Citation: | XIE Wenye, LI Yuan, ZHU Wanbin, et al. Research Progress on Resveratrol Production by Recombinant Engineering Bacteria Fermentation[J]. Science and Technology of Food Industry, 2025, 46(11): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060085. |
[1] |
LI T, QU Y, HU X, et al. Green synthesis and structure characterization of resveratrol conjugated linoleate[J]. Food Chemistry,2023,422:136151. doi: 10.1016/j.foodchem.2023.136151
|
[2] |
田艳杰, 石爱民, 刘红芝, 等. 白藜芦醇的生物活性及其运载体系研究进展[J]. 食品科学,2023,44(1):371−379. [TIAN Y J, SHI A M, LIU H Z, et al. Progress in research on biological activities and delivery systems of resveratrol[J]. Food Science,2023,44(1):371−379.] doi: 10.7506/spkx1002-6630-20220308-104
TIAN Y J, SHI A M, LIU H Z, et al. Progress in research on biological activities and delivery systems of resveratrol[J]. Food Science, 2023, 44(1): 371−379. doi: 10.7506/spkx1002-6630-20220308-104
|
[3] |
王新萍, 郭芹, 李甜, 等. 植物中白藜芦醇提取和检测方法研究进展[J]. 食品安全质量检测学报,2020,11(21):7957−7965. [WANG X P, GUO Q, LI T, et al. Research progress on extraction and detection methods of resveratrol in plants[J]. Journal of Food Safety and Quality,2020,11(21):7957−7965.]
WANG X P, GUO Q, LI T, et al. Research progress on extraction and detection methods of resveratrol in plants[J]. Journal of Food Safety and Quality, 2020, 11(21): 7957−7965.
|
[4] |
GUO Q, LI T, QU Y, et al. New research development on trans fatty acids in food:Biological effects, analytical methods, formation mechanism, and mitigating measures[J]. Progress in Lipid Research,2023,89:101199. doi: 10.1016/j.plipres.2022.101199
|
[5] |
LI T, GUO Q, QU Y, et al. Inhibition mechanism of trans-resveratrol on thermally induced trans fatty acids in peanut oil[J]. Food Chemistry,2023,406:134863. doi: 10.1016/j.foodchem.2022.134863
|
[6] |
李甜, 郭芹, 屈阳, 等. 白藜芦醇对花生油热致异构反式脂肪酸的抑制作用[J]. 食品科学,2023,44(18):34−39. [LI T, GUO Q, QU Y, et al. Inhibitory effect of resveratrol on thermally induced trans fatty acids in peanut oil[J]. Food Science,2023,44(18):34−39.] doi: 10.7506/spkx1002-6630-20220826-318
LI T, GUO Q, QU Y, et al. Inhibitory effect of resveratrol on thermally induced trans fatty acids in peanut oil[J]. Food Science, 2023, 44(18): 34−39. doi: 10.7506/spkx1002-6630-20220826-318
|
[7] |
LI T, GUO Q, QU Y, et al. Solubility and physicochemical properties of resveratrol in peanut oil[J]. Food Chemistry,2022,368:130687. doi: 10.1016/j.foodchem.2021.130687
|
[8] |
田莹俏, 李甜, 张妤, 等. 天然抗氧化剂对玉米油热致异构体的影响[J]. 食品与发酵工业,2023,50(15):149−154. [TIAN Y Q, LI T, ZHANG Y, et al. Effect of natural antioxidants on thermally-induced trans isomers in corn oil[J]. Food and Fermentation Industries,2023,50(15):149−154.]
TIAN Y Q, LI T, ZHANG Y, et al. Effect of natural antioxidants on thermally-induced trans isomers in corn oil[J]. Food and Fermentation Industries, 2023, 50(15): 149−154.
|
[9] |
LI Y, LIANG M, LI T, et al. Green process for the preparation of resveratrol-containing high oleic acid peanut oil[J]. Ultrasonics Sonochemistry,2023,100:106604. doi: 10.1016/j.ultsonch.2023.106604
|
[10] |
李延姣, 张徽, 黎俊, 等. 白藜芦醇药理活性及作用机制研究进展[J]. 食品与药品,2021,23(3):284−288. [LI Y J, ZHANG H, LI J, et al. Research progress on pharmacological activity and action mechanism of resveratrol[J]. Food and Drug,2021,23(3):284−288.] doi: 10.3969/j.issn.1672-979X.2021.03.021
LI Y J, ZHANG H, LI J, et al. Research progress on pharmacological activity and action mechanism of resveratrol[J]. Food and Drug, 2021, 23(3): 284−288. doi: 10.3969/j.issn.1672-979X.2021.03.021
|
[11] |
胡小宁. 白藜芦醇脂肪酸酯的合成及凝胶油产品开发[D]. 泰安:山东农业大学, 2022. [HU X N. Synthesis of resveratrol fatty acid esters and development of oleogel products[D]. Taian:Shandong Agricultural University, 2022.]
HU X N. Synthesis of resveratrol fatty acid esters and development of oleogel products[D]. Taian: Shandong Agricultural University, 2022.
|
[12] |
TAKAOKA M. The synthesis of resveratrol and its derivatives[J]. Proceedings of the Imperial Academy,1940,16(8):405−407. doi: 10.2183/pjab1912.16.405
|
[13] |
王燕芳, 张昌桂, 姚瑞茹, 等. 爬山虎化学成分的研究[J]. 药学学报,1982(6):466−468. [WANG Y F, ZHANG C G, YAO R R, et al. Studies on chemical constituents of Parthenocissus tricuspidate (Sieb. et Zucc. ) planch[J]. Acta Pharmaceutica Sinica,1982(6):466−468.]
WANG Y F, ZHANG C G, YAO R R, et al. Studies on chemical constituents of Parthenocissus tricuspidate (Sieb. et Zucc. ) planch[J]. Acta Pharmaceutica Sinica, 1982(6): 466−468.
|
[14] |
王新萍. 花生根中白藜芦醇的提取、纯化及对花生油品质影响的研究[D]. 乌鲁木齐:新疆农业大学, 2021. [WANG X P. Study on extraction, purification and application of resveratrol from peanut root[D]. Urumqi:Xinjiang Agricultural University, 2021.]
WANG X P. Study on extraction, purification and application of resveratrol from peanut root[D]. Urumqi: Xinjiang Agricultural University, 2021.
|
[15] |
王新萍, 李甜, 郭芹, 等. 响应面法优化花生根白藜芦醇酶提工艺及不同品种含量分析[J]. 新疆农业大学学报,2020,43(6):405−413. [WANG X P, LI T, GUO Q, et al. Response surface methodology to optimize the enzymatic extraction process of resveratrol from peanut roots and the content analysis of different varieties[J]. Journal of Xinjiang Agricultural University,2020,43(6):405−413.] doi: 10.3969/j.issn.1007-8614.2020.06.003
WANG X P, LI T, GUO Q, et al. Response surface methodology to optimize the enzymatic extraction process of resveratrol from peanut roots and the content analysis of different varieties[J]. Journal of Xinjiang Agricultural University, 2020, 43(6): 405−413. doi: 10.3969/j.issn.1007-8614.2020.06.003
|
[16] |
LI Y, WANG H, SHI H, et al. Quantification of resveratrol in peanut oils using stable isotope dilution ultra-high performance liquid chromatography-mass spectrometry[J]. Food Analytical Methods,2023,16(11-12):1673−1679. doi: 10.1007/s12161-023-02534-0
|
[17] |
中国农业科学院农产品加工研究所. 一种同时检测花生中白藜芦醇的四种异构体的方法:中国, 201710543248.6[P]. 2017.12. 15. [Institute of Food Science and Technology CAAS. A method for simultaneous detection of four isomers of resveratrol in peanuts:China, 201710543248.6[P]. 2017.12. 15.]
Institute of Food Science and Technology CAAS. A method for simultaneous detection of four isomers of resveratrol in peanuts: China, 201710543248.6[P]. 2017.12. 15.
|
[18] |
张翠亚, 高艳蓉, 朱周静, 等. 白藜芦醇合成研究进展[J]. 化学工程师,2023,37(11):67−74. [ZHANG C Y, GAO Y R, ZHU Z J, et al. Research progress in resveratrol synthesis[J]. Chemical Engineer,2023,37(11):67−74.]
ZHANG C Y, GAO Y R, ZHU Z J, et al. Research progress in resveratrol synthesis[J]. Chemical Engineer, 2023, 37(11): 67−74.
|
[19] |
翟逸, 刘钦松, 任晓静. 白藜芦醇的微生物合成研究进展[J]. 现代食品,2017,10(20):9−11. [ZHAI Y, LIU Q S, REN X J. Research progress on microbial synthesis of resveratrol[J]. Modern Food,2017,10(20):9−11.]
ZHAI Y, LIU Q S, REN X J. Research progress on microbial synthesis of resveratrol[J]. Modern Food, 2017, 10(20): 9−11.
|
[20] |
胡晶晶. NaCl/MeJA及其联合Ca~(2+)调控花生发芽期间生理代谢及白藜芦醇富集研究[D]. 扬州:扬州大学, 2023. [HU J J. NaCl/MeJA and MeJA-Ca2+ regulate physiological metabolism and resveratrol enrichment during peanut germination[D]. Yangzhou:Yangzhou University, 2023.]
HU J J. NaCl/MeJA and MeJA-Ca2+ regulate physiological metabolism and resveratrol enrichment during peanut germination[D]. Yangzhou: Yangzhou University, 2023.
|
[21] |
王晓惠. 葡萄细胞悬浮培养工艺与白藜芦醇的促表达机制研究[D]. 上海:华东理工大学, 2021. [WANG X H. Study on cell suspension culture technology and promotion expression mechanism of resveratrol in grape[D]. Shanghai:East China University of Science and Technology, 2021.]
WANG X H. Study on cell suspension culture technology and promotion expression mechanism of resveratrol in grape[D]. Shanghai: East China University of Science and Technology, 2021.
|
[22] |
吴树宽. 桑树转基因毛状根生物合成白藜芦醇的研究[D]. 泰安:山东农业大学, 2021. [WU S K. Resveratrol biosynthesis in transgenic hairy roots of mulberry[D]. Tai'an:Shandong Agricultural University, 2021.]
WU S K. Resveratrol biosynthesis in transgenic hairy roots of mulberry[D]. Tai'an: Shandong Agricultural University, 2021.
|
[23] |
郭兆铖. 桑树MbMYB306调控白藜芦醇和类黄酮合成的机制研究[D]. 泰安:山东农业大学, 2023. [GUO Z C. Regulatory mechanism of resveratrol and flavonoids synthesis by MbMYB306 in mulberry[D]. Tai'an:Shandong Agricultural University, 2023.]
GUO Z C. Regulatory mechanism of resveratrol and flavonoids synthesis by MbMYB306 in mulberry[D]. Tai'an: Shandong Agricultural University, 2023.
|
[24] |
HU X, LIU Y, LI D, et al. An innovative biotransformation to produce resveratrol by Bacillus safensis[J]. RSC Advances,2019,9(27):15448−15456. doi: 10.1039/C9RA01338E
|
[25] |
THAPA S B, PANDEY R P, PARK Y I, et al. Biotechnological advances in resveratrol production and its chemical diversity[J]. Molecules,2019,24(14):2571. doi: 10.3390/molecules24142571
|
[26] |
蒋金金, 苏汉东, 洪登峰, 等. 植物生物技术研究进展[J]. 植物生理学报,2023,59(8):1436−1462. [JIANG J J, SU H D, HONG D F, et al. Advances and perspectives in plant biotechnology[J]. Plant Physiology Journal,2023,59(8):1436−1462.]
JIANG J J, SU H D, HONG D F, et al. Advances and perspectives in plant biotechnology[J]. Plant Physiology Journal, 2023, 59(8): 1436−1462.
|
[27] |
薛海洁, 王颖, 李春. 植物天然产物的微生物合成与转化[J]. 化工学报,2019,70(10):3825−3835. [XUE H J, WANG Y, LI C. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal,2019,70(10):3825−3835.]
XUE H J, WANG Y, LI C. Microbial synthesis and transformation of plant-derived natural products[J]. CIESC Journal, 2019, 70(10): 3825−3835.
|
[28] |
THOMAS V. Phenylpropanoid biosynthesis[J]. Molecular Plant,2010,3(1):2−20. doi: 10.1093/mp/ssp106
|
[29] |
李慧敏, 贾斌, 李霞, 等. 合成芳香族化合物的酵母底盘改造策略[J]. 中国生物工程杂志,2022,42(10):80−92. [LI H M, JIA B, LI X, et al. Advances in engineering yeast chassis for producing aromatic compounds[J]. China Biotechnology,2022,42(10):80−92.]
LI H M, JIA B, LI X, et al. Advances in engineering yeast chassis for producing aromatic compounds[J]. China Biotechnology, 2022, 42(10): 80−92.
|
[30] |
王长松, 赵莹, 赵广荣. 微生物合成白藜芦醇的研究进展[J]. 微生物学通报,2014,41(2):352−357. [WANG Z S, ZHAO Y, ZHAO G R. Advances on resveratrol production of engineered microorganisms[J]. Microbiology China,2014,41(2):352−357.]
WANG Z S, ZHAO Y, ZHAO G R. Advances on resveratrol production of engineered microorganisms[J]. Microbiology China, 2014, 41(2): 352−357.
|
[31] |
邓禹, 赵心清. 工业微生物:创新与突破专刊序言(2021)[J]. 生物工程学报,2021,37(3):801−805. [DENG Y, ZHAO X Q. Preface for special issue on industrial microorganisms:Innovation and breakthrough (2021)[J]. Chin J Biotech,2021,37(3):801−805.]
DENG Y, ZHAO X Q. Preface for special issue on industrial microorganisms: Innovation and breakthrough (2021)[J]. Chin J Biotech, 2021, 37(3): 801−805.
|
[32] |
杨立鑫, 周大伟, 崔心江, 等. 利用酵母生物合成虾青素的研究进展[J]. 食品与发酵工业,2024,50(22):368−379. [YANG L X, ZHOU D W, CUI X J, et al. Research progress on biosynthesis of astaxanthin by yeast[J]. Food and Fermentation Industries,2024,50(22):368−379.]
YANG L X, ZHOU D W, CUI X J, et al. Research progress on biosynthesis of astaxanthin by yeast[J]. Food and Fermentation Industries, 2024, 50(22): 368−379.
|
[33] |
FLETCHER E, KRIVORUCHKO A, NIELSEN J. Industrial systems biology and its impact on synthetic biology of yeast cell factories[J]. Biotechnology and Bioengineering,2016,113(6):1164−1170. doi: 10.1002/bit.25870
|
[34] |
BECKER J, ARMSTRONG G, VANDERMERWE M, et al. Metabolic engineering of for the synthesis of the wine-related antioxidant resveratrol[J]. FEMS Yeast Research,2003,4(1):79−85. doi: 10.1016/S1567-1356(03)00157-0
|
[35] |
孙萍, 郭丽琼, 黄佳俊, 等. 酿酒酵母工程菌生物合成白藜芦醇[J]. 中国食品学报,2016,16(3):68−74. [SUN P, GUO L Q, HUANG J J, et al. Biosynthesis of resveratrol in engineered Saccharomyces cerevisiae strain[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(3):68−74.]
SUN P, GUO L Q, HUANG J J, et al. Biosynthesis of resveratrol in engineered Saccharomyces cerevisiae strain[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(3): 68−74.
|
[36] |
孙萍, 郭丽琼, 梁景龙, 等. 白藜芦醇在酿酒酵母中的组合表达[J]. 食品与发酵工业,2013,39(8):7−12. [SUN P, GUO L Q, LIANG J L, et al. Combinatorial expression of resveratrol in engineered Saccharomyces cerevisiae[J]. Food and Fermentation Industries,2013,39(8):7−12.]
SUN P, GUO L Q, LIANG J L, et al. Combinatorial expression of resveratrol in engineered Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2013, 39(8): 7−12.
|
[37] |
SYDOR T, SCHAFFER S, BOLES E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium[J]. Applied and Environmental Microbiology,2010,76(10):3361−3363. doi: 10.1128/AEM.02796-09
|
[38] |
LI M, KILDEGAARD K R, CHEN Y, et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering,2015,32:1−11. doi: 10.1016/j.ymben.2015.08.007
|
[39] |
黄良刚, 肖博文, 王文佳, 等. 代谢工程改造解脂耶氏酵母高效合成赤藓糖醇研究进展[J]. 生物工程学报,2024,40(3):665−686. [HUANG L G, XIAO B W, WANG W J, et al. Advances in efficient biosynthesis of erythritol by metabolic engineering of Yarrowia lipolytica[J]. Chinese Journal of Biotechnology,2024,40(3):665−686.]
HUANG L G, XIAO B W, WANG W J, et al. Advances in efficient biosynthesis of erythritol by metabolic engineering of Yarrowia lipolytica[J]. Chinese Journal of Biotechnology, 2024, 40(3): 665−686.
|
[40] |
PALMER C M, MILLER K K, NGUYEN A, et al. Engineering 4-coumaroyl-coa derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy[J]. Metabolic Engineering,2020,57:174−181. doi: 10.1016/j.ymben.2019.11.006
|
[41] |
HE Q, SZCZEPANSKA P, YUZBASHEV T, et al. De novo production of resveratrol from glycerol by engineering different metabolic pathways in Yarrowia lipolytica[J]. Metabolic Engineering Communications,2020,11:e146.
|
[42] |
SÁEZ-SÁEZ J, WANG G, MARELLA E R, et al. Engineering the oleaginous yeast Yarrowia lipolytica for high-level resveratrol production[J]. Metabolic Engineering,2020,62:51−61. doi: 10.1016/j.ymben.2020.08.009
|
[43] |
LIU M, WANG C, REN X, et al. Remodeling metabolism for high-level resveratrol production in Yarrowia lipolytica[J]. Bioresource Technology,2022,365:128178. doi: 10.1016/j.biortech.2022.128178
|
[44] |
苏鹏, 龚国利. 优化大肠杆菌表达外源蛋白的研究进展[J]. 生物技术通报,2017,33(2):16−23. [SU P, GONG G L. Research progress on optimizing the expression of exogenous proteins in Escherichia coli[J]. Biotechnology Bulletin,2017,33(2):16−23.]
SU P, GONG G L. Research progress on optimizing the expression of exogenous proteins in Escherichia coli[J]. Biotechnology Bulletin, 2017, 33(2): 16−23.
|
[45] |
KATSUYAMA Y, FUNA N, MIYAHISA I, et al. Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli[J]. Chemistry & biology,2007,14(6):613−621.
|
[46] |
程皓. 生产白藜芦醇基因工程菌株的构建与表达研究[D]. 济南:山东大学, 2015. [CHENG H. Production of resveratrol in engineered Escherichia coli[D]. Jinan:Shandong University, 2015.]
CHENG H. Production of resveratrol in engineered Escherichia coli[D]. Jinan: Shandong University, 2015.
|
[47] |
LIM C G, FOWLER Z L, HUELLER T, et al. High-yield resveratrol production in engineered Escherichia coli[J]. Applied and Environmental Microbiology,2011,77(10):3451−3460. doi: 10.1128/AEM.02186-10
|
[48] |
汪建峰, 张嗣良, 王勇. 大肠杆菌中从头合成白藜芦醇途径的设计及优化[J]. 中国生物工程杂志,2014,34(2):71−77. [WANG J F, ZHANG S L, WANG Y. Pathway assembly and optimization in E. coli for de novo biosynthesis of resveratrol[J]. China Biotechnology,2014,34(2):71−77.]
WANG J F, ZHANG S L, WANG Y. Pathway assembly and optimization in E. coli for de novo biosynthesis of resveratrol[J]. China Biotechnology, 2014, 34(2): 71−77.
|
[49] |
朱屹东. 代谢工程改造大肠杆菌生产白藜芦醇[D]. 无锡:江南大学, 2016. [ZHU Y D. Metabolic engineering of Escherichia coli for resveratrol production[D]. Wuxi:Jiangnan University, 2016.]
ZHU Y D. Metabolic engineering of Escherichia coli for resveratrol production[D]. Wuxi: Jiangnan University, 2016.
|
[50] |
刘向磊. 合成生物学技术改造大肠杆菌生产莽草酸及白藜芦醇[D]. 上海:中国医药工业研究总院, 2016. [LIU X L. Production of shikimic acid and resveratrol in Escherichia coli based on synthetic biology[D]. Shanghai:China State Institute of Pharmaceutical Industry, 2016.]
LIU X L. Production of shikimic acid and resveratrol in Escherichia coli based on synthetic biology[D]. Shanghai: China State Institute of Pharmaceutical Industry, 2016.
|
[51] |
PARK S R, YOON J A, PAIK J H, et al. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae[J]. Journal of Biotechnology,2009,141(3-4):181−188. doi: 10.1016/j.jbiotec.2009.03.013
|
[52] |
薛宁, 王瑾, 李世新, 等. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报,2023,39(9):268−280. [XUE N, WANG J, LI S X, et al. Construction of L-phenylalanine high-producing Corynebacterium glutamicum engineered strains via multi-gene simultaneous regulation combined with high-throughput screening[J]. Biotechnology Bulletin,2023,39(9):268−280.]
XUE N, WANG J, LI S X, et al. Construction of L-phenylalanine high-producing Corynebacterium glutamicum engineered strains via multi-gene simultaneous regulation combined with high-throughput screening[J]. Biotechnology Bulletin, 2023, 39(9): 268−280.
|
[53] |
KALLSCHEUER N, VOGT M, STENZEL A, et al. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2s)-flavanones[J]. Metabolic Engineering,2016,38:47−55. doi: 10.1016/j.ymben.2016.06.003
|
[54] |
KALLSCHEUER N, VOGT M, MARIENHAGEN J. A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism[J]. ACS Synthetic Biology,2017,6(3):410−415. doi: 10.1021/acssynbio.6b00291
|
[55] |
MILKE L, FERREIRA P, KALLSCHEUER N, et al. Modulation of the central carbon metabolism of Corynebacterium glutamicum improves malonyl‐CoA availability and increases plant polyphenol synthesis[J]. Biotechnology and Bioengineering,2019,116(6):1380−1391. doi: 10.1002/bit.26939
|
[56] |
BEEKWILDER J, WOLSWINKEL R, JONKER H, et al. Production of resveratrol in recombinant microorganisms[J]. Applied and Environmental Microbiology,2006,72(8):5670−5672. doi: 10.1128/AEM.00609-06
|
[57] |
LI M, SCHNEIDER K, KRISTENSEN M, et al. Engineering yeast for high-level production of stilbenoid antioxidants[J]. Scientific Reports,2016,6:36827. doi: 10.1038/srep36827
|
[58] |
COSTA C E, MØLLER-HANSEN I, ROMANÍ A, et al. Resveratrol production from hydrothermally pretreated eucalyptus wood using recombinant industrial Saccharomyces cerevisiae strains[J]. ACS Synthetic Biology,2021,10(8):1895−1903. doi: 10.1021/acssynbio.1c00120
|
[59] |
王鹤蓉. 利用酿酒酵母生物合成白藜芦醇途径的构建及优化[D]. 长春:吉林大学, 2020. [WANG H R. Construction and optimization of resveratrol pathway via Saccharomyces cerevisiae biosynthesis[D]. Changchun:Jilin University, 2020.]
WANG H R. Construction and optimization of resveratrol pathway via Saccharomyces cerevisiae biosynthesis[D]. Changchun: Jilin University, 2020.
|
[60] |
WATTS K T, LEE P C, SCHMIDT-DANNERT C. Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli[J]. BMC biotechnology,2006,6(1):22. doi: 10.1186/1472-6750-6-22
|
[61] |
张二浩. 白藜芦醇合成代谢关键酶基因4CL和RS融合表达研究[D]. 北京:中国林业科学研究院, 2015. [ZHANG E H. Fusion Expression of the 4CL and RS genes of anabolic key enzymes of resveratrol[D]. Beijing:Chinese Academy of Forestry, 2015.]
ZHANG E H. Fusion Expression of the 4CL and RS genes of anabolic key enzymes of resveratrol[D]. Beijing: Chinese Academy of Forestry, 2015.
|
[62] |
WANG S, ZHANG S, XIAO A, et al. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives[J]. Metabolic Engineering,2015,29:153−159. doi: 10.1016/j.ymben.2015.03.011
|
[63] |
YANG Y, LIN Y, LI L, et al. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products[J]. Metabolic Engineering,2015,29:217−226. doi: 10.1016/j.ymben.2015.03.018
|
[64] |
LIU X, LIN J, HU H, et al. De novo biosynthesis of resveratrol by site-specific integration of heterologous genes in Escherichia coli[J]. FEMS Microbiology Letters,2016,363(8):fnw61.
|
[65] |
LI J, QIU Z, ZHAO G. Modular engineering of E. coli coculture for efficient production of resveratrol from glucose and arabinose mixture[J]. Synthetic and Systems Biotechnology,2022,7(2):718−729. doi: 10.1016/j.synbio.2022.03.001
|
[66] |
WU J, ZHOU P, ZHANG X, et al. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology,2017,44(7):1083−1095. doi: 10.1007/s10295-017-1937-9
|
[67] |
CAMACHO-ZARAGOZA J M, HERNANDEZ-CHAVEZ G, MORENO-AVITIA F, et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol[J]. Microbial Cell Factories,2016,15(1):163. doi: 10.1186/s12934-016-0562-z
|
[68] |
赵莹. 代谢工程大肠杆菌合成白藜芦醇[D]. 天津:天津大学, 2019. [ZHAO Y. Metabolic engineering of Escherichia coli for resveratrol production[D]. Tianjin:Tianjin University, 2019.]
ZHAO Y. Metabolic engineering of Escherichia coli for resveratrol production[D]. Tianjin: Tianjin University, 2019.
|
[69] |
BRAGA A, OLIVEIRA J, SILVA R, et al. Impact of the cultivation strategy on resveratrol production from glucose in engineered Corynebacterium glutamicum[J]. Journal of Biotechnology,2018,265:70−75. doi: 10.1016/j.jbiotec.2017.11.006
|
[70] |
赵燕磊. 重组耶氏解脂酵母合成白藜芦醇的研究[D]. 淄博:山东理工大学, 2021. [ZHAO Y L. Study on recombinant Yarrowia lipolytica yeast to synthesize resveratrol[D]. Zibo:Shandong University of Technology, 2021.]
ZHAO Y L. Study on recombinant Yarrowia lipolytica yeast to synthesize resveratrol[D]. Zibo: Shandong University of Technology, 2021.
|
[71] |
WANG Y, HALLS C, ZHANG J, et al. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering[J]. Metabolic Engineering,2011,13(5):455−463. doi: 10.1016/j.ymben.2011.04.005
|
[72] |
COTNER M, ZHAN J, ZHANG Z. A computational metabolic model for engineered production of resveratrol in Escherichia coli[J]. ACS Synthetic Biology,2021,10(8):1992−2001. doi: 10.1021/acssynbio.1c00163
|
[73] |
WANG Y, YU O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells[J]. Journal of Biotechnology,2012,157(1):258−260. doi: 10.1016/j.jbiotec.2011.11.003
|
[74] |
张倩. 基于β氧化强化酿酒酵母合成丙二酰辅酶A衍生物[D]. 无锡:江南大学, 2022. [ZHANG Q. Enhanced biosynthesis of malonyl-CoA derivatives in Saccharomyces cerevisiae based on β-oxidation[D]. Wuxi:Jiangnan University, 2022.]
ZHANG Q. Enhanced biosynthesis of malonyl-CoA derivatives in Saccharomyces cerevisiae based on β-oxidation[D]. Wuxi: Jiangnan University, 2022.
|
[75] |
NANDAGOPAL K, HALDER M, DASH B, et al. Biotechnological approaches for production of anti-cancerous compounds resveratrol, podophyllotoxin and zerumbone[J]. Current Medicinal Chemistry,2018,25(36):4693−4717. doi: 10.2174/0929867324666170404145656
|
[76] |
SHRESTHA A, PANDEY R P, POKHREL A R, et al. Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli[J]. Applied Microbiology and Biotechnology,2018,102(22):9691−9706. doi: 10.1007/s00253-018-9323-8
|
[77] |
WANG J, GULERIA S, KOFFAS M A, et al. Microbial production of value-added nutraceuticals[J]. Current Opinion in Biotechnology,2016,37:97−104. doi: 10.1016/j.copbio.2015.11.003
|
[78] |
ZHA W, RUBIN-PITEL S B, SHAO Z, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering[J]. Metabolic Engineering,2009,11(3):192−198. doi: 10.1016/j.ymben.2009.01.005
|
[79] |
RODRIGUEZ A, KILDEGAARD K R, LI M, et al. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis[J]. Metabolic Engineering,2015,31:181−188. doi: 10.1016/j.ymben.2015.08.003
|
[80] |
BRAGA A, FERREIRA P, OLIVEIRA J, et al. Heterologous production of resveratrol in bacterial hosts:Current status and perspectives[J]. World Journal of Microbiology and Biotechnology,2018,34(8):122. doi: 10.1007/s11274-018-2506-8
|
[81] |
JUMINAGA D, BAIDOO E E K, REDDING-JOHANSON A M, et al. Modular engineering of l-tyrosine production in Escherichia coli[J]. Applied and Environmental Microbiology,2012,78(1):89−98. doi: 10.1128/AEM.06017-11
|
[82] |
AFONSO M S, FERREIRA S, DOMINGUES F C, et al. Resveratrol production in bioreactor:Assessment of cell physiological states and plasmid segregational stability[J]. Biotechnology Reports,2015,5:7−13. doi: 10.1016/j.btre.2014.10.008
|
[83] |
林雅楠, 王瑞明, 黄磊, 等. 重组大肠杆菌生物合成白藜芦醇条件的优化研究[J]. 药物生物技术,2013,20(5):427−430. [LIN Y N, WANG R M, HUANG L, et al. Optimization of biosynthetical conditions of resveratrol with recombinant Escherichia coli[J]. Pharmaceutical Biotechnology,2013,20(5):427−430.]
LIN Y N, WANG R M, HUANG L, et al. Optimization of biosynthetical conditions of resveratrol with recombinant Escherichia coli[J]. Pharmaceutical Biotechnology, 2013, 20(5): 427−430.
|
[84] |
KATZ M, SMITS H P, FÖRSTER J, et al. Metabolically engineered cells for the production of resveratrol or an oligomeric or glycosidically-bound derivative thereof. US201514690542[P]. 2017.12. 05.
|
[85] |
CHOI O, WU C, KANG S Y, et al. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology,2011,38(10):1657−1665.
|
[86] |
周强, 周大伟, 孙敬翔, 等. 微生物发酵法合成虾青素的研究进展[J]. 合成生物学,2024,5(1):126−143. [ZHOU Q, ZHOU D W, SUN J X, et al. Research progress in synthesis of astaxanthin by microbial fermentation[J]. Synthetic Biology Journal,2024,5(1):126−143.] doi: 10.12211/2096-8280.2023-065
ZHOU Q, ZHOU D W, SUN J X, et al. Research progress in synthesis of astaxanthin by microbial fermentation[J]. Synthetic Biology Journal, 2024, 5(1): 126−143. doi: 10.12211/2096-8280.2023-065
|
[87] |
李秋阳, 孙文涛, 秦磊, 等. 天然产物生物合成与微生物制造的挑战[J]. 中国生物工程杂志,2024,44(1):72−87. [LI Q Y, SUN W T, QIN L, et al. Challenges in the biosynthesis of natural products and microbial manufacturing[J]. China Biotechnology,2024,44(1):72−87.]
LI Q Y, SUN W T, QIN L, et al. Challenges in the biosynthesis of natural products and microbial manufacturing[J]. China Biotechnology, 2024, 44(1): 72−87.
|
[88] |
ZHOU K, QIAO K, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology,2015,33(4):377−383. doi: 10.1038/nbt.3095
|
[89] |
YUAN S, YI X, JOHNSTON T G, et al. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture[J]. Microbial Cell Factories,2020,19(1):143. doi: 10.1186/s12934-020-01401-5
|