LIU Yuxin, JIA Ru, WU Annan, et al. Research Progress on Mitochondrial Protective Effects of Plant Polyphenols[J]. Science and Technology of Food Industry, 2025, 46(9): 456−465. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060066.
Citation: LIU Yuxin, JIA Ru, WU Annan, et al. Research Progress on Mitochondrial Protective Effects of Plant Polyphenols[J]. Science and Technology of Food Industry, 2025, 46(9): 456−465. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060066.

Research Progress on Mitochondrial Protective Effects of Plant Polyphenols

More Information
  • Received Date: June 06, 2024
  • Available Online: February 28, 2025
  • Plant polyphenols are a class of natural phenolic compounds widely found in nature, known for their significant biological activities such as antioxidant, anti-inflammatory, anti-tumor and cardiovascular and cerebrovascular protective effects. Mitochondria are the energy factories of cells, and their dysfunctions are closely related to human metabolic abnormalities and the development of diseases. In recent years, the role of plant polyphenols in protecting mitochondrial function has received widespread attention. This review summarizes the classification and sources of plant polyphenols, and focuses on their mitochondrial protective effects, which include regulating the levels of mitochondrial reactive oxygen species as well as calcium ions, increasing the activity of mitochondrial respiratory chain enzymes, and regulating mitochondrial fission, fusion and autophagy. These properties with the potential roles contribute to treat diabetes mellitus, lung diseases, fatty liver disease, cardiovascular diseases, and neurodegenerative diseases associated with mitochondrial dysfunction. By summarizing the protective effects of polyphenols on mitochondria, this review will be beneficial for researchers to explore the conformational relationship between polyphenols and the regulation of mitochondrial function and to analyze the molecular mechanisms involved. The review not only provides a scientific basis for the development of novel plant-derived functional ingredients, but also provides a new perspective for dietary intervention on human diseases.
  • [1]
    FRAGA C G, GALLEANO M, VERSTRAETEN S V, et al. Basic biochemical mechanisms behind the health benefits of polyphenols[J]. Molecular Aspects of Medicine,2010,31(6):435−445. doi: 10.1016/j.mam.2010.09.006
    [2]
    易莹, 樊敏, 李权. 常见植物多酚化合物的介绍[J]. 化学教育(中英文),2022,43(11):1−6. [YI Ying, FAN Min, LI Quan. Introduction of common plant polyphenols compounds[J]. Chinese Journal of Chemical Education,2022,43(11):1−6.]

    YI Ying, FAN Min, LI Quan. Introduction of common plant polyphenols compounds[J]. Chinese Journal of Chemical Education, 2022, 43(11): 1−6.
    [3]
    中华人民共和国国家卫生健康委员会. 关于巴拉圭冬青叶(马黛茶叶)等9种“三新食品”的公告[EB/OL]. (2023-11-23) [2024-7-18]. http://www.nhc.gov.cn/sps/s7892/202311/734de9d26bd441d9b15131dfacd3f253.shtml. [National Health Commission of the People's Republic of China. Announcement on 9 “Three New Foods”, including Yerba mate[EB/OL]. (2023-11-23) [2024-7-18]. http://www.nhc.gov.cn/sps/s7892/202311/734de9d26bd441d9b15131dfacd3f253.shtml.]

    National Health Commission of the People's Republic of China. Announcement on 9 “Three New Foods”, including Yerba mate[EB/OL]. (2023-11-23) [2024-7-18]. http://www.nhc.gov.cn/sps/s7892/202311/734de9d26bd441d9b15131dfacd3f253.shtml.
    [4]
    中华人民共和国国家卫生和计划生育委员会. 关于批准番茄籽油等9种新食品原料的公告[EB/OL]. (2014-12-19) [2024-07-18]. http://www.nhc.gov.cn/sps/s3585/201412/5ecadb810d5d4f1eac12a3d6c9f7f6bc.shtml. [National Health and Family Planning Commission of the People's Republic of China. Announcement on approval of 9 new food ingredients including tomato seed oil[EB/OL]. (2014-12-19) [2024-07-18]. http://www.nhc.gov.cn/sps/s3585/201412/5ecadb810d5d4f1eac12a3d6c9f7f6bc.shtml.]

    National Health and Family Planning Commission of the People's Republic of China. Announcement on approval of 9 new food ingredients including tomato seed oil[EB/OL]. (2014-12-19) [2024-07-18]. http://www.nhc.gov.cn/sps/s3585/201412/5ecadb810d5d4f1eac12a3d6c9f7f6bc.shtml.
    [5]
    中华人民共和国国家卫生健康委员会. 关于β-1, 3/α-1, 3-葡聚糖等6种“三新食品”的公告[EB/OL]. (2021-04-15) [2023-07-18]. http://www.nhc.gov.cn/sps/s3585/201412/5ecadb810d5d4f1eac12a3d6c9f7f6bc.shtml. [National Health Commission of the People's Republic of China. Announcement on 6 types of “Three New Foods” including β-1, 3/α-1, 3-glucan[EB/OL]. (2021-04-15) [2023-07-18]. http://www.nhc.gov.cn/sps/s3585/201412/5ecadb810d5d4f1eac12a3d6c9f7f6bc.shtml.]

    National Health Commission of the People's Republic of China. Announcement on 6 types of “Three New Foods” including β-1, 3/α-1, 3-glucan[EB/OL]. (2021-04-15) [2023-07-18]. http://www.nhc.gov.cn/sps/s3585/201412/5ecadb810d5d4f1eac12a3d6c9f7f6bc.shtml.
    [6]
    中华人民共和国国家卫生健康委员会. 关于莱茵衣藻等36种“三新食品”的公告[EB/OL]. (2022-05-05) [2024-7-18]. http://www.nhc.gov.cn/sps/s7892/202311/734de9d26bd441d9b15131dfacd3f253.shtml. [National Health Commission of the People's Republic of China. Announcement on 36 “Three New Foods”, including Chlamydomonas reinhardtii[EB/OL]. (2022-05-05) [2024-7-18]. http://www.nhc.gov.cn/sps/s7892/202311/734de9d26bd441d9b15131dfacd3f253.shtml.]

    National Health Commission of the People's Republic of China. Announcement on 36 “Three New Foods”, including Chlamydomonas reinhardtii[EB/OL]. (2022-05-05) [2024-7-18]. http://www.nhc.gov.cn/sps/s7892/202311/734de9d26bd441d9b15131dfacd3f253.shtml.
    [7]
    STATISTA RESEARCH DEPARTMENT. Phenol market volume worldwide 2015-2030[R]. New York:Statista Research Department, 2023.
    [8]
    ANGELOVA P R, ABRAMOV A Y. Role of mitochondrial ROS in the brain:From physiology to neurodegeneration[J]. Federation of European Biochemical Societies Letters,2018,592(5):692−702. doi: 10.1002/1873-3468.12964
    [9]
    张锦荣, 王彦阳. 植物多酚类化合物提取技术概况[J]. 种子科技,2019,37(9):24−26. [ZHANG Jinrong, WANG Yanyang. Overview of extraction technology of plant polyphenols[J]. Seed Science& Technology,2019,37(9):24−26.] doi: 10.3969/j.issn.1005-2690.2019.09.013

    ZHANG Jinrong, WANG Yanyang. Overview of extraction technology of plant polyphenols[J]. Seed Science& Technology, 2019, 37(9): 24−26. doi: 10.3969/j.issn.1005-2690.2019.09.013
    [10]
    林安贵, 杨灵灵. 植物提取物槲皮素调节小鼠的能量代谢和氧化应激[J]. 基因组学与应用生物学,2020,39(1):320−325. [LIN Angui, YANG Lingling. Plant extract quercetin regulates energy metabolism and oxidative stress in mice[J]. Genomics and Applied Biology,2020,39(1):320−325.]

    LIN Angui, YANG Lingling. Plant extract quercetin regulates energy metabolism and oxidative stress in mice[J]. Genomics and Applied Biology, 2020, 39(1): 320−325.
    [11]
    康萌, 李雪梅, 万静之, 等. 二氢杨梅素肝脏疾病保护作用及机制研究进展[J]. 中南药学,2024,22(5):1300−1304. [KANG Meng, LI Xuemei, WAN Jingzhi, et al. Research progress in the effect of dihydromyricetin on the prevention and treatment of liver diseases and related mechanism[J]. Central South Pharmacy,2024,22(5):1300−1304.]

    KANG Meng, LI Xuemei, WAN Jingzhi, et al. Research progress in the effect of dihydromyricetin on the prevention and treatment of liver diseases and related mechanism[J]. Central South Pharmacy, 2024, 22(5): 1300−1304.
    [12]
    SHI W M, LI L F, DING Y C, et al. The critical role of epigallocatechin gallate in regulating mitochondrial metabolism[J]. Future Medicinal Chemistry,2018,10(7):795−809. doi: 10.4155/fmc-2017-0204
    [13]
    ZHOU J, FARAH B L, SINHA R A, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance[J]. PloS One,2014,9(1):e87161. doi: 10.1371/journal.pone.0087161
    [14]
    顾艳利, 宋勇, 张方. 姜黄素在肺部炎症性疾病中的免疫调节作用[J]. 中华肺部疾病杂志(电子版),2021,14(4):539−542. [GU Yanli, SONG Yong, ZHANG Fang. Lmmunomodulatory effects of curcumin in pulmonary inflammatory diseases[J]. Chinese Journal of Lung Diseases(Electronic Edition),2021,14(4):539−542.] doi: 10.3877/cma.j.issn.1674-6902.2021.04.040

    GU Yanli, SONG Yong, ZHANG Fang. Lmmunomodulatory effects of curcumin in pulmonary inflammatory diseases[J]. Chinese Journal of Lung Diseases(Electronic Edition), 2021, 14(4): 539−542. doi: 10.3877/cma.j.issn.1674-6902.2021.04.040
    [15]
    TSAO R. Chemistry and biochemistry of dietary polyphenols[J]. Nutrients,2010,2(12):1231−1246. doi: 10.3390/nu2121231
    [16]
    MARTIN M Á, RAMOS S. Impact of cocoa flavanols on human health[J]. Food and Chemical Toxicology,2021,151:112121. doi: 10.1016/j.fct.2021.112121
    [17]
    KŘÍŽOVÁ L, DADÁKOVÁ K, KAŠPAROVSKÁ J, et al. Isoflavones[J]. Molecules,2019,24(6):1076. doi: 10.3390/molecules24061076
    [18]
    LUO Y, JIAN Y Q, LIU Y K, et al. Flavanols from nature:A phytochemistry and biological activity review[J]. Molecules,2022,27(3):719. doi: 10.3390/molecules27030719
    [19]
    ZAA C A, MARCELO Á J, AN Z, et al. Anthocyanins:Molecular aspects on their neuroprotective activity[J]. Biomolecules,2023,13(11):1598. doi: 10.3390/biom13111598
    [20]
    KONG J M, CHIA L S, GOH N K, et al. Analysis and biological activities of anthocyanins[J]. Phytochemistry,2003,64(5):923−933. doi: 10.1016/S0031-9422(03)00438-2
    [21]
    CHEN B H, STEPHEN INBARAJ B. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability[J]. Nutrients,2019,11(5):1052. doi: 10.3390/nu11051052
    [22]
    黄永健, 荀航, 张保, 等. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版),2024,48(3):237−244. [HUANG Yongjian, XUN Hang, ZHANG Bao, et al. Simultaneous determination of eight phenolic acids in bamboo shoots by HPLC and its applications[J]. Journal of Nanjing Forestry University(Natural Sciences Edition),2024,48(3):237−244.] doi: 10.12302/j.issn.1000-2006.202205047

    HUANG Yongjian, XUN Hang, ZHANG Bao, et al. Simultaneous determination of eight phenolic acids in bamboo shoots by HPLC and its applications[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2024, 48(3): 237−244. doi: 10.12302/j.issn.1000-2006.202205047
    [23]
    侯萍, 任晨阳, 黄艳, 等. 红叶野桐叶中的木脂素类化合物[J]. 广西植物,2024,44(6):1151−1158. [HOU Ping, REN Chenyang, HUANG Yan, et al. Lignans from the leaves of Mallotus paxii[J]. Guihaia,2024,44(6):1151−1158.]

    HOU Ping, REN Chenyang, HUANG Yan, et al. Lignans from the leaves of Mallotus paxii[J]. Guihaia, 2024, 44(6): 1151−1158.
    [24]
    黄樱华, 张林, 李锦妍, 等. 流苏石斛中3种木脂素类成分的含量测定研究[J]. 广州中医药大学学报,2024,41(1):207−212. [HUANG Yinghua, ZHANG Lin, LI Jinyan, et al. Determination of the contents of three lignans in Dendrobium fimbriatum Hook[J]. Journal of Guangzhou University of Traditional Chinese Medicine,2024,41(1):207−212.]

    HUANG Yinghua, ZHANG Lin, LI Jinyan, et al. Determination of the contents of three lignans in Dendrobium fimbriatum Hook[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2024, 41(1): 207−212.
    [25]
    姜丽丽, 尹航, 闫明睿, 等. 天然芪类化合物及其抗α-葡萄糖苷酶活性的研究进展[J]. 上海中医药大学学报,2021,35(2):116−124. [JIANG Lili, YIN Hang, YAN Mingrui, et al. Research progress on natural stilbenes and its inhibitory activity on α-glucosidase[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine,2021,35(2):116−124.]

    JIANG Lili, YIN Hang, YAN Mingrui, et al. Research progress on natural stilbenes and its inhibitory activity on α-glucosidase[J]. Academic Journal of Shanghai University of Traditional Chinese Medicine, 2021, 35(2): 116−124.
    [26]
    王永涛. 白皮松植物多酚的地理变异及其与环境因子的耦合关系[D]. 咸阳:西北农林科技大学, 2016. [WANG Yongtao. The geographic variation of plant polyphenols and coupling relationship with environmental factors of Pinus bungeana[D]. Xianyang:Northwest A&F University, 2016.]

    WANG Yongtao. The geographic variation of plant polyphenols and coupling relationship with environmental factors of Pinus bungeana[D]. Xianyang: Northwest A&F University, 2016.
    [27]
    MANACH C, SCALBERT A, MORAND C, et al. Polyphenols:Food sources and bioavailability[J]. The American Journal of Clinical Nutrition,2004,79(5):727−747. doi: 10.1093/ajcn/79.5.727
    [28]
    KANAZE F I, BOUNARTZI M I, GEORGARAKIS M, et al. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects[J]. European Journal of Clinical Nutrition,2007,61(4):472−477. doi: 10.1038/sj.ejcn.1602543
    [29]
    CHEN L R, KO N Y, CHEN K H. Isoflavone supplements for menopausal women:A systematic review[J]. Nutrients,2019,11(11):2649. doi: 10.3390/nu11112649
    [30]
    KIOKIAS S, OREOPOULOU V. A review of the health protective effects of phenolic acids against a range of severe pathologic conditions (Including coronavirus-based infections)[J]. Molecules,2021,26(17):5405. doi: 10.3390/molecules26175405
    [31]
    BERENSHTEIN L, OKUN Z, SHPIGELMAN A. Stability and bioaccessibility of lignans in food products[J]. American Chemical Society Omega,2024,9(2):2022−2031.
    [32]
    GÜLÇIN İ. Antioxidant properties of resveratrol:A structure-activity insight[J]. Innovative Food Science & Emerging Technologies,2010,11(1):210−218.
    [33]
    张琳. 板栗总苞抗糖尿病活性成分及Seseli hartvigii的化学成分研究[D]. 沈阳:沈阳药科大学, 2015. [ZHANG Lin. Studies on anti-diabetic constituents of involucre of Castanea mollissima Blume and chemical substants of Seseli hartvigii[D]. Shenyang:Shenyang Pharmaceutical University, 2015.]

    ZHANG Lin. Studies on anti-diabetic constituents of involucre of Castanea mollissima Blume and chemical substants of Seseli hartvigii[D]. Shenyang: Shenyang Pharmaceutical University, 2015.
    [34]
    陈凤真, 王波, 赵贵红, 等. 提高牡丹副产物附加值对策研究[J]. 中国果菜,2023,43(5):50−54. [CHEN Fengzhen, WANG Bo, ZHAO Guihong, et al. Study on countermeasures for increase the additional value of peony by-products[J]. China Fruit Vegetable,2023,43(5):50−54.]

    CHEN Fengzhen, WANG Bo, ZHAO Guihong, et al. Study on countermeasures for increase the additional value of peony by-products[J]. China Fruit Vegetable, 2023, 43(5): 50−54.
    [35]
    陈怡琳, 张峰玮, 王健英, 等. 牡丹非药用部位化学成分和药理作用研究进展[J]. 基层中医药,2023,2(5):115−124. [CHEN Yilin, ZHANG Fengwei, WANG Jianying, et al. Research progress on chemical components and pharmacological effects of non-medicinal parts of Paeonia suffruticosa Andr[J]. Basic Traditional Chinese Medicine,2023,2(5):115−124.]

    CHEN Yilin, ZHANG Fengwei, WANG Jianying, et al. Research progress on chemical components and pharmacological effects of non-medicinal parts of Paeonia suffruticosa Andr[J]. Basic Traditional Chinese Medicine, 2023, 2(5): 115−124.
    [36]
    ROJAS-GARCÍA A, FERNÁNDEZ-OCHOA Á, CÁDIZ-GURREA M de la L, et al. Neuroprotective effects of agri-food by-products rich in phenolic compounds[J]. Nutrients,2023,15(2):449. doi: 10.3390/nu15020449
    [37]
    LIU X L, WANG Y D, YU X M, et al. Mitochondria-mediated damage to dopaminergic neurons in parkinson’s disease (review)[J]. International Journal of Molecular Medicine,2018,41(2):615−623.
    [38]
    朱潇旭, 段小花, 李瑞霞, 等. 线粒体功能障碍与非酒精性脂肪肝发病关系的研究进展[J]. 山东医药,2018,58(29):108−111. [ZHU Xiaoxu, DUAN Xiaohua, LI Ruixia, et al. Research progress on the relationship between mitochondrial dysfunction and nonalcoholic fatty liver disease[J]. Shandong Medical Journal,2018,58(29):108−111.] doi: 10.3969/j.issn.1002-266X.2018.29.033

    ZHU Xiaoxu, DUAN Xiaohua, LI Ruixia, et al. Research progress on the relationship between mitochondrial dysfunction and nonalcoholic fatty liver disease[J]. Shandong Medical Journal, 2018, 58(29): 108−111. doi: 10.3969/j.issn.1002-266X.2018.29.033
    [39]
    YANG R, TAN C, NAJAFI M. Cardiac inflammation and fibrosis following chemo/radiation therapy:Mechanisms and therapeutic agents[J]. Inflammopharmacology,2022,30(1):73−89. doi: 10.1007/s10787-021-00894-9
    [40]
    VARUGHESE M, PATOLE S, SHAMA A, et al. Permissive hypercapnia in neonates:The case of the good, the bad, and the ugly[J]. Pediatric Pulmonology,2002,33(1):56−64. doi: 10.1002/ppul.10032
    [41]
    OTT M, GOGVADZE V, ORRENIUS S, et al. Mitochondria, oxidative stress and cell death[J]. Apoptosis:An International Journal on Programmed Cell Death,2007,12(5):913−922. doi: 10.1007/s10495-007-0756-2
    [42]
    IPSEN D H, LYKKESFELDT J, TVEDEN-NYBORG P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease[J]. Cellular and Molecular Life Sciences,2018,75(18):3313−3327. doi: 10.1007/s00018-018-2860-6
    [43]
    ZHOU B, TIAN R. Mitochondrial dysfunction in pathophysiology of heart failure[J]. The Journal of Clinical Investigation,2018,128(9):3716−3726. doi: 10.1172/JCI120849
    [44]
    SANKAR V, PANGAYARSELVI B, PRATHAPAN A, et al. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations[J]. Journal of Cardiovascular Pharmacology,2013,61(1):23−34. doi: 10.1097/FJC.0b013e3182756ad3
    [45]
    MISRA M K, SARWAT M, BHAKUNI P, et al. Oxidative stress and ischemic myocardial syndromes[J]. Medical Science Monitor:International Medical Journal of Experimental and Clinical Research,2009,15(10):RA209−219.
    [46]
    LI C J, ZHANG Q M, LI M Z, et al. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy[J]. Chinese Medical Journal,2009,122(21):2580−2586.
    [47]
    SARKAR A, MIDDYA T R, JANA A D. A QSAR study of radical scavenging antioxidant activity of a series of flavonoids using DFT based quantum chemical descriptors--the importance of group frontier electron density[J]. Journal of Molecular Modeling, 2012, 18(6):2621-2631.
    [48]
    SARKAR A, MIDDYA T R, JANA A D. A QSAR study of radical scavenging antioxidant activity of a series of flavonoids using DFT based quantum chemical descriptors-the importance of group frontier electron density[J]. Journal of Molecular Modeling,2012,18(6):2621−2631. doi: 10.1007/s00894-011-1274-2
    [49]
    徐敏, 廉法英, 邵欢. 栀子苷调节AMPK/SIRT1/NF-κB信号通路对子痫前期大鼠氧化应激和炎症损伤的影响[J]. 中国优生与遗传杂志,2023,31(8):1593−1598. [XU Min, LIAN Faying, SHAO Huan. Influence of geniposide on oxidative stress and inflammatory injury in preeclamptic rats by regulating AMPK/SIRT1/NF-κB signaling pathway[J]. Chinese Journal of Birth Health & Heredity,2023,31(8):1593−1598.]

    XU Min, LIAN Faying, SHAO Huan. Influence of geniposide on oxidative stress and inflammatory injury in preeclamptic rats by regulating AMPK/SIRT1/NF-κB signaling pathway[J]. Chinese Journal of Birth Health & Heredity, 2023, 31(8): 1593−1598.
    [50]
    ZHANG Y H, TAN X Y, CAO Y, et al. Punicalagin protects against diabetic liver injury by upregulating mitophagy and antioxidant enzyme activities[J]. Nutrients,2022,14(14):2782. doi: 10.3390/nu14142782
    [51]
    PALSAMY P, SUBRAMANIAN S. Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats[J]. Journal of Cellular Physiology,2010,224(2):423−432. doi: 10.1002/jcp.22138
    [52]
    ZHANG J J, GAO B L, YE B L, et al. Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases[J]. Advanced Materials,2023,35(11):2208571. doi: 10.1002/adma.202208571
    [53]
    CALABRESE E J. Neuroscience and hormesis:Overview and general findings[J]. Critical Reviews in Toxicology,2008,38(4):249−252. doi: 10.1080/10408440801981957
    [54]
    TSUJI P A, STEPHENSON K K, WADE K L, et al. Structure-activity analysis of flavonoids:Direct and indirect antioxidant, and antiinflammatory potencies and toxicities[J]. Nutrition and Cancer,2013,65(7):1014−1025. doi: 10.1080/01635581.2013.809127
    [55]
    付凯, 王永辉, 贠洁, 等. 茶多酚激活Nrf2/HO-1通路减轻阿司匹林诱导的GES-1细胞损伤的机制研究[J]. 中国药学杂志,2024,59(1):45−51. [FU Kai, WANG Yonghui, YUN Jie, et al. Mechanism study of tea polyphenols alleviating aspirin-induced injury in GES-1 cells through activating Nrf2/HO-1 pathway[J]. Chinese Pharmaceutical Journal,2024,59(1):45−51.] doi: 10.11669/cpj.2024.01.006

    FU Kai, WANG Yonghui, YUN Jie, et al. Mechanism study of tea polyphenols alleviating aspirin-induced injury in GES-1 cells through activating Nrf2/HO-1 pathway[J]. Chinese Pharmaceutical Journal, 2024, 59(1): 45−51. doi: 10.11669/cpj.2024.01.006
    [56]
    HUANG D D, SHI G, JIANG Y, et al. A review on the potential of resveratrol in prevention and therapy of diabetes and diabetic complications[J]. Biomedicine & Pharmacotherapy,2020,125:109767.
    [57]
    张恒恺. 石榴皮多酚与短链脂肪酸对结肠细胞功能损伤保护机制研究[D]. 西安:陕西师范大学, 2022. [ZHANG Hengkai. Study on the protective mechanism of pomegranate peel polyphenols and short-chain fatty acids on colonic cell function damage[D]. Xi’an:Shaanxi Normal University, 2022.]

    ZHANG Hengkai. Study on the protective mechanism of pomegranate peel polyphenols and short-chain fatty acids on colonic cell function damage[D]. Xi’an: Shaanxi Normal University, 2022.
    [58]
    CHERUBINI M, LOPEZ-MOLINA L, GINES S. Mitochondrial fission in Huntington’s disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and reactive oxygen species (ROS) homeostasis[J]. Neurobiology of Disease,2020,136:104741. doi: 10.1016/j.nbd.2020.104741
    [59]
    VULTUR A, GIBHARDT C S, STANISZ H, et al. The role of the mitochondrial calcium uniporter (MCU) complex in cancer[J]. Pflügers Archiv-European Journal of Physiology,2018,470(8):1149−1163.
    [60]
    ELUSTONDO P A, NICHOLS M, ROBERTSON G S, et al. Mitochondrial Ca2+ uptake pathways[J]. Journal of Bioenergetics and Biomembranes,2017,49(1):113−119. doi: 10.1007/s10863-016-9676-6
    [61]
    BROOKES P S, YOON Y, ROBOTHAM J L, et al. Calcium, ATP, and ROS:A mitochondrial love-hate triangle[J]. American Journal of Physiology. Cell Physiology,2004,287(4):C817−833. doi: 10.1152/ajpcell.00139.2004
    [62]
    WU A, ZHANG J, LI Q, et al. (-)-Epigallocatechin-3-gallate directly binds cyclophilin D:A potential mechanism for mitochondrial protection[J]. Molecules,2022,27(24):8661. doi: 10.3390/molecules27248661
    [63]
    BERNARDI P, GERLE C, HALESTRAP A P, et al. Identity, structure, and function of the mitochondrial permeability transition pore:Controversies, consensus, recent advances, and future directions[J]. Cell Death & Differentiation,2023,30(8):1869−1885.
    [64]
    LI Y, WU J, YANG M, et al. Physiological evidence of mitochondrial permeability transition pore opening caused by lipid deposition leading to hepatic steatosis in db/db mice[J]. Free Radical Biology & Medicine,2021,162:523−532.
    [65]
    YING Y, JIANG P. Research progress on transient receptor potential melastatin 2 channel in nervous system diseases[J]. Journal of Zhejiang University (Medical Sciences),2021,50(2):267−276. doi: 10.3724/zdxbyxb-2021-0110
    [66]
    KHERADPEZHOUH E, BARRITT G J, RYCHKOV G Y. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes[J]. Redox Biology,2016,7:1−7. doi: 10.1016/j.redox.2015.11.001
    [67]
    曹玉爽, 徐耀, 杨娟, 等. 丹参多酚酸与三七总皂苷合用保护OGD/R损伤胶质细胞线粒体、促进神经因子表达作用研究[J]. 云南中医学院学报,2021,44(4):1−8,21. [CAO Yushuang, XU Yao, YANG Juan, et al. Study on the effects of SAL and PNS on protecting glial mitochondria and promoting the expression of neural factors[J]. Journal of Yunnan University of Chinese Medicine,2021,44(4):1−8,21.]

    CAO Yushuang, XU Yao, YANG Juan, et al. Study on the effects of SAL and PNS on protecting glial mitochondria and promoting the expression of neural factors[J]. Journal of Yunnan University of Chinese Medicine, 2021, 44(4): 1−8,21.
    [68]
    辛庆锋, 孙有利, 李超彦, 等. 异鼠李素通过抑制钙超载和线粒体功能损伤减轻阿霉素所致大鼠心肌细胞凋亡[J]. 中南药学,2017,15(7):915−918. [XIN Qingfeng, SUN Youli, LI Chaoyan, et al. Isorhamnetin reduces the injury of myocardial cell apoptosis induced by adriamycin by inhibiting calcium overload and mitochondrial function[J]. Central South Pharmacy,2017,15(7):915−918.] doi: 10.7539/j.issn.1672-2981.2017.07.012

    XIN Qingfeng, SUN Youli, LI Chaoyan, et al. Isorhamnetin reduces the injury of myocardial cell apoptosis induced by adriamycin by inhibiting calcium overload and mitochondrial function[J]. Central South Pharmacy, 2017, 15(7): 915−918. doi: 10.7539/j.issn.1672-2981.2017.07.012
    [69]
    ASHRAFIZADEH M, JAVANMARDI S, MORADI-OZARLOU M, et al. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy:An updated review on resveratrol[J]. Bioscience Reports,2020,40(4):BSR20200257. doi: 10.1042/BSR20200257
    [70]
    WANG M, RUAN Y X, CHEN Q, et al. Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca2+ concentration[J]. European Journal of Pharmacology,2011,650(1):41−47. doi: 10.1016/j.ejphar.2010.09.049
    [71]
    NOLFI-DONEGAN D, BRAGANZA A, SHIVA S. Mitochondrial electron transport chain:Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biology,2020,37:101674. doi: 10.1016/j.redox.2020.101674
    [72]
    GUEGUEN N, DESQUIRET-DUMAS V, LEMAN G, et al. Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice[J]. PLoS ONE,2015,10(12):e0144290. doi: 10.1371/journal.pone.0144290
    [73]
    KIPP J L, RAMIREZ V D. Effect of estradiol, diethylstilbestrol, and resveratrol on F0F1-ATPase activity from mitochondrial preparations of rat heart, liver, and brain[J]. Endocrine,2001,15(2):165−175. doi: 10.1385/ENDO:15:2:165
    [74]
    孙姝婵, 龚迪菲, 袁天翊, 等. 葛根素通过改善线粒体呼吸功能减轻血管内皮细胞氧化损伤[J]. 药学学报,2022,57(5):1352−1360. [SUN Shuchan, GONG Difei, YUAN Tianyi, et al. Puerarin reduces oxidative damage to vascular endothelial cells by improving mitochondrial respiratory function[J]. Acta Pharmaceutica Sinica,2022,57(5):1352−1360.]

    SUN Shuchan, GONG Difei, YUAN Tianyi, et al. Puerarin reduces oxidative damage to vascular endothelial cells by improving mitochondrial respiratory function[J]. Acta Pharmaceutica Sinica, 2022, 57(5): 1352−1360.
    [75]
    YOSHIDA Y, TAMURA Y, KOUZAKI K, et al. Dietary apple polyphenols enhance mitochondrial turnover and respiratory chain enzymes[J]. Experimental Physiology,2023,108(10):1295−1307. doi: 10.1113/EP091154
    [76]
    万一方. 核桃多酚缓解马拉硫磷对小鼠脾淋巴细胞所致氧化毒性[D]. 北京:北京林业大学, 2020. [WAN Yifang. Walnut polyphenol attenuates oxidative toxicity induced by malathion in murine splenic lymphocyte[D]. Beijing:Beijing Forestry University, 2020.]

    WAN Yifang. Walnut polyphenol attenuates oxidative toxicity induced by malathion in murine splenic lymphocyte[D]. Beijing: Beijing Forestry University, 2020.
    [77]
    HASLEM L, HAYS J M, HAYS F A. p66Shc in cardiovascular pathology[J]. Cells,2022,11(11):1855. doi: 10.3390/cells11111855
    [78]
    ALBIERO M, D’ANNA M, BONORA B M, et al. Hematopoietic and nonhematopoietic p66Shc differentially regulates stem cell traffic and vascular response to ischemia in diabetes[J]. Antioxidants & Redox Signaling,2022,36(10-12):593−607.
    [79]
    王沛, 剡冬冬, 彭瑜, 等. 衔接蛋白p66Shc在心肌缺血再灌注损伤中的作用研究进展[J]. 解放军医学杂志,2023,48(4):456−460. [WANG Pei, YAN Dongdong, PENG Yu, et al. Research progress on the role of adaptor protein p66Shc in myocardial ischemia-reperfusion injury[J]. Medical Journal of Chinese People’s Liberation Army,2023,48(4):456−460.] doi: 10.11855/j.issn.0577-7402.2022.04.0456

    WANG Pei, YAN Dongdong, PENG Yu, et al. Research progress on the role of adaptor protein p66Shc in myocardial ischemia-reperfusion injury[J]. Medical Journal of Chinese People’s Liberation Army, 2023, 48(4): 456−460. doi: 10.11855/j.issn.0577-7402.2022.04.0456
    [80]
    SONG Y, YU H, SUN Q, et al. Grape seed proanthocyanidin extract targets p66Shc to regulate mitochondrial biogenesis and dynamics in diabetic kidney disease[J]. Frontiers in Pharmacology,2023,13:1035755. doi: 10.3389/fphar.2022.1035755
    [81]
    MOINI H, ARROYO A, VAYA J, et al. Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state[J]. Redox Report,1999,4(1-2):35−41. doi: 10.1179/135100099101534729
    [82]
    VALDAMERI G, HERRERIAS T, CARNIERI E G S, et al. Importance of the core structure of flavones in promoting inhibition of the mitochondrial respiratory chain[J]. Chemico-Biological Interactions,2010,188(1):52−58. doi: 10.1016/j.cbi.2010.07.016
    [83]
    MA Y W, WANG L H, JIA R B. The role of mitochondrial dynamics in human cancers[J]. American Journal of Cancer Research,2020,10(5):1278−1293.
    [84]
    NI Y, DENG J, LIU X, et al. Echinacoside reverses myocardial remodeling and improves heart function via regulating SIRT1/FOXO3a/MnSOD axis in HF rats induced by isoproterenol[J]. Journal of Cellular and Molecular Medicine,2021,25(1):203−216. doi: 10.1111/jcmm.15904
    [85]
    郑凯, 杨梅桂, 闫朝君, 等. 线粒体动力学与细胞凋亡[J]. 中国细胞生物学学报,2019,41(8):1467−1476. [ZHENG Kai, YANG Meigui, YAN Chaojun, et al. Mitochondrial dynamics and apoptosis[J]. Chinese Journal of Cell Biology,2019,41(8):1467−1476.]

    ZHENG Kai, YANG Meigui, YAN Chaojun, et al. Mitochondrial dynamics and apoptosis[J]. Chinese Journal of Cell Biology, 2019, 41(8): 1467−1476.
    [86]
    ONG S B, KALKHORAN S B, CABRERA-FUENTES H A, et al. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease[J]. European Journal of Pharmacology,2015,763:104−114. doi: 10.1016/j.ejphar.2015.04.056
    [87]
    黄海军. 黄芪总甙通过干预BNIP3LNIX和FUNDC1介导的线粒体分裂和融合影响心肌重构的机制[D]. 杭州:江中医药大学, 2023. [HUANG Haijun. The mechanism of astragalosides affecting myocardial remodeling by interfering with BNIP3LNIX and FUNDC1-mediated mitochondrial fission and fusion[D]. Hangzhou:Zhejiang Chinese Medical University, 2023.]

    HUANG Haijun. The mechanism of astragalosides affecting myocardial remodeling by interfering with BNIP3LNIX and FUNDC1-mediated mitochondrial fission and fusion[D]. Hangzhou: Zhejiang Chinese Medical University, 2023.
    [88]
    钟玉杰, 师振强, 晋程妮, 等. 芹菜素对3-氯-1, 2-丙二醇诱导的大鼠肾损伤及线粒体分裂融合的影响[J]. 食品科学,2019,40(9):107−114. [ZHONG Yujie, SHI Zhenqiang, JIN Chengni, et al. Effect of apigenin on 3-chloro-1, 2-propanediol induced renal injury and mitochondrial fission and fusion in rats[J]. Food Science,2019,40(9):107−114.] doi: 10.7506/spkx1002-6630-20171121-268

    ZHONG Yujie, SHI Zhenqiang, JIN Chengni, et al. Effect of apigenin on 3-chloro-1, 2-propanediol induced renal injury and mitochondrial fission and fusion in rats[J]. Food Science, 2019, 40(9): 107−114. doi: 10.7506/spkx1002-6630-20171121-268
    [89]
    YANG H H, XUE W, DING C J, et al. Vitexin mitigates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction via epac1-rap1 signaling[J]. Oxidative Medicine and Cellular Longevity,2021,2021:e9921982. doi: 10.1155/2021/9921982
    [90]
    CAO B, ZENG M N, HAO F X, et al. Two polyphenols isolated from Corallodiscus flabellata B. L. Burtt ameliorate amyloid β-protein induced Alzheimer’s disease neuronal injury by improving mitochondrial homeostasis[J]. Behavioural Brain Research,2023,440:114264. doi: 10.1016/j.bbr.2022.114264
    [91]
    罗云彦. 白藜芦醇通过激活parkin介导的线粒体自噬提高猪肠道抗氧化能力的作用及其机制[D]. 南宁:广西大学, 2023. [LUO Yunyan. Effects of resveratrol on enhancing antioxidant capacity of porcine intestinal tract by activating parkin-mediated mitochondrial autophagy and its mechanism[D]. Nanning:Guangxi University, 2023.]

    LUO Yunyan. Effects of resveratrol on enhancing antioxidant capacity of porcine intestinal tract by activating parkin-mediated mitochondrial autophagy and its mechanism[D]. Nanning: Guangxi University, 2023.
    [92]
    KAMAT P K, KALANI A, KYLES P, et al. Autophagy of mitochondria:A promising therapeutic target for neurodegenerative disease[J]. Cell Biochemistry and Biophysics,2014,70(2):707−719. doi: 10.1007/s12013-014-0006-5
    [93]
    RANJBARVAZIRI S, KOOIKER K B, ELLENBERGER M, et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy[J]. Circulation,2021,144(21):1714−1731. doi: 10.1161/CIRCULATIONAHA.121.053575
    [94]
    CHANDRASEKARAN V, HEDIYAL T A, ANAND N, et al. Polyphenols, autophagy and neurodegenerative diseases:A review[J]. Biomolecules,2023,13(8):1196. doi: 10.3390/biom13081196
    [95]
    SPRINGER M Z, MACLEOD K F. In brief:Mitophagy:Mechanisms and role in human disease[J]. The Journal of Pathology,2016,240(3):253−255. doi: 10.1002/path.4774
    [96]
    曹雨欣, 张彦青, 戚务勤, 等. 食源性天然产物调控线粒体自噬预防神经退行性疾病的研究进展[J]. 食品科学,2024,45(1):301−312. [CAO Yuxin, ZHANG Yanqing, QI Wuqin, et al. Food-derived natural products prevent neurodegenerative diseases by regulating mitophagy:A review of research progress[J]. Food Science,2024,45(1):301−312.] doi: 10.7506/spkx1002-6630-20230113-104

    CAO Yuxin, ZHANG Yanqing, QI Wuqin, et al. Food-derived natural products prevent neurodegenerative diseases by regulating mitophagy: A review of research progress[J]. Food Science, 2024, 45(1): 301−312. doi: 10.7506/spkx1002-6630-20230113-104
    [97]
    FENG W J, LV C H, CHENG L, et al. Targeting ERS-mitophagy in hippocampal neurons to explore the improvement of memory by tea polyphenols in aged type 2 diabetic rats[J]. Free Radical Biology and Medicine,2024,213:293−308. doi: 10.1016/j.freeradbiomed.2024.01.044
    [98]
    JIN Z Z, CHANG B H, WEI Y L, et al. Curcumin exerts chondroprotective effects against osteoarthritis by promoting AMPK/PINK1/Parkin-mediated mitophagy[J]. Biomedicine & Pharmacotherapy,2022,151:113092.
    [99]
    HAN X J, XU T S, FANG Q J, et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy[J]. Redox Biology,2021,44:102010. doi: 10.1016/j.redox.2021.102010
    [100]
    YU X, XU Y Y, ZHANG S S, et al. Quercetin attenuates chronic ethanol-induced hepatic mitochondrial damage through enhanced mitophagy[J]. Nutrients,2016,8(1):27. doi: 10.3390/nu8010027
    [101]
    CAO P, WANG Y, ZHANG C, et al. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy[J]. The Journal of Nutritional Biochemistry,2023,120:109414. doi: 10.1016/j.jnutbio.2023.109414
    [102]
    石拴霞, 王纪田, 宋诚, 等. 白藜芦醇介导AMPK/mTOR信号通路调控线粒体自噬缓解小鼠精原细胞氧化应激损伤和凋亡[J]. 中国药学杂志,2024,59(5):416−424. [SHI Shuanxia, WANG Jitian, SONG Cheng, et al. Investigation on resveratrol regulating mitophagy to alleviate oxidative stress injury and apoptosis of Gc-1 spg cells via AMPK/mTOR signaling pathway[J]. Chinese Pharmaceutical Journal,2024,59(5):416−424.]

    SHI Shuanxia, WANG Jitian, SONG Cheng, et al. Investigation on resveratrol regulating mitophagy to alleviate oxidative stress injury and apoptosis of Gc-1 spg cells via AMPK/mTOR signaling pathway[J]. Chinese Pharmaceutical Journal, 2024, 59(5): 416−424.
    [103]
    PARK D, JEONG H, LEE M N, et al. Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition[J]. Scientific Reports,2016,6(1):21772. doi: 10.1038/srep21772
    [104]
    CHUNG S, YAO H W, CAITO S, et al. Regulation of SIRT1 in cellular functions:Role of polyphenols SIRT1[J]. Archives of Biochemistry and Biophysics,2010,501(1):79−90. doi: 10.1016/j.abb.2010.05.003

Catalog

    Article Metrics

    Article views (46) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return