the quality and digestive characteristics of rice noodles[J]. Food Science and Technology, 2023, 48(6): 131−138.
|
[7] |
SEUNG D. Amylose in starch:Towards an understanding of biosynthesis, structure and function[J]. New Phytol,2020,228(5):1490−1504. doi: 10.1111/nph.16858
|
[8] |
ASMEDA R, NOORLAILA A, NORZIAH M H. Relationships of damaged starch granules and particle size distribution with pasting and thermal profiles of milled MR263 rice flour[J]. Food Chemistry,2016,191:45−51. doi: 10.1016/j.foodchem.2015.05.095
|
[9] |
CHEN L, REN F, YU X P, et al. Pasting investigation, SEM observation and the possible interaction study on rice starch–pullulan combination[J]. International Journal of Biological Macromolecules,2015,73:45−48. doi: 10.1016/j.ijbiomac.2014.11.010
|
[10] |
CHANG Q, ZHENG B D, ZHANG Y, et al. A comprehensive review of the factors influencing the formation of retrograded starch[J]. Int J Biol Macromol,2021,186:163−173. doi: 10.1016/j.ijbiomac.2021.07.050
|
[11] |
胡海鹏, 张聪男, 薛薇, 等. 不同抗老化剂对鲜湿米线品质及储藏稳定性的影响[J]. 中国粮油学报,2023,38(12):30−37. [HU H P, ZHANG C N, XUE W, et al. Effects of different antiaging agents on the quality and storage stability of fresh and wet rice noodles[J]. Journal of the Chinese Cereals and Oils Association,2023,38(12):30−37.] doi: 10.3969/j.issn.1003-0174.2023.12.006
HU H P, ZHANG C N, XUE W, et al. Effects of different antiaging agents on the quality and storage stability of fresh and wet rice noodles[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(12): 30−37. doi: 10.3969/j.issn.1003-0174.2023.12.006
|
[12] |
YI C P, ZHU H, ZHANG Y, et al. The role of indica starch in the mechanism of formation of fresh rice noodles[J]. Journal of Cereal Science,2021,99:103212. doi: 10.1016/j.jcs.2021.103212
|
[13] |
LIU X, CHAO C, YU J L, et al. Mechanistic studies of starch retrogradation and its effects on starch gel properties[J]. Food Hydrocolloids,2021,120:106914. doi: 10.1016/j.foodhyd.2021.106914
|
[14] |
LI C, HU Y M. Combination of parallel and sequential digestion kinetics reveals the nature of digestive characteristics of short-term retrograded rice starches[J]. Food Hydrocolloids,2020,108:106071. doi: 10.1016/j.foodhyd.2020.106071
|
[15] |
周显青, 彭超, 张玉荣, 等. 压榨型鲜湿米粉条凝胶质构特性及食用品质影响因素[J]. 食品科学,2017,38(21):93−99. [ZHOU X Q, PENG C, ZHANG Y R, et al. Factors influencing gel texture and eating quality of pressed type fresh rice noodles[J]. Food Science,2017,38(21):93−99.] doi: 10.7506/spkx1002-6630-201721015
ZHOU X Q, PENG C, ZHANG Y R, et al. Factors influencing gel texture and eating quality of pressed type fresh rice noodles[J]. Food Science, 2017, 38(21): 93−99. doi: 10.7506/spkx1002-6630-201721015
|
[16] |
FARI M J M, RAJAPAKSA D, RANAWEERA K K D S. Quality characteristics of noodles made from selected varieties of Sri Lankan rice with different physicochemical characteristics[J]. Journal of the National Science Foundation of Sri Lanka,2011,39(1):53−60. doi: 10.4038/jnsfsr.v39i1.2923
|
[17] |
JEONG S, KIM Y, KO S, et al. Physicochemical characterization and in vitro digestibility of extruded rice noodles with different amylose contents based on rheological approaches[J]. Journal of Cereal Science,2016,71:258−263. doi: 10.1016/j.jcs.2016.09.004
|
[18] |
李琳, 陈洁, 王远辉, 等. 大米原料对鲜湿米粉品质影响[J]. 食品工业,2019,40(6):177−182. [LI L, CHEN J, WANG Y H, et al. The raw material selection of instant fresh rice noodle[J]. The Food Industry,2019,40(6):177−182.]
LI L, CHEN J, WANG Y H, et al. The raw material selection of instant fresh rice noodle[J]. The Food Industry, 2019, 40(6): 177−182.
|
[19] |
李永富, 黄思雨, 史锋, 等. 配米技术提升自热米饭淀粉抗回生效果[J]. 中国粮油学报,2020,35(3):1−7. [LI Y F, HUANG S Y, SHI F, et al. Rice blending technology improves the anti-retrogradation effect of self-heating rice starch[J]. Journal of the Chinese Cereals and Oils Association,2020,35(3):1−7.] doi: 10.3969/j.issn.1003-0174.2020.03.002
LI Y F, HUANG S Y, SHI F, et al. Rice blending technology improves the anti-retrogradation effect of self-heating rice starch[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(3): 1−7. doi: 10.3969/j.issn.1003-0174.2020.03.002
|
[20] |
SUDHEESH C, VALIYAPEEDIYEKKAL SUNOOJ K, AALIYA B, et al. Effect of energetic neutrals on the kithul starch retrogradation; Potential utilization for improving mechanical and barrier properties of films[J]. Food Chemistry,2023,398:133881. doi: 10.1016/j.foodchem.2022.133881
|
[21] |
CHEN J, ZHAO X L, LI S Q, et al. Ordered structural changes of retrograded instant rice noodles during the long-term storage[J]. Food Research International,2024,175:113727. doi: 10.1016/j.foodres.2023.113727
|
[22] |
史韬琦, 张晨, 丁文平, 等. 不同品种籼米直链淀粉含量对米线加工特性和品质的影响[J]. 食品工业科技,2020,41(19):33−38,44. [SHI T Q, ZHANG C, DING W P, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry,2020,41(19):33−38,44.]
SHI T Q, ZHANG C, DING W P, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry, 2020, 41(19): 33−38,44.
|
[23] |
刘小青, 叶发银, 雷琳, 等. 大米的米线加工适性评价及改良方法研究进展[J]. 食品与发酵工业,2024,50(6):307−315. [LIU X Q, YE F Y, LEI L, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry,2024,50(6):307−315.]
LIU X Q, YE F Y, LEI L, et al. Effect of amylose content of different varieties of Long Rices on processing characteristics and quality of rice noodle[J]. Science and Technology of Food Industry, 2024, 50(6): 307−315.
|
[24] |
QIAO J W, JIA M, NIU J H, et al. Amylopectin chain length distributions and amylose content are determinants of viscoelasticity and digestibility differences in mung bean starch and proso millet starch[J]. International Journal of Biological Macromolecules,2024,267:131488. doi: 10.1016/j.ijbiomac.2024.131488
|
[25] |
TAO K Y, LI C, YU W W, et al. How amylose molecular fine structure of rice starch affects functional properties[J]. Carbohydrate Polymers,2019,204:24−31. doi: 10.1016/j.carbpol.2018.09.078
|
[26] |
YI C P, ZHU H, BAO J S, et al. The texture of fresh rice noodles as affected by the physicochemical properties and starch fine structure of aged paddy[J]. LWT,2020,130:109610. doi: 10.1016/j.lwt.2020.109610
|
[27] |
GENG D H, TANG N, GAN J, et al. Two-step modification of pullulanase and transglucosidase:A novel way to improve the gel strength and reduce the digestibility of rice starch[J]. International Journal of Biological Macromolecules,2024,266:130992. doi: 10.1016/j.ijbiomac.2024.130992
|
[28] |
ZHANG J, KONG H, BAN X, et al. Rice noodle quality is structurally driven by the synergistic effect between amylose chain length and amylopectin unit-chain ratio[J]. Carbohydrate Polymers,2022,295:119834. doi: 10.1016/j.carbpol.2022.119834
|
[29] |
KHATUN A, WATERS D L E, LIU L. The impact of rice protein onin vitro rice starch digestibility[J]. Food Hydrocolloids,2020,109:106072. doi: 10.1016/j.foodhyd.2020.106072
|
[30] |
WU C S, GONG X, ZHANG J, et al. Effect of rice protein on the gelatinization and retrogradation properties of rice starch[J]. International Journal of Biological Macromolecules,2023,242:125061. doi: 10.1016/j.ijbiomac.2023.125061
|
[31] |
PARK J W, SUNG J M, CHOI Y S, et al. pH-dependent pasting and texture properties of rice flour subjected to limited protein hydrolysis[J]. Food Hydrocolloids,2021,117:106754. doi: 10.1016/j.foodhyd.2021.106754
|
[32] |
肖满凤, 徐晓辉, 李宏升, 等. 大米蛋白对大米淀粉糊化特性及鲜湿米粉品质影响的研究[J]. 食品科技,2016,41(4):168−172. [XIAO M F, XU X H, LI H S, et al. Effect of rice protein content on rice starch gelatinization property and wet rice noodle quality[J]. Food Science and Technology,2016,41(4):168−172.]
XIAO M F, XU X H, LI H S, et al. Effect of rice protein content on rice starch gelatinization property and wet rice noodle quality[J]. Food Science and Technology, 2016, 41(4): 168−172.
|
[33] |
ZHANG Y F, CHEN C, CHEN Y, et al. Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation[J]. Food Hydrocolloids,2019,91:136−142. doi: 10.1016/j.foodhyd.2019.01.015
|
[34] |
WEI P, FANG F, LIU G M, et al. Effects of composition, thermal, and theological properties of rice raw material on rice noodle quality[J]. Front Nutr,2022,9:1003657. doi: 10.3389/fnut.2022.1003657
|
[35] |
CHEN J, CAI H L, YANG S, et al. The formation of starch-lipid complexes in instant rice noodles incorporated with different fatty acids:Effect on the structure, in vitro enzymatic digestibility and retrogradation properties during storage[J]. Food Research International,2022,162:111933. doi: 10.1016/j.foodres.2022.111933
|
[36] |
PUNIA S. Barley starch modifications:Physical, chemical and enzymatic - A review[J]. International Journal of Biological Macromolecules,2020,144:578−585. doi: 10.1016/j.ijbiomac.2019.12.088
|
[37] |
PIECYK M, DOMIAN K. Effects of heat–moisture treatment conditions on the physicochemical properties and digestibility of field bean starch (Vicia faba var. minor)[J]. International Journal of Biological Macromolecules,2021(Suppl.1):425−433.
|
[38] |
LEE S J, ZHANG C, LIM S T, et al. Effect of combination of dry heating and glucose addition on pasting and gelling behavior of starches[J]. International Journal of Biological Macromolecules,2021,183(4):1302−1308.
|
[39] |
LI H, GUI Y F, LI J H, et al. Modification of rice starch using a combination of autoclaving and triple enzyme treatment:Structural, physicochemical and digestibility properties[J]. International Journal of Biological Macromolecules,2019,144:500−508.
|
[40] |
LIU Y, LUO Q L, CHEN J, et al. Physicochemical quality improvement of dried rice noodles by direct heat-moisture treatment during the drying process[J]. Journal of Cereal Science,2024,118:103986. doi: 10.1016/j.jcs.2024.103986
|
[41] |
NAWAZ H, WAHEED R, NAWAZ M, et al. Physical and chemical modifications in starch structure and reactivity[J]. Medicinal Plants of South Asia, 2020.
|
[42] |
GU Y, XU R, LIU T X, et al. Enhancing the nonlinear rheological property and digestibility of mung bean flour gels using controlled microwave treatments:Effect of starch debranching and protein denaturation[J]. International Journal of Biological Macromolecules,2024,270:132049. doi: 10.1016/j.ijbiomac.2024.132049
|
[43] |
GONZALEZ L C, LOUBES M A, TOLABA M P et al. Incidence of milling energy on dry-milling attributes of rice starch modified by planetary ball milling[J]. Food Hydrocolloids,2018,82(SEP.):155−163.
|
[44] |
孙晓晓, 刘敬科, 赵巍, 等. 球磨改性对小米全粉理化特性及其面条品质特性的影响[J]. 食品科学,2023,44(9):39−46. [SUN X X, LIU J K, ZHAO W, et al. Effect of ball milling modification on physicochemical properties of foxtail millet flour and noodle quality[J]. Food Science,2023,44(9):39−46.] doi: 10.7506/spkx1002-6630-20220526-324
SUN X X, LIU J K, ZHAO W, et al. Effect of ball milling modification on physicochemical properties of foxtail millet flour and noodle quality[J]. Food Science, 2023, 44(9): 39−46. doi: 10.7506/spkx1002-6630-20220526-324
|
[45] |
GUO Y B, SONG R, ZHU S M, et al. Effects of ultrasonic treatment on the texture quality of aged rice flour[J]. Journal of Cereal Science,2024,117:103918. doi: 10.1016/j.jcs.2024.103918
|
[46] |
GOU M, WU H, SALEH A S M, et al. Effects of repeated and continuous dry heat treatments on properties of sweet potato starch[J]. International Journal of Biological Macromolecules,2019,129:869−877. doi: 10.1016/j.ijbiomac.2019.01.225
|
[47] |
ALIMI B A, WORKNEH T S, OKE M O. Effect of hydrothermal modifications on the functional, pasting and morphological properties of South African cooking banana and plantain[J]. Cyta:Journal of Food,2016,14(3):489−495.
|
[48] |
ANDRADE P, MORENA M, COLMAN D, et al. The effects of heat-moisture treatment on avocado starch granules[J]. Journal of Thermal Analysis and Calorimetry,2015,120(1):387−393. doi: 10.1007/s10973-014-3987-9
|
[49] |
SCHAFRANSKI K, ITO V C, LACERDA L G. Impacts and potential applications:A review of the modification of starches by heat-moisture treatment (HMT)[J]. Food Hydrocolloids,2021,117:106690. doi: 10.1016/j.foodhyd.2021.106690
|
[50] |
JI N, GE S J, LI M, et al. Effect of annealing on the structural and physicochemical properties of waxy rice starch nanoparticles:Effect of annealing on the properties of starch nanoparticles[J]. Food Chemistry,2019,286:17−21. doi: 10.1016/j.foodchem.2019.01.205
|
[51] |
SOLER A, VELAZQUEZ G, VELAZQUEZ-CASTILLO R, et al. Retrogradation of autoclaved corn starches:Effect of water content on the resistant starch formation and structure[J]. Carbohydrate Research,2020,497:108137. doi: 10.1016/j.carres.2020.108137
|
[52] |
RATNANINGSIH N, SUPARMO, HARMAYANI E, et al. Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles[J]. International Journal of Biological Macromolecules,2019,142(6):191−200.
|
[53] |
KHURSHIDA S, DEKA S C. Application of microwave and hydrothermal treatments for modification of cassava starch of Manipur region, India and development of cookies[J]. Journal of Food Science and Technology,2022,59(1):344−354. doi: 10.1007/s13197-021-05020-9
|
[54] |
PARK S H, NA Y, KIM J, et al. Properties and applications of starch modifying enzymes for use in the baking industry[J]. Food Science & Biotechnology,2018,27(2):299−312.
|
[55] |
CHANG R R, LU H, TIAN Y Q, et al. Structural modification and functional improvement of starch nanoparticles using vacuum cold plasmat[J]. International Journal of Biological Macromolecules,2020,145:197−206. doi: 10.1016/j.ijbiomac.2019.12.167
|
[56] |
MASINA N, CHOONARA Y E, KUMAR P, et al. A review of the chemical modification techniques of starch[J]. Carbohydr Polym,2017,157:1226−1236. doi: 10.1016/j.carbpol.2016.09.094
|
[57] |
CRUZ-BENÍTEZ M M, GÓMEZ-ALDAPA C A, CASTRO-ROSAS J, et al. Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus[J]. Lebensmittel Wissenschaft Und Technologie,2019,105:110−117. doi: 10.1016/j.lwt.2019.01.069
|
[58] |
OTACHE M A, DURU U R, ACHUGASIM O, et al. Advances in the modification of starch via esterification for enhanced properties[J]. Journal of Polymers and the Environment,2021,29(5):1365−1379. doi: 10.1007/s10924-020-02006-0
|
[59] |
WANG J,ZHANG R, HUANG Z Y, et al. Preparation and characterization of octenyl succinic anhydride nano starch from tiger nut meals[J]. Study on Food Quality and Safety,2024,7(3):503−515.
|
[60] |
CASTANHA N, DIVINO D M J M, DUARTE AUGUSTO P E. Potato starch modification using the ozone technology[J]. Food Hydrocolloids,2017,66(MAY):343−356.
|
[61] |
ESTRADA-FERNÁNDEZ A G, DORANTES-BAUTISTA G, ROMÁN-GUERRERO A, et al. Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions[J]. Journal of Food Science and Technology,2021,58(8):2896−2905. doi: 10.1007/s13197-020-04790-y
|
[62] |
SANDHU K S, SIROHA A K, PUNIA S, et al. Effect of degree of cross linking on physicochemical, rheological and morphological properties of Sorghum starch[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100073. doi: 10.1016/j.carpta.2021.100073
|
[63] |
VELASQUEZ-CASTILLO L E M A. Quinoa starch nanocrystals production by acid hydrolysis:Kinetics and properties[J]. International Journal of Biological Macromolecules,2020,143:93−101. doi: 10.1016/j.ijbiomac.2019.12.011
|
[64] |
ZHANG J S, RAN C, JIANG X F, et al. Impact of octenyl succinic anhydride (OSA) esterification on microstructure and physicochemical properties of sorghum starch[J]. LWT- Food Science and Technology,2021(8):112320.
|
[65] |
LEE Y K, CHANG Y H. Structural and in vitro digestibility properties of esterified maca starch with citric acid and its application as an oil-in-water (O/W) pickering emulsion stabilizer[J]. International Journal of Biological Macromolecules,2019,134:798−806. doi: 10.1016/j.ijbiomac.2019.05.081
|
[66] |
徐坤, 马嫄, 谷绒. 交联改性多孔淀粉方法的比较研究[J]. 中国粮油学报,2009,24(9):40−44. [XU K, MA Y, GU R, et al. Comparative study on methods of cross-linking modified porous starch[J]. Journal of the Chinese Cereals and Oils Association,2009,24(9):40−44.]
XU K, MA Y, GU R, et al. Comparative study on methods of cross-linking modified porous starch[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(9): 40−44.
|
[67] |
TANG J, TAO H T, TAN C P, et al. Adsorption properties of corn starch modified by malt amylases and crosslinking agents:A comparison between sodium trimetaphosphate and organic acids[J]. International Journal of Biological Macromolecules,2023,253:127140. doi: 10.1016/j.ijbiomac.2023.127140
|
[68] |
MOHAMED A A, ALQAH H, ALAMRI M S, et al. Physicochemical properties of enzymatically modified starches[J]. Processes,2021,9(12):2251. doi: 10.3390/pr9122251
|
[69] |
SHIN H J, CHOI S J, PARK C S, et al. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties[J]. Carbohydrate Polymers,2010,82(2):489−497. doi: 10.1016/j.carbpol.2010.05.017
|
[70] |
LI J Y, KONG X J, AI Y F. Modification of granular waxy, normal and high-amylose maize starches by maltogenic α-amylase to improve functionality[J]. Carbohydrate Polymers,2022,290:119503. doi: 10.1016/j.carbpol.2022.119503
|
[71] |
LI Y D, LI C M, GU Z B, et al. Effect of modification with 1, 4-α-glucan branching enzyme on the rheological properties of cassava starch[J]. International Journal of Biological Macromolecules,2017,103:630. doi: 10.1016/j.ijbiomac.2017.05.045
|
[72] |
LIU G D, HONG Y, GU Z B, et al. Pullulanase hydrolysis behaviors and hydrogel properties of debranched starches from different sources[J]. Food Hydrocolloids,2015,45:351−360. doi: 10.1016/j.foodhyd.2014.12.006
|
[73] |
SUN XX, B A S M S,SUN Z Z, et al. Modification of multi-scale structure, physicochemical properties, and digestibility of rice starch via microwave and cold plasma treatments[J]. LWT,2022,153:112483. doi: 10.1016/j.lwt.2021.112483
|
[74] |
DAS A B, SINGH G, SINGH S, et al. Effect of acetylation and dual modification on physico-chemical, rheological and morphological characteristics of sweet potato (Ipomoea batatas) starch[J]. Carbohydrate Polymers,2010,80(3):725−732. doi: 10.1016/j.carbpol.2009.12.018
|
[75] |
LI Y, LI C M, GU Z B, et al. Digestion properties of corn starch modified by α-D-glucan branching enzyme and cyclodextrin glycosyltransferase[J]. Food Hydrocolloids,2019,89:534−541. doi: 10.1016/j.foodhyd.2018.11.025
|
[76] |
肖瑀, 郭丽, 邓银凤, 等. 复合酶修饰对红薯淀粉分支结构和物化特性的影响[J]. 食品科学,2020,41(3):18−23. [XIAO Y, GUO L, DENG Y F, et al. Effect of multi-enzyme modification on branch structure and physicochemical properties of sweet potato starch[J]. Food Science,2020,41(3):18−23.] doi: 10.7506/spkx1002-6630-20190207-032
XIAO Y, GUO L, DENG Y F, et al. Effect of multi-enzyme modification on branch structure and physicochemical properties of sweet potato starch[J]. Food Science, 2020, 41(3): 18−23. doi: 10.7506/spkx1002-6630-20190207-032
|
[77] |
SHEN H S, GE X Z, ZHANG Q, et al. Dielectric barrier discharge plasma improved the fine structure, physicochemical properties and digestibility of α-amylase enzymatic wheat starch[J]. Innovative Food Science & Emerging Technologies,2022,78:102991.
|
[78] |
WANG R, LI M, LIU J G, et al. Dual modification manipulates rice starch characteristics following debranching and propionate esterification[J]. Food Hydrocolloids,2021,119:106833. doi: 10.1016/j.foodhyd.2021.106833
|
[79] |
WAG L, ZHANG C N, CHEN Z X, et al. Effect of annealing on the physico-chemical properties of rice starch and the quality of rice noodles[J]. Journal of Cereal Science,2018,84:125−131. doi: 10.1016/j.jcs.2018.10.004
|
[80] |
郑洋洋. 过热蒸汽处理对大米粉及方便米线品质的影响研究[D]. 郑州:河南工业大学, 2021. [ZHENG Y Y. Study on the effect of superheated steam treatment on the quality of rice flour and instant rice noodles[D]. Zhengzhou:Henan University of Technology, 2021.]
ZHENG Y Y. Study on the effect of superheated steam treatment on the quality of rice flour and instant rice noodles[D]. Zhengzhou: Henan University of Technology, 2021.
|
[81] |
WANDEE Y, UTTAPAP D, PUNCHA-ARNON S, et al. Quality assessment of noodles made from blends of rice flour and canna starch[J]. Food Chemistry,2015,179:85−93. doi: 10.1016/j.foodchem.2015.01.119
|
[82] |
卢斌, 李才明, 顾正彪, 等. 羟丙基淀粉对鲜湿米粉贮藏品质的影响及其作用机理分析[J]. 河南工业大学学报(自然科学版),2022,43(2):16−22. [LI B, LI C M, GU Z B, et al. Effect of hydroxypropyl starch on storage quality of fresh rice noodles and its mechanism analysis[J]. Journal of Henan University of Technology(Natural Science Edition),2022,43(2):16−22.]
LI B, LI C M, GU Z B, et al. Effect of hydroxypropyl starch on storage quality of fresh rice noodles and its mechanism analysis[J]. Journal of Henan University of Technology(Natural Science Edition), 2022, 43(2): 16−22.
|
[83] |
JIA Y Z, ZHANG Z, LI M, et al. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles[J]. Food Research International,2022,162:111922. doi: 10.1016/j.foodres.2022.111922
|
[84] |
曹世阳. 影响大米淀粉凝胶品质的因素及其对鲜湿米粉食用品质影响的研究[D]. 南宁:广西大学, 2017. [CAO S Y. Study on the factors affecting the gel quality of rice starch and its effect on the edible quality of fresh wet rice noodles[D]. Nanning:Guangxi University, 2017.]
CAO S Y. Study on the factors affecting the gel quality of rice starch and its effect on the edible quality of fresh wet rice noodles[D]. Nanning: Guangxi University, 2017.
|
[85] |
王志兴, 邢文君, 张淼. 复合辅料对方便米粉品质特性的影响及降低GI值研究[J]. 食品科技,2022,47(10):183−190. [WANG Z X, XING W J, ZHANG M, et al. Effect of compound excipients on the quality characteristics of instant rice noodles and reducing glycemic index[J]. Food Science and Technology,2022,47(10):183−190.]
WANG Z X, XING W J, ZHANG M, et al. Effect of compound excipients on the quality characteristics of instant rice noodles and reducing glycemic index[J]. Food Science and Technology, 2022, 47(10): 183−190.
|
[86] |
周慧星, 高雪琴, 王连生. 复合生物酶对鲜湿米粉老化的影响及体外消化特性研究[J]. 中国食品添加剂,2023,34(3):157−163. [ZHOU H X, GAO X Q, WANG L S, et al. Effect of compound enzymes on aging of fresh wet rice noodles and its digestion characteristics in vitro[J]. China Food Additives,2023,34(3):157−163.]
ZHOU H X, GAO X Q, WANG L S, et al. Effect of compound enzymes on aging of fresh wet rice noodles and its digestion characteristics in vitro[J]. China Food Additives, 2023, 34(3): 157−163.
|
[87] |
ZHANG J Y, KONG H C, LI C M, et al. Highly branched starch accelerates the restoration of edible quality of dried rice noodles during rehydration[J]. Carbohydrate Polymers,2022,292:119612. doi: 10.1016/j.carbpol.2022.119612
|
[88] |
胡玉芬, 汤鹏宇, 孟繁博, 等. 酶处理对杂粮-籼米粉质特性及鲜湿米粉品质的影响[J/OL]. 河南工业大学学报(自然科学版):1−12[2024-08-06]. https://doi.org/10.16433/j.1673-2383.202402220001. [HU Y F, TANG P Y, MENG F B, et al. Effects of enzyme treatment on powdery properties of coarse cereals-indica rice flour and quality of their fresh rice noodles[J/OL]. Journal of Henan University of Technology(Natural Science Edition):1−12[2024-08-06]. https://doi.org/10.16433/j.1673-2383.202402220001.]
HU Y F, TANG P Y, MENG F B, et al. Effects of enzyme treatment on powdery properties of coarse cereals-indica rice flour and quality of their fresh rice noodles[J/OL]. Journal of Henan University of Technology(Natural Science Edition): 1−12[2024-08-06]. https://doi.org/10.16433/j.1673-2383.202402220001.
|
[89] |
GONG X, LI J X, LIU Z G, et al. Developing high resistant starch content rice noodles with superior quality:A method using modified rice flour and psyllium fiber[J]. International Journal of Biological Macromolecules,2024,272:132779. doi: 10.1016/j.ijbiomac.2024.132779
|
[90] |
MA C, SUN J, YUE R X, et al. Quality correlation network analysis between the multiscale microstructure, physicochemical properties of sweetpotato starch, cooking properties, and textural properties of sweetpotato starch noodles[J]. LWT,2024,206:116540. doi: 10.1016/j.lwt.2024.116540
|
[91] |
ZHANG Z W, SHANG M S, CHEN X Y, et al. Different characteristics of annealed rice kernels and flour and their effects on the quality of rice noodles[J]. Foods,2023,12(9):1914. doi: 10.3390/foods12091914
|
[92] |
徐霞红. 鲜湿米线保鲜及品质改良技术的研究[D]. 南京:南京农业大学, 2021. [XU X H. Study on preservation treatments and quality improvement of wet rice noodles[D]. Nanjing:Nanjing Agricultural University, 2021.]
XU X H. Study on preservation treatments and quality improvement of wet rice noodles[D]. Nanjing: Nanjing Agricultural University, 2021.
|
[93] |
GAO L, GUAN M H, QIN Y, et al. Utilization of heat-induced curdlan gel to improve the cooking qualities of thermally sterilized fresh rice noodles[J]. International Journal of Biological Macromolecules,2024,262:129693. doi: 10.1016/j.ijbiomac.2024.129693
|
[94] |
陆雨. 干制方便米线品质改良的研究[D]. 南昌:南昌大学, 2015. [LU Y. Study on the quality improvement of dried instant rice noodles[D]. Nanchang:Nanchang University, 2015.]
LU Y. Study on the quality improvement of dried instant rice noodles[D]. Nanchang: Nanchang University, 2015.
|
[95] |
LI Y, XIAO J H, TU J, et al. Matcha-fortified rice noodles:Characteristics of in vitro starch digestibility, antioxidant and eating quality[J]. LWT,2021,149:111852. doi: 10.1016/j.lwt.2021.111852
|
[96] |
LUO X R, CHANG X H, ZHUANG K, et al. Feasible methods to control starch digestibility:Strategies for reducing glycemic index of rice noodles[J]. Trends in Food Science & Technology,2024,149:104536.
|
[97] |
程佳钰. 糙米挤压米粉品质特性的改良研究[D]. 南京:南京财经大学, 2023. [CHENG J Y. Study on the improvement of quality characteristics of brown rice extruded rice noodles[D]. Nanjing:Nanjing University of Finances and Economics, 2023.]
CHENG J Y. Study on the improvement of quality characteristics of brown rice extruded rice noodles[D]. Nanjing: Nanjing University of Finances and Economics, 2023.
|
[98] |
YAN X Y, WU J Y, ZHAO C H, et al. Chinese rice noodles form the viscoelastic texture by dual high-temperature retrogradation:An insight into the mechanism[J]. LWT,2023,189:115496. doi: 10.1016/j.lwt.2023.115496
|
[99] |
GONG X, LI J X, LIU Z G, et al. New insights into influence of green composite modification on the structure, digestive, and physicochemical properties of rice flour[J]. LWT,2023,189:115491. doi: 10.1016/j.lwt.2023.115491
|