XIE Wenye, LI Yuan, ZHU Wanbin, et al. Research Progress on Resveratrol Production by Recombinant Engineering Bacteria Fermentation[J]. Science and Technology of Food Industry, 2025, 46(11): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060085.
Citation: XIE Wenye, LI Yuan, ZHU Wanbin, et al. Research Progress on Resveratrol Production by Recombinant Engineering Bacteria Fermentation[J]. Science and Technology of Food Industry, 2025, 46(11): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060085.

Research Progress on Resveratrol Production by Recombinant Engineering Bacteria Fermentation

More Information
  • Received Date: June 06, 2024
  • Available Online: March 25, 2025
  • Resveratrol, as a non-flavonoid polyphenol organic compound, has antioxidant, anti-aging, anti-inflammatory, anti-cancer and other functions, and has shown broad application prospects in the food, medicine, and cosmetics industries. Researchers have successfully designed and constructed an efficient heterologous synthesis pathway in microorganisms, and realized the industrial production of resveratrol by large-scale fermentation combined with engineered strains. In this paper, based on the frontier progress in the research of resveratrol biosynthesis, the biosynthetic pathway, the chassis of recombinant engineering bacteria, and the optimization strategy of synthesis methods are reviewed. Two recombinant engineering bacteria, yeast and Escherichia coli, commonly used in the production of resveratrol are introduced and compared. And the optimization strategy of resveratrol biosynthesis is proposed from three aspects: the expression of key enzymes, precursors and fermentation processes of resveratrol synthesis. This paper summarizes the existing problems and future development directions, in order to provide theoretical support and reference for the efficient and green biomanufacturing of resveratrol, so as to meet the growing market demand, promote the industrial application of resveratrol in the food industry, and promote the high-quality and sustainable development of the food industry in the future.
  • [1]
    LI T, QU Y, HU X, et al. Green synthesis and structure characterization of resveratrol conjugated linoleate[J]. Food Chemistry,2023,422:136151. doi: 10.1016/j.foodchem.2023.136151
    [2]
    田艳杰, 石爱民, 刘红芝, 等. 白藜芦醇的生物活性及其运载体系研究进展[J]. 食品科学,2023,44(1):371−379. [TIAN Y J, SHI A M, LIU H Z, et al. Progress in research on biological activities and delivery systems of resveratrol[J]. Food Science,2023,44(1):371−379.] doi: 10.7506/spkx1002-6630-20220308-104

    TIAN Y J, SHI A M, LIU H Z, et al. Progress in research on biological activities and delivery systems of resveratrol[J]. Food Science, 2023, 44(1): 371−379. doi: 10.7506/spkx1002-6630-20220308-104
    [3]
    王新萍, 郭芹, 李甜, 等. 植物中白藜芦醇提取和检测方法研究进展[J]. 食品安全质量检测学报,2020,11(21):7957−7965. [WANG X P, GUO Q, LI T, et al. Research progress on extraction and detection methods of resveratrol in plants[J]. Journal of Food Safety and Quality,2020,11(21):7957−7965.]

    WANG X P, GUO Q, LI T, et al. Research progress on extraction and detection methods of resveratrol in plants[J]. Journal of Food Safety and Quality, 2020, 11(21): 7957−7965.
    [4]
    GUO Q, LI T, QU Y, et al. New research development on trans fatty acids in food:Biological effects, analytical methods, formation mechanism, and mitigating measures[J]. Progress in Lipid Research,2023,89:101199. doi: 10.1016/j.plipres.2022.101199
    [5]
    LI T, GUO Q, QU Y, et al. Inhibition mechanism of trans-resveratrol on thermally induced trans fatty acids in peanut oil[J]. Food Chemistry,2023,406:134863. doi: 10.1016/j.foodchem.2022.134863
    [6]
    李甜, 郭芹, 屈阳, 等. 白藜芦醇对花生油热致异构反式脂肪酸的抑制作用[J]. 食品科学,2023,44(18):34−39. [LI T, GUO Q, QU Y, et al. Inhibitory effect of resveratrol on thermally induced trans fatty acids in peanut oil[J]. Food Science,2023,44(18):34−39.] doi: 10.7506/spkx1002-6630-20220826-318

    LI T, GUO Q, QU Y, et al. Inhibitory effect of resveratrol on thermally induced trans fatty acids in peanut oil[J]. Food Science, 2023, 44(18): 34−39. doi: 10.7506/spkx1002-6630-20220826-318
    [7]
    LI T, GUO Q, QU Y, et al. Solubility and physicochemical properties of resveratrol in peanut oil[J]. Food Chemistry,2022,368:130687. doi: 10.1016/j.foodchem.2021.130687
    [8]
    田莹俏, 李甜, 张妤, 等. 天然抗氧化剂对玉米油热致异构体的影响[J]. 食品与发酵工业,2023,50(15):149−154. [TIAN Y Q, LI T, ZHANG Y, et al. Effect of natural antioxidants on thermally-induced trans isomers in corn oil[J]. Food and Fermentation Industries,2023,50(15):149−154.]

    TIAN Y Q, LI T, ZHANG Y, et al. Effect of natural antioxidants on thermally-induced trans isomers in corn oil[J]. Food and Fermentation Industries, 2023, 50(15): 149−154.
    [9]
    LI Y, LIANG M, LI T, et al. Green process for the preparation of resveratrol-containing high oleic acid peanut oil[J]. Ultrasonics Sonochemistry,2023,100:106604. doi: 10.1016/j.ultsonch.2023.106604
    [10]
    李延姣, 张徽, 黎俊, 等. 白藜芦醇药理活性及作用机制研究进展[J]. 食品与药品,2021,23(3):284−288. [LI Y J, ZHANG H, LI J, et al. Research progress on pharmacological activity and action mechanism of resveratrol[J]. Food and Drug,2021,23(3):284−288.] doi: 10.3969/j.issn.1672-979X.2021.03.021

    LI Y J, ZHANG H, LI J, et al. Research progress on pharmacological activity and action mechanism of resveratrol[J]. Food and Drug, 2021, 23(3): 284−288. doi: 10.3969/j.issn.1672-979X.2021.03.021
    [11]
    胡小宁. 白藜芦醇脂肪酸酯的合成及凝胶油产品开发[D]. 泰安:山东农业大学, 2022. [HU X N. Synthesis of resveratrol fatty acid esters and development of oleogel products[D]. Taian:Shandong Agricultural University, 2022.]

    HU X N. Synthesis of resveratrol fatty acid esters and development of oleogel products[D]. Taian: Shandong Agricultural University, 2022.
    [12]
    TAKAOKA M. The synthesis of resveratrol and its derivatives[J]. Proceedings of the Imperial Academy,1940,16(8):405−407. doi: 10.2183/pjab1912.16.405
    [13]
    王燕芳, 张昌桂, 姚瑞茹, 等. 爬山虎化学成分的研究[J]. 药学学报,1982(6):466−468. [WANG Y F, ZHANG C G, YAO R R, et al. Studies on chemical constituents of Parthenocissus tricuspidate (Sieb. et Zucc. ) planch[J]. Acta Pharmaceutica Sinica,1982(6):466−468.]

    WANG Y F, ZHANG C G, YAO R R, et al. Studies on chemical constituents of Parthenocissus tricuspidate (Sieb. et Zucc. ) planch[J]. Acta Pharmaceutica Sinica, 1982(6): 466−468.
    [14]
    王新萍. 花生根中白藜芦醇的提取、纯化及对花生油品质影响的研究[D]. 乌鲁木齐:新疆农业大学, 2021. [WANG X P. Study on extraction, purification and application of resveratrol from peanut root[D]. Urumqi:Xinjiang Agricultural University, 2021.]

    WANG X P. Study on extraction, purification and application of resveratrol from peanut root[D]. Urumqi: Xinjiang Agricultural University, 2021.
    [15]
    王新萍, 李甜, 郭芹, 等. 响应面法优化花生根白藜芦醇酶提工艺及不同品种含量分析[J]. 新疆农业大学学报,2020,43(6):405−413. [WANG X P, LI T, GUO Q, et al. Response surface methodology to optimize the enzymatic extraction process of resveratrol from peanut roots and the content analysis of different varieties[J]. Journal of Xinjiang Agricultural University,2020,43(6):405−413.] doi: 10.3969/j.issn.1007-8614.2020.06.003

    WANG X P, LI T, GUO Q, et al. Response surface methodology to optimize the enzymatic extraction process of resveratrol from peanut roots and the content analysis of different varieties[J]. Journal of Xinjiang Agricultural University, 2020, 43(6): 405−413. doi: 10.3969/j.issn.1007-8614.2020.06.003
    [16]
    LI Y, WANG H, SHI H, et al. Quantification of resveratrol in peanut oils using stable isotope dilution ultra-high performance liquid chromatography-mass spectrometry[J]. Food Analytical Methods,2023,16(11-12):1673−1679. doi: 10.1007/s12161-023-02534-0
    [17]
    中国农业科学院农产品加工研究所. 一种同时检测花生中白藜芦醇的四种异构体的方法:中国, 201710543248.6[P]. 2017.12. 15. [Institute of Food Science and Technology CAAS. A method for simultaneous detection of four isomers of resveratrol in peanuts:China, 201710543248.6[P]. 2017.12. 15.]

    Institute of Food Science and Technology CAAS. A method for simultaneous detection of four isomers of resveratrol in peanuts: China, 201710543248.6[P]. 2017.12. 15.
    [18]
    张翠亚, 高艳蓉, 朱周静, 等. 白藜芦醇合成研究进展[J]. 化学工程师,2023,37(11):67−74. [ZHANG C Y, GAO Y R, ZHU Z J, et al. Research progress in resveratrol synthesis[J]. Chemical Engineer,2023,37(11):67−74.]

    ZHANG C Y, GAO Y R, ZHU Z J, et al. Research progress in resveratrol synthesis[J]. Chemical Engineer, 2023, 37(11): 67−74.
    [19]
    翟逸, 刘钦松, 任晓静. 白藜芦醇的微生物合成研究进展[J]. 现代食品,2017,10(20):9−11. [ZHAI Y, LIU Q S, REN X J. Research progress on microbial synthesis of resveratrol[J]. Modern Food,2017,10(20):9−11.]

    ZHAI Y, LIU Q S, REN X J. Research progress on microbial synthesis of resveratrol[J]. Modern Food, 2017, 10(20): 9−11.
    [20]
    胡晶晶. NaCl/MeJA及其联合Ca~(2+)调控花生发芽期间生理代谢及白藜芦醇富集研究[D]. 扬州:扬州大学, 2023. [HU J J. NaCl/MeJA and MeJA-Ca2+ regulate physiological metabolism and resveratrol enrichment during peanut germination[D]. Yangzhou:Yangzhou University, 2023.]

    HU J J. NaCl/MeJA and MeJA-Ca2+ regulate physiological metabolism and resveratrol enrichment during peanut germination[D]. Yangzhou: Yangzhou University, 2023.
    [21]
    王晓惠. 葡萄细胞悬浮培养工艺与白藜芦醇的促表达机制研究[D]. 上海:华东理工大学, 2021. [WANG X H. Study on cell suspension culture technology and promotion expression mechanism of resveratrol in grape[D]. Shanghai:East China University of Science and Technology, 2021.]

    WANG X H. Study on cell suspension culture technology and promotion expression mechanism of resveratrol in grape[D]. Shanghai: East China University of Science and Technology, 2021.
    [22]
    吴树宽. 桑树转基因毛状根生物合成白藜芦醇的研究[D]. 泰安:山东农业大学, 2021. [WU S K. Resveratrol biosynthesis in transgenic hairy roots of mulberry[D]. Tai'an:Shandong Agricultural University, 2021.]

    WU S K. Resveratrol biosynthesis in transgenic hairy roots of mulberry[D]. Tai'an: Shandong Agricultural University, 2021.
    [23]
    郭兆铖. 桑树MbMYB306调控白藜芦醇和类黄酮合成的机制研究[D]. 泰安:山东农业大学, 2023. [GUO Z C. Regulatory mechanism of resveratrol and flavonoids synthesis by MbMYB306 in mulberry[D]. Tai'an:Shandong Agricultural University, 2023.]

    GUO Z C. Regulatory mechanism of resveratrol and flavonoids synthesis by MbMYB306 in mulberry[D]. Tai'an: Shandong Agricultural University, 2023.
    [24]
    HU X, LIU Y, LI D, et al. An innovative biotransformation to produce resveratrol by Bacillus safensis[J]. RSC Advances,2019,9(27):15448−15456. doi: 10.1039/C9RA01338E
    [25]
    THAPA S B, PANDEY R P, PARK Y I, et al. Biotechnological advances in resveratrol production and its chemical diversity[J]. Molecules,2019,24(14):2571. doi: 10.3390/molecules24142571
    [26]
    蒋金金, 苏汉东, 洪登峰, 等. 植物生物技术研究进展[J]. 植物生理学报,2023,59(8):1436−1462. [JIANG J J, SU H D, HONG D F, et al. Advances and perspectives in plant biotechnology[J]. Plant Physiology Journal,2023,59(8):1436−1462.]

    JIANG J J, SU H D, HONG D F, et al. Advances and perspectives in plant biotechnology[J]. Plant Physiology Journal, 2023, 59(8): 1436−1462.
    [27]
    薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报,2019,70(10):3825−3835. [XUE H J, WANG Y, LI C. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal,2019,70(10):3825−3835.]

    XUE H J, WANG Y, LI C. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal, 2019, 70(10): 3825−3835.
    [28]
    THOMAS V. Phenylpropanoid biosynthesis[J]. Molecular Plant,2010,3(1):2−20. doi: 10.1093/mp/ssp106
    [29]
    李慧敏, 贾斌, 李霞, 等. 合成芳香族化合物的酵母底盘改造策略[J]. 中国生物工程杂志,2022,42(10):80−92. [LI H M, JIA B, LI X, et al. Advances in engineering yeast chassis for producing aromatic compounds[J]. China Biotechnology,2022,42(10):80−92.]

    LI H M, JIA B, LI X, et al. Advances in engineering yeast chassis for producing aromatic compounds[J]. China Biotechnology, 2022, 42(10): 80−92.
    [30]
    王长松, 赵莹, 赵广荣. 微生物合成白藜芦醇的研究进展[J]. 微生物学通报,2014,41(2):352−357. [WANG Z S, ZHAO Y, ZHAO G R. Advances on resveratrol production of engineered microorganisms[J]. Microbiology China,2014,41(2):352−357.]

    WANG Z S, ZHAO Y, ZHAO G R. Advances on resveratrol production of engineered microorganisms[J]. Microbiology China, 2014, 41(2): 352−357.
    [31]
    邓禹, 赵心清. 工业微生物:创新与突破专刊序言(2021)[J]. 生物工程学报,2021,37(3):801−805. [DENG Y, ZHAO X Q. Preface for special issue on industrial microorganisms:Innovation and breakthrough (2021)[J]. Chin J Biotech,2021,37(3):801−805.]

    DENG Y, ZHAO X Q. Preface for special issue on industrial microorganisms: Innovation and breakthrough (2021)[J]. Chin J Biotech, 2021, 37(3): 801−805.
    [32]
    杨立鑫, 周大伟, 崔心江, 等. 利用酵母生物合成虾青素的研究进展[J]. 食品与发酵工业,2024,50(22):368−379. [YANG L X, ZHOU D W, CUI X J, et al. Research progress on biosynthesis of astaxanthin by yeast[J]. Food and Fermentation Industries,2024,50(22):368−379.]

    YANG L X, ZHOU D W, CUI X J, et al. Research progress on biosynthesis of astaxanthin by yeast[J]. Food and Fermentation Industries, 2024, 50(22): 368−379.
    [33]
    FLETCHER E, KRIVORUCHKO A, NIELSEN J. Industrial systems biology and its impact on synthetic biology of yeast cell factories[J]. Biotechnology and Bioengineering,2016,113(6):1164−1170. doi: 10.1002/bit.25870
    [34]
    BECKER J, ARMSTRONG G, VANDERMERWE M, et al. Metabolic engineering of for the synthesis of the wine-related antioxidant resveratrol[J]. FEMS Yeast Research,2003,4(1):79−85. doi: 10.1016/S1567-1356(03)00157-0
    [35]
    孙萍, 郭丽琼, 黄佳俊, 等. 酿酒酵母工程菌生物合成白藜芦醇[J]. 中国食品学报,2016,16(3):68−74. [SUN P, GUO L Q, HUANG J J, et al. Biosynthesis of resveratrol in engineered Saccharomyces cerevisiae strain[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(3):68−74.]

    SUN P, GUO L Q, HUANG J J, et al. Biosynthesis of resveratrol in engineered Saccharomyces cerevisiae strain[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(3): 68−74.
    [36]
    孙萍, 郭丽琼, 梁景龙, 等. 白藜芦醇在酿酒酵母中的组合表达[J]. 食品与发酵工业,2013,39(8):7−12. [SUN P, GUO L Q, LIANG J L, et al. Combinatorial expression of resveratrol in engineered Saccharomyces cerevisiae[J]. Food and Fermentation Industries,2013,39(8):7−12.]

    SUN P, GUO L Q, LIANG J L, et al. Combinatorial expression of resveratrol in engineered Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2013, 39(8): 7−12.
    [37]
    SYDOR T, SCHAFFER S, BOLES E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium[J]. Applied and Environmental Microbiology,2010,76(10):3361−3363. doi: 10.1128/AEM.02796-09
    [38]
    LI M, KILDEGAARD K R, CHEN Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering,2015,32:1−11. doi: 10.1016/j.ymben.2015.08.007
    [39]
    黄良刚, 肖博文, 王文佳, 等. 代谢工程改造解脂耶氏酵母高效合成赤藓糖醇研究进展[J]. 生物工程学报,2024,40(3):665−686. [HUANG L G, XIAO B W, WANG W J, et al. Advances in efficient biosynthesis of erythritol by metabolic engineering of Yarrowia lipolytica[J]. Chinese Journal of Biotechnology,2024,40(3):665−686.]

    HUANG L G, XIAO B W, WANG W J, et al. Advances in efficient biosynthesis of erythritol by metabolic engineering of Yarrowia lipolytica[J]. Chinese Journal of Biotechnology, 2024, 40(3): 665−686.
    [40]
    PALMER C M, MILLER K K, NGUYEN A, et al. Engineering 4-coumaroyl-coa derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy[J]. Metabolic Engineering,2020,57:174−181. doi: 10.1016/j.ymben.2019.11.006
    [41]
    HE Q, SZCZEPANSKA P, YUZBASHEV T, et al. De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica[J]. Metabolic Engineering Communications,2020,11:e146.
    [42]
    SÁEZ-SÁEZ J, WANG G, MARELLA E R, et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production[J]. Metabolic Engineering,2020,62:51−61. doi: 10.1016/j.ymben.2020.08.009
    [43]
    LIU M, WANG C, REN X, et al. Remodeling metabolism for high-level resveratrol production in Yarrowia lipolytica[J]. Bioresource Technology,2022,365:128178. doi: 10.1016/j.biortech.2022.128178
    [44]
    苏鹏, 龚国利. 优化大肠杆菌表达外源蛋白的研究进展[J]. 生物技术通报,2017,33(2):16−23. [SU P, GONG G L. Research progress on optimizing the expression of exogenous proteins in Escherichia coli[J]. Biotechnology Bulletin,2017,33(2):16−23.]

    SU P, GONG G L. Research progress on optimizing the expression of exogenous proteins in Escherichia coli[J]. Biotechnology Bulletin, 2017, 33(2): 16−23.
    [45]
    KATSUYAMA Y, FUNA N, MIYAHISA I, et al. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli[J]. Chemistry & biology,2007,14(6):613−621.
    [46]
    程皓. 生产白藜芦醇基因工程菌株的构建与表达研究[D]. 济南:山东大学, 2015. [CHENG H. Production of resveratrol in engineered Escherichia coli[D]. Jinan:Shandong University, 2015.]

    CHENG H. Production of resveratrol in engineered Escherichia coli[D]. Jinan: Shandong University, 2015.
    [47]
    LIM C G, FOWLER Z L, HUELLER T, et al. High-yield resveratrol production in engineered Escherichia coli[J]. Applied and Environmental Microbiology,2011,77(10):3451−3460. doi: 10.1128/AEM.02186-10
    [48]
    汪建峰, 张嗣良, 王勇. 大肠杆菌中从头合成白藜芦醇途径的设计及优化[J]. 中国生物工程杂志,2014,34(2):71−77. [WANG J F, ZHANG S L, WANG Y. Pathway assembly and optimization in E. coli for de novo biosynthesis of resveratrol[J]. China Biotechnology,2014,34(2):71−77.]

    WANG J F, ZHANG S L, WANG Y. Pathway assembly and optimization in E. coli for de novo biosynthesis of resveratrol[J]. China Biotechnology, 2014, 34(2): 71−77.
    [49]
    朱屹东. 代谢工程改造大肠杆菌生产白藜芦醇[D]. 无锡:江南大学, 2016. [ZHU Y D. Metabolic engineering of Escherichia coli for resveratrol production[D]. Wuxi:Jiangnan University, 2016.]

    ZHU Y D. Metabolic engineering of Escherichia coli for resveratrol production[D]. Wuxi: Jiangnan University, 2016.
    [50]
    刘向磊. 合成生物学技术改造大肠杆菌生产莽草酸及白藜芦醇[D]. 上海:中国医药工业研究总院, 2016. [LIU X L. Production of shikimic acid and resveratrol in Escherichia coli based on synthetic biology[D]. Shanghai:China State Institute of Pharmaceutical Industry, 2016.]

    LIU X L. Production of shikimic acid and resveratrol in Escherichia coli based on synthetic biology[D]. Shanghai: China State Institute of Pharmaceutical Industry, 2016.
    [51]
    PARK S R, YOON J A, PAIK J H, et al. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae[J]. Journal of Biotechnology,2009,141(3-4):181−188. doi: 10.1016/j.jbiotec.2009.03.013
    [52]
    薛宁, 王瑾, 李世新, 等. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报,2023,39(9):268−280. [XUE N, WANG J, LI S X, et al. Construction of L-phenylalanine high-producing Corynebacterium glutamicum engineered strains via multi-gene simultaneous regulation combined with high-throughput screening[J]. Biotechnology Bulletin,2023,39(9):268−280.]

    XUE N, WANG J, LI S X, et al. Construction of L-phenylalanine high-producing Corynebacterium glutamicum engineered strains via multi-gene simultaneous regulation combined with high-throughput screening[J]. Biotechnology Bulletin, 2023, 39(9): 268−280.
    [53]
    KALLSCHEUER N, VOGT M, STENZEL A, et al. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2s)-flavanones[J]. Metabolic Engineering,2016,38:47−55. doi: 10.1016/j.ymben.2016.06.003
    [54]
    KALLSCHEUER N, VOGT M, MARIENHAGEN J. A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism[J]. ACS Synthetic Biology,2017,6(3):410−415. doi: 10.1021/acssynbio.6b00291
    [55]
    MILKE L, FERREIRA P, KALLSCHEUER N, et al. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl‐CoA availability and increases plant polyphenol synthesis[J]. Biotechnology and Bioengineering,2019,116(6):1380−1391. doi: 10.1002/bit.26939
    [56]
    BEEKWILDER J, WOLSWINKEL R, JONKER H, et al. Production of resveratrol in recombinant microorganisms[J]. Applied and Environmental Microbiology,2006,72(8):5670−5672. doi: 10.1128/AEM.00609-06
    [57]
    LI M, SCHNEIDER K, KRISTENSEN M, et al. Engineering yeast for high-level production of stilbenoid antioxidants[J]. Scientific Reports,2016,6:36827. doi: 10.1038/srep36827
    [58]
    COSTA C E, MØLLER-HANSEN I, ROMANÍ A, et al. Resveratrol production from hydrothermally pretreated eucalyptus wood using recombinant industrial Saccharomyces cerevisiae strains[J]. ACS Synthetic Biology,2021,10(8):1895−1903. doi: 10.1021/acssynbio.1c00120
    [59]
    王鹤蓉. 利用酿酒酵母生物合成白藜芦醇途径的构建及优化[D]. 长春:吉林大学, 2020. [WANG H R. Construction and optimization of resveratrol pathway via Saccharomyces cerevisiae biosynthesis[D]. Changchun:Jilin University, 2020.]

    WANG H R. Construction and optimization of resveratrol pathway via Saccharomyces cerevisiae biosynthesis[D]. Changchun: Jilin University, 2020.
    [60]
    WATTS K T, LEE P C, SCHMIDT-DANNERT C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli[J]. BMC biotechnology,2006,6(1):22. doi: 10.1186/1472-6750-6-22
    [61]
    张二浩. 白藜芦醇合成代谢关键酶基因4CLRS融合表达研究[D]. 北京:中国林业科学研究院, 2015. [ZHANG E H. Fusion Expression of the 4CL and RS genes of anabolic key enzymes of resveratrol[D]. Beijing:Chinese Academy of Forestry, 2015.]

    ZHANG E H. Fusion Expression of the 4CL and RS genes of anabolic key enzymes of resveratrol[D]. Beijing: Chinese Academy of Forestry, 2015.
    [62]
    WANG S, ZHANG S, XIAO A, et al. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives[J]. Metabolic Engineering,2015,29:153−159. doi: 10.1016/j.ymben.2015.03.011
    [63]
    YANG Y, LIN Y, LI L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering,2015,29:217−226. doi: 10.1016/j.ymben.2015.03.018
    [64]
    LIU X, LIN J, HU H, et al. De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli[J]. FEMS Microbiology Letters,2016,363(8):fnw61.
    [65]
    LI J, QIU Z, ZHAO G. Modular engineering of E. coli coculture for efficient production of resveratrol from glucose and arabinose mixture[J]. Synthetic and Systems Biotechnology,2022,7(2):718−729. doi: 10.1016/j.synbio.2022.03.001
    [66]
    WU J, ZHOU P, ZHANG X, et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(7):1083−1095. doi: 10.1007/s10295-017-1937-9
    [67]
    CAMACHO-ZARAGOZA J M, HERNANDEZ-CHAVEZ G, MORENO-AVITIA F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol[J]. Microbial Cell Factories,2016,15(1):163. doi: 10.1186/s12934-016-0562-z
    [68]
    赵莹. 代谢工程大肠杆菌合成白藜芦醇[D]. 天津:天津大学, 2019. [ZHAO Y. Metabolic engineering of Escherichia coli for resveratrol production[D]. Tianjin:Tianjin University, 2019.]

    ZHAO Y. Metabolic engineering of Escherichia coli for resveratrol production[D]. Tianjin: Tianjin University, 2019.
    [69]
    BRAGA A, OLIVEIRA J, SILVA R, et al. Impact of the cultivation strategy on resveratrol production from glucose in engineered Corynebacterium glutamicum[J]. Journal of Biotechnology,2018,265:70−75. doi: 10.1016/j.jbiotec.2017.11.006
    [70]
    赵燕磊. 重组耶氏解脂酵母合成白藜芦醇的研究[D]. 淄博:山东理工大学, 2021. [ZHAO Y L. Study on recombinant Yarrowia lipolytica yeast to synthesize resveratrol[D]. Zibo:Shandong University of Technology, 2021.]

    ZHAO Y L. Study on recombinant Yarrowia lipolytica yeast to synthesize resveratrol[D]. Zibo: Shandong University of Technology, 2021.
    [71]
    WANG Y, HALLS C, ZHANG J, et al. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering[J]. Metabolic Engineering,2011,13(5):455−463. doi: 10.1016/j.ymben.2011.04.005
    [72]
    COTNER M, ZHAN J, ZHANG Z. A computational metabolic model for engineered production of resveratrol in Escherichia coli[J]. ACS Synthetic Biology,2021,10(8):1992−2001. doi: 10.1021/acssynbio.1c00163
    [73]
    WANG Y, YU O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells[J]. Journal of Biotechnology,2012,157(1):258−260. doi: 10.1016/j.jbiotec.2011.11.003
    [74]
    张倩. 基于β氧化强化酿酒酵母合成丙二酰辅酶A衍生物[D]. 无锡:江南大学, 2022. [ZHANG Q. Enhanced biosynthesis of malonyl-CoA derivatives in Saccharomyces cerevisiae based on β-oxidation[D]. Wuxi:Jiangnan University, 2022.]

    ZHANG Q. Enhanced biosynthesis of malonyl-CoA derivatives in Saccharomyces cerevisiae based on β-oxidation[D]. Wuxi: Jiangnan University, 2022.
    [75]
    NANDAGOPAL K, HALDER M, DASH B, et al. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone[J]. Current Medicinal Chemistry,2018,25(36):4693−4717. doi: 10.2174/0929867324666170404145656
    [76]
    SHRESTHA A, PANDEY R P, POKHREL A R, et al. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli[J]. Applied Microbiology and Biotechnology,2018,102(22):9691−9706. doi: 10.1007/s00253-018-9323-8
    [77]
    WANG J, GULERIA S, KOFFAS M A, et al. Microbial production of value-added nutraceuticals[J]. Current Opinion in Biotechnology,2016,37:97−104. doi: 10.1016/j.copbio.2015.11.003
    [78]
    ZHA W, RUBIN-PITEL S B, SHAO Z, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J]. Metabolic Engineering,2009,11(3):192−198. doi: 10.1016/j.ymben.2009.01.005
    [79]
    RODRIGUEZ A, KILDEGAARD K R, LI M, et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis[J]. Metabolic Engineering,2015,31:181−188. doi: 10.1016/j.ymben.2015.08.003
    [80]
    BRAGA A, FERREIRA P, OLIVEIRA J, et al. Heterologous production of resveratrol in bacterial hosts:Current status and perspectives[J]. World Journal of Microbiology and Biotechnology,2018,34(8):122. doi: 10.1007/s11274-018-2506-8
    [81]
    JUMINAGA D, BAIDOO E E K, REDDING-JOHANSON A M, et al. Modular engineering of l-tyrosine production in Escherichia coli[J]. Applied and Environmental Microbiology,2012,78(1):89−98. doi: 10.1128/AEM.06017-11
    [82]
    AFONSO M S, FERREIRA S, DOMINGUES F C, et al. Resveratrol production in bioreactor:Assessment of cell physiological states and plasmid segregational stability[J]. Biotechnology Reports,2015,5:7−13. doi: 10.1016/j.btre.2014.10.008
    [83]
    林雅楠, 王瑞明, 黄磊, 等. 重组大肠杆菌生物合成白藜芦醇条件的优化研究[J]. 药物生物技术,2013,20(5):427−430. [LIN Y N, WANG R M, HUANG L, et al. Optimization of biosynthetical conditions of resveratrol with recombinant Escherichia coli[J]. Pharmaceutical Biotechnology,2013,20(5):427−430.]

    LIN Y N, WANG R M, HUANG L, et al. Optimization of biosynthetical conditions of resveratrol with recombinant Escherichia coli[J]. Pharmaceutical Biotechnology, 2013, 20(5): 427−430.
    [84]
    KATZ M, SMITS H P, FÖRSTER J, et al. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof. US201514690542[P]. 2017.12. 05.
    [85]
    CHOI O, WU C, KANG S Y, et al. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology,2011,38(10):1657−1665.
    [86]
    周强, 周大伟, 孙敬翔, 等. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学,2024,5(1):126−143. [ZHOU Q, ZHOU D W, SUN J X, et al. Research progress in synthesis of astaxanthin by microbial fermentation[J]. Synthetic Biology Journal,2024,5(1):126−143.] doi: 10.12211/2096-8280.2023-065

    ZHOU Q, ZHOU D W, SUN J X, et al. Research progress in synthesis of astaxanthin by microbial fermentation[J]. Synthetic Biology Journal, 2024, 5(1): 126−143. doi: 10.12211/2096-8280.2023-065
    [87]
    李秋阳, 孙文涛, 秦磊, 等. 天然产物生物合成与微生物制造的挑战[J]. 中国生物工程杂志,2024,44(1):72−87. [LI Q Y, SUN W T, QIN L, et al. Challenges in the biosynthesis of natural products and microbial manufacturing[J]. China Biotechnology,2024,44(1):72−87.]

    LI Q Y, SUN W T, QIN L, et al. Challenges in the biosynthesis of natural products and microbial manufacturing[J]. China Biotechnology, 2024, 44(1): 72−87.
    [88]
    ZHOU K, QIAO K, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology,2015,33(4):377−383. doi: 10.1038/nbt.3095
    [89]
    YUAN S, YI X, JOHNSTON T G, et al. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture[J]. Microbial Cell Factories,2020,19(1):143. doi: 10.1186/s12934-020-01401-5
  • Cited by

    Periodical cited type(4)

    1. 徐祥,谷贵章,尚佳宇,张进杰,林邦楚,谢红丰,徐大伦. 低盐雪菜中呈味核苷酸关联物的检测及贮藏过程中的变化. 食品科学. 2024(04): 315-322 .
    2. 解双瑜,孙波,李智,柳凯,赵子伟. KCl替代NaCl对东北酸菜细菌菌群多样性的影响. 中国酿造. 2023(02): 58-62 .
    3. 朱瑜,郑志,朱绍辉,候栋,陈璇,權英珠,朴丙熙,姜林娟. 干酪乳杆菌-山药复合发酵剂对溃疡性结肠炎小鼠肠道菌群的调节及其抗炎作用. 新乡医学院学报. 2023(05): 401-410 .
    4. 卢志乐. 桂林家庭酸坛子腌制品食用安全探讨分析. 中国食品工业. 2022(22): 86-90 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (9) PDF downloads (3) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return