Citation: | HUANG Yue, WANG Qian, ZHANG Yan, et al. Electrochemical Method for Sulfamethazine Detection Based on CRISPR/Cas12a Coupled with Spherical Nucleic Acid with the Core of Gold Nanoparticle[J]. Science and Technology of Food Industry, 2025, 46(8): 302−310. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060123. |
[1] |
LUO M, QIN L X, TAO J W, et al. Selective surface enhanced Raman detection and effective photocatalytic degradation of sulfonamides antibiotic based on a flexible three-dimensional chitosan/carbon nitride/silver substrate[J]. Journal of Hazardous Materials,2023,459:132131. doi: 10.1016/j.jhazmat.2023.132131
|
[2] |
NING Y H, YE Y, LIAO W L, et al. Triazine-based porous organic polymer as pipette tip solid-phase extraction adsorbent coupled with HPLC for the determination of sulfonamide residues in food samples[J]. Food Chemistry,2022,397:133831. doi: 10.1016/j.foodchem.2022.133831
|
[3] |
LI Y J, DONG H R, LI L, et al. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite[J]. Water Research,2021,202:117451. doi: 10.1016/j.watres.2021.117451
|
[4] |
MULLA S I, BAGEWADI Z K, FANIBAND B, et al. Various strategies applied for the removal of emerging micropollutant sulfamethazine:A systematic review[J]. Environmental Science and Pollution Research International,2023,30(28):71599−71613.
|
[5] |
WANG Y, GONG C J, ZHU Y, et al. Signal-on electrochemical aptasensor for sensitive detection of sulfamethazine based on carbon quantum dots/tungsten disulfide nanocomposites[J]. Electrochimica Acta,2021,393:139054. doi: 10.1016/j.electacta.2021.139054
|
[6] |
SONG P, WANG M, XUE Y D, et al. Bimetallic PtNi nanozyme-driven dual-amplified photoelectrochemical aptasensor for ultrasensitive detection of sulfamethazine based on Z-scheme heterostructured Co9S8@In-CdS nanotubes[J]. Sensors and Actuators B:Chemical,2022,371:132519. doi: 10.1016/j.snb.2022.132519
|
[7] |
YANG M Y, WU X Y, HU X L, et al. Electrochemical immunosensor based on Ag+-dependent CTAB-AuNPs for ultrasensitive detection of sulfamethazine[J]. Biosensors and Bioelectronics,2019,144:111643. doi: 10.1016/j.bios.2019.111643
|
[8] |
LIU W P, ZHANG M, GUO L A, et al. Photoelectrochemical aptasensor based on nanocomposite of CdSe@SnS2 for ultrasensitive and selective detection of sulfamethazine[J]. Microchimica Acta,2022,189(12):453. doi: 10.1007/s00604-022-05565-2
|
[9] |
WANG H, YANG H, SHIVALILA C S, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell,2013,153(4):910−918. doi: 10.1016/j.cell.2013.04.025
|
[10] |
WU C, CHEN Z, LI C, et al. CRISPR-Cas12a-empowered electrochemical biosensor for rapid and ultrasensitive detection of SARS-CoV-2 delta variant[J]. Nano-Micro Letters,2022,14(1):159. doi: 10.1007/s40820-022-00888-4
|
[11] |
KLEINSTIVER B P, SOUSA A A, WALTON R T, et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing[J]. Nature Biotechnology,2019,37(3):276−282. doi: 10.1038/s41587-018-0011-0
|
[12] |
LIANG M D, LI Z L, WANG W S, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules[J]. Nature Communications,2019,10(1):3672. doi: 10.1038/s41467-019-11648-1
|
[13] |
LONG W X, YANG J L, ZHAO Q, et al. Metal-organic framework-DNA bio-barcodes amplified CRISPR/Cas12a assay for ultrasensitive detection of protein biomarkers[J]. Analytical Chemistry,2023,95:1618−1626.
|
[14] |
DRONINA J, SAMUKAITE-BUBNIENE U, RAMANAVICIUS A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools[J]. Journal of Nanobiotechnology,2022,20(1):41. doi: 10.1186/s12951-022-01246-7
|
[15] |
QIU F, GAN X Y, YAO J L, et al. CRISPR/Cas12a-derived sensitive electrochemical biosensing of NF-κB p50 based on hybridization chain reaction and DNA hydrogel[J]. Biosensors and Bioelectronics,2022,216:114665. doi: 10.1016/j.bios.2022.114665
|
[16] |
LIU Y J, CHEN X Y. Efficient screening of spherical nucleic acids[J]. Nature Biomedical Engineering,2019,3(4):257−258. doi: 10.1038/s41551-019-0391-6
|
[17] |
LI C, GUO L, SANG X Q, et al. Colorimetric aptasensor based on spherical nucleic acid-induced hybridization chain reaction for sensitive detection of exosomes[J]. Talanta,2023,258:124453. doi: 10.1016/j.talanta.2023.124453
|
[18] |
LUO M, XUAN M J, HUO S D, et al. Four-dimensional deoxyribonucleic acid-gold nanoparticle assemblies[J]. Angewandte Chemie,2020,59(39):17250−17255. doi: 10.1002/anie.202007616
|
[19] |
KARAMI A, HASANI M, JALILIAN F A, et al. Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2[J]. Sensors and Actuators B:Chemical,2021,328:128971. doi: 10.1016/j.snb.2020.128971
|
[20] |
WANG L, ZHANG H, WANG C G, et al. Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection[J]. Biosensors and Bioelectronics,2019,127:85−91. doi: 10.1016/j.bios.2018.12.003
|
[21] |
GU M H, YI X Q, XIAO Y C, et al. Programming the dynamic range of nanobiosensors with engineering poly-adenine-mediated spherical nucleic acid[J]. Talanta,2023,256:124278. doi: 10.1016/j.talanta.2023.124278
|
[22] |
LIU L, LU H, SHI R X, et al. Synergy of peptide–nucleic acid and spherical nucleic acid enabled quantitative and specific detection of tumor exosomal MicroRNA[J]. Analytical Chemistry,2019,91(20):13198−13205. doi: 10.1021/acs.analchem.9b03622
|
[23] |
MOKHTARZADEH A, VAHIDNEZHAD H, YOUSSEFIAN L, et al. Applications of spherical nucleic acid nanoparticles as delivery systems[J]. Trends in Molecular Medicine,2019,25(12):1066−1079. doi: 10.1016/j.molmed.2019.08.012
|
[24] |
WANG S P, MAO X H, WANG F, et al. Data storage using DNA[J]. Advanced Materials,2024,36(6):2307499. doi: 10.1002/adma.202307499
|
[25] |
HUANG Y, WANG L, SHA L J, et al. Highly sensitive detection of lipopolysaccharide based on collaborative amplification of dual enzymes[J]. Analytica Chimica Acta,2020,1126:31−37. doi: 10.1016/j.aca.2020.06.013
|
[26] |
MIAO P, TANG Y G. Dumbbell hybridization chain reaction based electrochemical biosensor for ultrasensitive detection of exosomal miRNA[J]. Analytical Chemistry,2020,92(17):12026−12032. doi: 10.1021/acs.analchem.0c02654
|
[27] |
FIGG C A, WINEGAR P H, HAYES O G, et al. Controlling the DNA hybridization chain reaction[J]. Journal of the American Chemical Society,2020,142(19):8596−8601. doi: 10.1021/jacs.0c02892
|
[28] |
DONG J N, ZENG Z E, SUN R W, et al. Specific and sensitive detection of circRNA based on netlike hybridization chain reaction[J]. Biosensors and Bioelectronics,2021,192:113508. doi: 10.1016/j.bios.2021.113508
|
[29] |
YAN Y T, ZHOU F F, WANG Q, et al. A sensitive electrochemical biosensor for quinolones detection based on Cu2+-modulated signal amplification[J]. Microchemical Journal,2023,190:108636. doi: 10.1016/j.microc.2023.108636
|
[30] |
HU L, CUI J, WANG Y, et al. An ultrasensitive electrochemical biosensor for bisphenol a based on aptamer-modified MrGO@AuNPs and ssDNA-functionalized AuNP@MBs synergistic amplification[J]. Chemosphere,2023,311:137154. doi: 10.1016/j.chemosphere.2022.137154
|
[31] |
WANG Y, GAN N, ZHOU Y, et al. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics[J]. Biosensors and Bioelectronics,2017,87:508−513. doi: 10.1016/j.bios.2016.08.107
|
[32] |
SU S F, ZHANG M, LI B L, et al. HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique[J]. Talanta,2008,76(5):1141−1146. doi: 10.1016/j.talanta.2008.05.015
|
[33] |
TUBAON R M, HADDAD P R, QUIRINO J P. High-sensitivity analysis of anionic sulfonamides by capillary electrophoresis using a synergistic stacking approach[J]. Journal of Chromatography A,2014,1349:129−134. doi: 10.1016/j.chroma.2014.05.007
|
[34] |
PENG D P, LI Z Z, WANG Y L, et al. Enzyme-linked immunoassay based on imprinted microspheres for the detection of sulfamethazine residue[J]. Journal of Chromatography A,2017,1506:9−17. doi: 10.1016/j.chroma.2017.05.016
|
[35] |
WANG Y R, YAN X L, KOU Q M, et al. An ultrasensitive label-free fluorescent aptasensor platform for detection of sulfamethazine[J]. International Journal of Nanomedicine, 2021:2751−2759.
|
[36] |
ZHANG Z, YANG M Y, WU X Y, et al. A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels[J]. Chemosphere,2019,225:282−287. doi: 10.1016/j.chemosphere.2019.03.033
|
[37] |
FEIZOLLAHI A, RAFATI A A, ASSARI P, et al. Development of an electrochemical sensor for the determination of antibiotic sulfamethazine in cow milk using graphene oxide decorated with Cu-Ag core-shell nanoparticles[J]. Analytical Methods,2021,13(7):910−917. doi: 10.1039/D0AY02261F
|
[38] |
YANG L, NI H J, LI C L, et al. Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers[J]. Sensors and Actuators B:Chemical,2019,281:801−811. doi: 10.1016/j.snb.2018.10.143
|