Citation: | PAN Ya, SHEN Fei, CHEN Ming, et al. Effect and Mechanism of Galacto-oligosaccharides on Constipation in Mice[J]. Science and Technology of Food Industry, 2025, 46(9): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060073. |
[1] |
HANSON B, SIDDIQUE S M, SCARLETT Y, et al. American gastroenterological association institute technical review on the medical management of opioid-induced constipation[J]. Gastroenterology,2019,156(1):229−253. doi: 10.1053/j.gastro.2018.08.018
|
[2] |
BHARUCHA A E, LACY B E. Mechanisms, evaluation, and management of chronic constipation[J]. Gastroenterology,2020,158(5):1232−1249. doi: 10.1053/j.gastro.2019.12.034
|
[3] |
CAMILLERI M, FORD A C, MAWE G M, et al. Chronic constipation[J]. Nature Reviews Disease Primers,2017,3(1):17095. doi: 10.1038/nrdp.2017.95
|
[4] |
HEIDELBAUGH J J, STELWAGON M, MILLER S A, et al. The spectrum of constipation-predominant irritable bowel syndrome and chronic idiopathic constipation:Us survey assessing symptoms, care seeking, and disease burden[J]. Official Journal of the American College of Gastroenterology,2015,110(4):580−587. doi: 10.1038/ajg.2015.67
|
[5] |
GUÉRIN A, MODY R, FOK B, et al. Risk of developing colorectal cancer and benign colorectal neoplasm in patients with chronic constipation[J]. Alimentary Pharmacology & Therapeutics,2014,40(1):83−92.
|
[6] |
PEERY A F, CROCKETT S D, MURPHY C C, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the united states:Update 2018[J]. Gastroenterology,2019,156(1):254−272. doi: 10.1053/j.gastro.2018.08.063
|
[7] |
PARK A R, OH D K. Galacto-oligosaccharide production using microbial β-galactosidase:Current state and perspectives[J]. Applied Microbiology and Biotechnology,2010,85(5):1279−1286. doi: 10.1007/s00253-009-2356-2
|
[8] |
XU T, SUN R, ZHANG Y, et al. Recent research and application prospect of functional oligosaccharides on intestinal disease treatment[J]. Molecules,2022,27(21):7622. doi: 10.3390/molecules27217622
|
[9] |
LI P H, LU W C, CHAN Y J, et al. Feasibility of using seaweed (Gracilaria coronopifolia) synbiotic as a bioactive material for intestinal health[J]. Foods,2019,8(12):623. doi: 10.3390/foods8120623
|
[10] |
QAMAR T R, IQBAL S, SYED F, et al. Impact of novel prebiotic galacto-oligosaccharides on various biomarkers of colorectal cancer in wister rats[J]. International Journal of Molecular Sciences,2017,18(9):1785. doi: 10.3390/ijms18091785
|
[11] |
WEAVER C M, MARTIN B R, NAKATSU C H, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation[J]. Journal of Agricultural and Food Chemistry,2011,59(12):6501−6510. doi: 10.1021/jf2009777
|
[12] |
SCHOEMAKER M H, HAGEMAN J H J, TEN HAAF D, et al. Prebiotic galacto-oligosaccharides impact stool frequency and fecal microbiota in self-reported constipated adults:A randomized clinical trial[J]. Nutrients,2022,14(2):309. doi: 10.3390/nu14020309
|
[13] |
TEURI U, KORPELA R. Galacto-oligosaccharides relieve constipation in elderly people[J]. Annals of Nutrition & Metabolism,1998,42(6):319−327.
|
[14] |
SIERRA C, BERNAL M J, BLASCO J, et al. Prebiotic effect during the first year of life in healthy infants fed formula containing gos as the only prebiotic:A multicentre, randomised, double-blind and placebo-controlled trial[J]. European Journal of Nutrition,2015,54(1):89−99. doi: 10.1007/s00394-014-0689-9
|
[15] |
WANG L, HU L, YAN S, et al. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation[J]. Food & Function,2017,8(5):1966−1978.
|
[16] |
GAO X, HU Y, TAO Y, et al. Cymbopogon citratus (DC.) stapf aqueous extract ameliorates loperamide-induced constipation in mice by promoting gastrointestinal motility and regulating the gut microbiota[J]. Frontiers in Microbiology,2022,13:1017804. doi: 10.3389/fmicb.2022.1017804
|
[17] |
WANG L, CHAI M, WANG J, et al. Bifidobacterium longum relieves constipation by regulating the intestinal barrier of mice[J]. Food & Function,2022,13(9):5037−5049.
|
[18] |
WANG G, WANG H, JIN Y, et al. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota[J]. Food Research International,2022,155:111003. doi: 10.1016/j.foodres.2022.111003
|
[19] |
CAI W F, LIN S X, MA P Y, et al. Semen pruni oil attenuates loperamide-induced constipation in mice by regulating neurotransmitters, oxidative stress and inflammatory response[J]. Journal of Functional Foods,2023,107:105676. doi: 10.1016/j.jff.2023.105676
|
[20] |
HUANG H, WANG Y T, DING X F, et al. Hemp seeds attenuate loperamide-induced constipation in mice[J]. Frontiers in Microbiology,2024,15:1353105.
|
[21] |
王倩男, 杨雯, 薛婷芳, 等. 人参肽对小鼠的润肠通便效果[J]. 食品工业科技,2025,46(2):317−323. [WANG Q N, YANG W, XUE T F, et al. Study on the effect of ginseng peptide on laxative in mice[J]. Science and Technology of Food Industry,2025,46(2):317−323.]
WANG Q N, YANG W, XUE T F, et al. Study on the effect of ginseng peptide on laxative in mice[J]. Science and Technology of Food Industry, 2025, 46(2): 317−323.
|
[22] |
钟浩. 植物乳杆菌缓解高脂膳食诱导小鼠胰岛素抵抗的作用及其机理探究[D]. 杭州:浙江大学, 2023. [ZHONG H. Exploring the effects and potential mechanisms of Lactobacillus plantarum in attenuating high-fat diet induced insulin resistance in mice[D]. Hangzhou:Zhejiang University, 2023.]
ZHONG H. Exploring the effects and potential mechanisms of Lactobacillus plantarum in attenuating high-fat diet induced insulin resistance in mice[D]. Hangzhou: Zhejiang University, 2023.
|
[23] |
SHI Y, CHEN F, WANG Z, et al. Effect and mechanism of functional compound fruit drink on gut microbiota in constipation mice[J]. Food Chemisty,2023,401:134210. doi: 10.1016/j.foodchem.2022.134210
|
[24] |
ZHANG J, FENG F, ZHAO M. Glycerol monocaprylate modulates gut microbiota and increases short-chain fatty acids production without adverse effects on metabolism and inflammation[J]. Nutrients,2021,13(5):1427. doi: 10.3390/nu13051427
|
[25] |
ZHAO Y, ZHANG C, YU L, et al. Strain-specific effect of Limosilactobacillus fermentum with distinct genetic lineages on loperamide-induced constipation in mice:Attributing effects to certain genes[J]. Food & Function,2022,13(24):12742−12754.
|
[26] |
韩伟林, 冼俊思, 李容娣, 等. 桑叶粉的润肠通便作用[J]. 蚕业科学,2023,49(3):277−282. [HAN W L, XIAN J S, LI R D, et al. Study on the laxative function of mulberry leaf powder[J]. Acta Sericologica Sinica,2023,49(3):277−282.]
HAN W L, XIAN J S, LI R D, et al. Study on the laxative function of mulberry leaf powder[J]. Acta Sericologica Sinica, 2023, 49(3): 277−282.
|
[27] |
姚一博, 王迪, 王钱陶, 等. 盐酸洛哌丁胺诱导的小鼠慢传输型便秘模型的实验研究[J]. 中国实验动物学报,2020,28(3):370−375. [YAO Y B, WANG D, WANG Q T, et al. Experimental study of slow transit constipation induced by loperamide hydrochloride in mice[J]. Acta Laboratorium Animalis Scientia Sinica,2020,28(3):370−375.] doi: 10.3969/j.issn.1005-4847.2020.03.012
YAO Y B, WANG D, WANG Q T, et al. Experimental study of slow transit constipation induced by loperamide hydrochloride in mice[J]. Acta Laboratorium Animalis Scientia Sinica, 2020, 28(3): 370−375. doi: 10.3969/j.issn.1005-4847.2020.03.012
|
[28] |
ZHOU X, CHEN Y, MA X, et al. Efficacy of Bacillus coagulans bc01 on loperamide hydrochloride-induced constipation model in kunming mice[J]. Frontiers In Nutrition,2022,9:964257. doi: 10.3389/fnut.2022.964257
|
[29] |
QIU B, ZHU L, ZHANG S, et al. Prevention of loperamide-induced constipation in mice and alteration of 5-hydroxytryotamine signaling by Ligilactobacillus salivarius Li01[J]. Nutrients, 2022, 14(19): 4083.
|
[30] |
KWON J I, PARK Y, NOH D O, et al. Complex-oligosaccharide composed of galacto-oligosaccharide and lactulose ameliorates loperamide-induced constipation in rats[J]. Food Science and Biotechnology,2018,27(3):781−788. doi: 10.1007/s10068-017-0300-2
|
[31] |
SHI J, XIE Q, YUE Y, et al. Gut microbiota modulation and anti-inflammatory properties of mixed Lactobacilli in dextran sodium sulfate-induced colitis in mice[J]. Food & Function,2021,12(11):5130−5143.
|
[32] |
CUI L, HUA Y, ZOU S, et al. Combination of fenchone and sodium hyaluronate ameliorated constipation-predominant irritable bowel syndrome and underlying mechanisms[J]. Chemical Biology & Drug Design,2024,103(1):e14397.
|
[33] |
ZHANG X, YANG H, ZHENG J, et al. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice[J]. Carbohydrate Polymers,2021,253:117218. doi: 10.1016/j.carbpol.2020.117218
|
[34] |
SU Y, ZHU R, PANG C, et al. Laxative effect of Wenyang Yiqi decoction on loperamide-induced astriction model mice[J]. Annals of Translational Medicine,2023,11(4):170. doi: 10.21037/atm-23-6
|
[35] |
SALVO ROMERO E, ALONSO COTONER C, PARDO CAMACHO C, et al. The intestinal barrier function and its involvement in digestive disease[J]. Revista Espanola de Enfermedades Digestivas,2015,107(11):686−696.
|
[36] |
AGRE P. The aquaporin water channels[J]. Proceedings of the American Thoracic Society,2006,3(1):5−13. doi: 10.1513/pats.200510-109JH
|
[37] |
DENG Y, LI M, MEI L, et al. Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-induced constipation in rats[J]. Beneficial Microbes,2018,9(3):453−464. doi: 10.3920/BM2017.0062
|
[38] |
CAO Y, HE Y, WEI C, et al. Aquaporins alteration profiles revealed different actions of senna, sennosides, and sennoside a in diarrhea-rats [J]. International Journal of Molecular Sciences, 2018, 19(10): 3210.
|
[39] |
HU T G, WEN P, FU H Z, et al. Protective effect of mulberry (Morus atropurpurea) fruit against diphenoxylate-induced constipation in mice through the modulation of gut microbiota[J]. Food & Function,2019,10(3):1513−1528.
|
[40] |
HUANG J, LI S, WANG Q, et al. Pediococcus pentosaceus b49 from human colostrum ameliorates constipation in mice[J]. Food & Function,2020,11(6):5607−5620.
|
[41] |
SUN Y, YAN C, JIN S, et al. Curative effect and mechanism of Guiren Runchang granules on morphine-induced slow transit constipation in mice[J]. Evidence-based Complementary and Alternative Medicine,2020,2020:5493192. doi: 10.1155/2020/5493192
|
[42] |
LU Y, YU Z, ZHANG Z, et al. Bifidobacterium animalis f1-7 in combination with konjac glucomannan improves constipation in mice via humoral transport[J]. Food & Function,2021,12(2):791−801.
|
[43] |
JOHANSSON M E V, SJÖVALL H, HANSSON G C. The gastrointestinal mucus system in health and disease[J]. Nature Reviews Gastroenterology & Hepatology,2013,10(6):352−361.
|
[44] |
LI R, XU S, LI B, et al. Gut indigenous Ruminococcus gnavus alleviates constipation and stress-related behaviors in mice with loperamide-induced constipation[J]. Food & Function,2023,14(12):5702−5715.
|
[45] |
QIAO H, ZHAO T, YIN J, et al. Structural characteristics of inulin and microcrystalline cellulose and their effect on ameliorating colitis and altering colonic microbiota in dextran sodium sulfate-induced colitic mice[J]. ACS Omega,2022,7(13):10921−10932. doi: 10.1021/acsomega.1c06552
|
[46] |
VRIESMAN M H, KOPPEN I J N, CAMILLERI M, et al. Management of functional constipation in children and adults[J]. Nature Reviews Gastroenterology & Hepatology,2020,17(1):21−39.
|
[47] |
GUO M, YAO J, YANG F, et al. The composition of intestinal microbiota and its association with functional constipation of the elderly patients[J]. Future Microbiology,2020,15(3):163−175. doi: 10.2217/fmb-2019-0283
|
[48] |
KIM M C, LEE S, PARK J K, et al. Effects of id-hws1000 on the perception of bowel activity and microbiome in subjects with functional constipation:A randomized, double-blind placebo-controlled study[J]. Journal of Medicinal Food,2021,24(8):883−893. doi: 10.1089/jmf.2020.4746
|
[49] |
LAGKOUVARDOS I, LESKER T R, HITCH T C A, et al. Sequence and cultivation study of muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family[J]. Microbiome,2019,7(1):28. doi: 10.1186/s40168-019-0637-2
|
[50] |
HU Y, GAO X, ZHAO Y, et al. Flavonoids in Amomum tsaoko Crevost et lemarie ameliorate loperamide-induced constipation in mice by regulating gut microbiota and related metabolites [J]. International Journal of Molecular Sciences, 2023, 24(8): 7191.
|
[51] |
DIMIDI E, CHRISTODOULIDES S, SCOTT S M, et al. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation[J]. Advances in Nutrition,2017,8(3):484−494. doi: 10.3945/an.116.014407
|
[52] |
LIU G, HUANG Y, ZHAI L. Impact of nutritional and environmental factors on inflammation, oxidative stress, and the microbiome[J]. BioMed Research International,2018,2018:5606845.
|
[53] |
HU S, LI S, LIU Y, et al. Aged ripe pu-erh tea reduced oxidative stress-mediated inflammation in dextran sulfate sodium-induced colitis mice by regulating intestinal microbes[J]. Journal of Agricultural and Food Chemistry,2021,69(36):10592−10605. doi: 10.1021/acs.jafc.1c04032
|
[54] |
WANG L, WANG R, WEI G Y, et al. Cryptotanshinone alleviates chemotherapy-induced colitis in mice with colon cancer via regulating fecal-bacteria-related lipid metabolism[J]. Pharmacological Research,2021,163:105232. doi: 10.1016/j.phrs.2020.105232
|
[55] |
ZAGATO E, POZZI C, BERTOCCHI A, et al. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth[J]. Nature Microbiology,2020,5(3):511−524. doi: 10.1038/s41564-019-0649-5
|
[56] |
WATSON D, O'CONNELL MOTHERWAY M, SCHOTERMAN M H, et al. Selective carbohydrate utilization by lactobacilli and bifidobacteria[J]. Journal of Applied Microbiology,2013,114(4):1132−1146. doi: 10.1111/jam.12105
|
[57] |
ARNOLD J W, ROACH J, FABELA S, et al. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut[J]. Microbiome,2021,9(1):31. doi: 10.1186/s40168-020-00980-0
|
[58] |
BEN X M, ZHOU X Y, ZHAO W H, et al. Supplementation of milk formula with galacto-oligosaccharides improves intestinal micro-flora and fermentation in term infants[J]. Chinese Medical Journal,2004,117(6):927−931.
|
[59] |
LIN Q, LIU M, ERHUNMWUNSEE F, et al. Chinese patent medicine shouhui tongbian capsule attenuated loperamide-induced constipation through modulating the gut microbiota in rat[J]. Journal of Ethnopharmacology,2022,298:115575. doi: 10.1016/j.jep.2022.115575
|
[60] |
HOSSEINI E, GROOTAERT C, VERSTRAETE W, et al. Propionate as a health-promoting microbial metabolite in the human gut[J]. Nutrition Reviews,2011,69(5):245−258. doi: 10.1111/j.1753-4887.2011.00388.x
|
[61] |
JIANG H, DONG J, JIANG S, et al. Effect of Durio zibethinus rind polysaccharide on functional constipation and intestinal microbiota in rats[J]. Food Research International,2020,136:109316. doi: 10.1016/j.foodres.2020.109316
|
[62] |
SORET R, CHEVALIER J, DE COPPET P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats[J]. Gastroenterology,2010,138(5):1772−1782. doi: 10.1053/j.gastro.2010.01.053
|
[63] |
PROCHÁZKOVÁ N, FALONY G, DRAGSTED L O, et al. Advancing human gut microbiota research by considering gut transit time[J]. Gut,2023,72(1):180−191. doi: 10.1136/gutjnl-2022-328166
|
[64] |
ZHANG C, WANG L, LIU X, et al. The different ways multi-strain probiotics with different ratios of bifidobacterium and lactobacillus relieve constipation induced by loperamide in mice[J]. Nutrients,2023,15(19):4230. doi: 10.3390/nu15194230
|
[65] |
ZHANG Q, ZHONG D, SUN R, et al. Prevention of loperamide induced constipation in mice by kgm and the mechanisms of different gastrointestinal tract microbiota regulation[J]. Carbohydrate Polymers,2021,256:117418. doi: 10.1016/j.carbpol.2020.117418
|