TIAN Hong, PANG Li, YANG Wentao, et al. Recombinant Expression and Immobilization of Pantoea dispersa DJL-B Alcohol Dehydrogenase[J]. Science and Technology of Food Industry, 2025, 46(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060040.
Citation: TIAN Hong, PANG Li, YANG Wentao, et al. Recombinant Expression and Immobilization of Pantoea dispersa DJL-B Alcohol Dehydrogenase[J]. Science and Technology of Food Industry, 2025, 46(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060040.

Recombinant Expression and Immobilization of Pantoea dispersa DJL-B Alcohol Dehydrogenase

More Information
  • Received Date: June 05, 2024
  • Available Online: March 01, 2025
  • To enhance the expression level of recombinant alcohol dehydrogenase in E. coli BL21(DE3), this study investigated the effects of induction temperature, induction time, and IPTG concentration on enzyme expression through one-way experiments. Additionally, the immobilization of recombinant alcohol dehydrogenase using sodium alginate embedding was examined to improve its application in geraniol conversion. The results indicated that the optimal expression conditions for recombinant alcohol dehydrogenase in E. coli BL21(DE3) were an induction temperature of 28 ℃, an induction time of 20 hours, and an IPTG concentration of 0.1 mmol/L. Furthermore, the conditions for immobilization were: immobilization temperature of 20 ℃, sodium alginate concentration of 3.5%, and enzyme addition of 500 μL. Meanwhile, the immobilized enzyme showed good mechanical stability, and the relative enzyme activity was still maintained at about 60% after 5 times of reuse, demonstrating good reusability. The results of the study provide an important theoretical reference for the industrial preparation of geranial using immobilized enzyme catalysis, which has good application prospects.
  • [1]
    KING A, RICHARD D J. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis[J]. Yeast,2000,16(6):499−506. doi: 10.1002/(SICI)1097-0061(200004)16:6<499::AID-YEA548>3.0.CO;2-E
    [2]
    TAN C S, HASSAN M, MOHAMED H Z A, et al. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis[J]. Plant Physiology and Biochemistry,2018,123:359−368. doi: 10.1016/j.plaphy.2017.12.033
    [3]
    ANDRADE M A, das GRACAS C M, de ANDRADE J, et al. Chemical composition and antioxidant activity of essential oils from Cinnamodendron dinisii schwacke and Siparuna guianensis aublet[J]. Antioxidants (Basel),2013,2(4):384−397. doi: 10.3390/antiox2040384
    [4]
    RIBEAUCOURT D, HOFLER G T, YEMLOUL M, et al. Tunable production of (R)-or (S)-citronellal from geraniol via a bienzymatic cascade using a copper radical alcohol oxidase and old yellow enzyme[J]. ACS Catal,2022,12(2):1111−1116. doi: 10.1021/acscatal.1c05334
    [5]
    周玉慧. 天然柠檬醛衍生物的合成与抑菌活性研究[D]. 南昌:江西农业大学, 2014. [ZHOU Y H. Synthesis and antibacterial activity of natural citral derivatives[D]. Nanchang:Jiangxi Agricultural University, 2014.]

    ZHOU Y H. Synthesis and antibacterial activity of natural citral derivatives[D]. Nanchang: Jiangxi Agricultural University, 2014.
    [6]
    何宗耀, 莫瑶江, 晏日安, 等. (E, E)-8-溴代香叶醛的合成[J]. 中山大学学报:自然科学版,1997(6):121−123. [HE Z Y, MO Y J, YAN R, et al. Synthesis of (E, E)-8-bromocoumarin[J]. Journal of Sun Yat-sen University:Natural Science Edition,1997(6):121−123.]

    HE Z Y, MO Y J, YAN R, et al. Synthesis of (E, E)-8-bromocoumarin[J]. Journal of Sun Yat-sen University: Natural Science Edition, 1997(6): 121−123.
    [7]
    胡建国. 酵母菌转化香叶醇和橙花醇的机制研究[D]. 合肥:安徽农业大学, 2008. [HU J G. Mechanism of conversion of geraniol and nerolidol by Saccharomyces cerevisiae [D]. Hefei:Anhui Agricultural University, 2008.]

    HU J G. Mechanism of conversion of geraniol and nerolidol by Saccharomyces cerevisiae [D]. Hefei: Anhui Agricultural University, 2008.
    [8]
    胡建国. 酵母对香叶醇转变为香叶醛抗黑霉菌的研究[J]. 安徽农学通报,2012,18(10):48−59. [HU J G. Study on the conversion of geraniol to geranial by yeast against black mould[J]. Anhui Agricultural Bulletin,2012,18(10):48−59.] doi: 10.3969/j.issn.1007-7731.2012.10.027

    HU J G. Study on the conversion of geraniol to geranial by yeast against black mould[J]. Anhui Agricultural Bulletin, 2012, 18(10): 48−59. doi: 10.3969/j.issn.1007-7731.2012.10.027
    [9]
    ZHENG Y G, YIN H H, YU D F, et al. Recent advances in biotechnological applications of alcohol dehydrogenases[J]. Appl Microbiol Biotechnol,2017,101(3):987−1001. doi: 10.1007/s00253-016-8083-6
    [10]
    IIJIMA Y, WANG G, FRIDMAN E, et al. Analysis of the enzymatic formation of citral in the glands of sweet basil[J]. Archives of Biochemistry and Biophysics,2006,448(1-2):141−149. doi: 10.1016/j.abb.2005.07.026
    [11]
    SATO-MASUMOTO N, ITO M. Two types of alcohol dehydrogenase from Perilla can form citral and perillaldehyde[J]. Phytochemistry,2014,104:12−20. doi: 10.1016/j.phytochem.2014.04.019
    [12]
    KRAUSE S T, LIAO P, CROCOLL C, et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(52):e2110092118.
    [13]
    WOLKEN W A, van der WERF M J. Geraniol biotransformation-pathway in spores of Penicillium digitatum[J]. Appl Microbiol Biotechnol,2001,57(5-6):731−737. doi: 10.1007/s002530100821
    [14]
    YUAN T T, CHEN Q Q, ZHAO P J, et al. Identification of enzymes responsible for the reduction of geraniol to citronellol[J]. Natural Products and Bioprospecting,2011,1(3):108−111. doi: 10.1007/s13659-011-0032-6
    [15]
    JOHNSON R. Biotransformations for bioremediation[J]. Nat Chem Biol,2023,19(11):1287−1289. doi: 10.1038/s41589-023-01446-8
    [16]
    HALL M, HAUER B, STUERMER R, et al. Asymmetric whole-cell bioreduction of an α, β-unsaturated aldehyde (citral):Competing prim-alcohol dehydrogenase and C–C lyase activities[J]. Tetrahedron:Asymmetry,2006,17(21):3058−3062.
    [17]
    张永勤, 许文廷, 邢明霞, 等. 表面脱乙酰化甲壳素颗粒固定溶菌酶及酶学性质研究[J]. 食品工业科技,2019,40(5):188−200. [ZHANG Y Q, XU W T, XING M X, et al. Immobilisation of lysozyme by surface deacetylated chitin particles and study of enzymatic properties[J]. Science and Technology of Food Industry,2019,40(5):188−200.]

    ZHANG Y Q, XU W T, XING M X, et al. Immobilisation of lysozyme by surface deacetylated chitin particles and study of enzymatic properties[J]. Science and Technology of Food Industry, 2019, 40(5): 188−200.
    [18]
    黄珍, 王慧, 黄芳, 等. 壳聚糖固定化海藻糖合酶[J]. 食品工业科技,2018,39(19):130−141. [HUANG Z, WANG H, HUANG F, et al. Chitosan immobilisation of alginate synthase[J]. Science and Technology of Food Industry,2018,39(19):130−141.]

    HUANG Z, WANG H, HUANG F, et al. Chitosan immobilisation of alginate synthase[J]. Science and Technology of Food Industry, 2018, 39(19): 130−141.
    [19]
    DHIMAN S, SRIVASTAVA B, SINGH G, et al. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin:An easy and cost effective approach for the improvement of enzyme properties[J]. International Journal of Biological Macromolecules,2020,156:1347−1358. doi: 10.1016/j.ijbiomac.2019.11.175
    [20]
    BAI Y, WU W. The neutral protease immobilization:physical characterization of sodium alginate-chitosan gel beads[J]. Appl Biochem Biotechnol,2022,194(5):2269−2283. doi: 10.1007/s12010-021-03773-9
    [21]
    ABKA-KHAJOUEI R, TOUNSI L, SHAHABI N, et al. Structures, properties and applications of alginates[J]. Mar Drugs,2022,20(6):364−382. doi: 10.3390/md20060364
    [22]
    杨小叶, 马淑凤, 王利强. 海藻酸钠基凝胶球的制备、改性及其食品包装的应用研究进展[J]. 食品工业科技,2023,44(24):376−383. [YANG X Y, MA S F, WANG L Q. Research progress on the preparation and modification of sodium alginate-based gel spheres and their application in food packaging[J]. Science and Technology of Food Industry,2023,44(24):376−383.]

    YANG X Y, MA S F, WANG L Q. Research progress on the preparation and modification of sodium alginate-based gel spheres and their application in food packaging[J]. Science and Technology of Food Industry, 2023, 44(24): 376−383.
    [23]
    张懿婷. 多菌灵降解菌的筛选及转录组分析[D]. 长沙:湖南农业大学, 2022. [ZHANG Y T. Screening and transcriptome analysis of carbendazim-degrading bacteria [D]. Changsha:Hunan Agricultural University, 2022.]

    ZHANG Y T. Screening and transcriptome analysis of carbendazim-degrading bacteria [D]. Changsha: Hunan Agricultural University, 2022.
    [24]
    陈炜烨, 刘冬冬, 徐建华, 等. ImageJ软件在重组质粒pET32a-CDK2中蛋白表达的应用[J]. 中国热带医学,2014,14(1):23−25. [CHEN W Y, LIU D D, XU J H, et al. Application of ImageJ software for protein expression in recombinant plasmid pET32a-CDK2[J]. China Tropical Medicine,2014,14(1):23−25.]

    CHEN W Y, LIU D D, XU J H, et al. Application of ImageJ software for protein expression in recombinant plasmid pET32a-CDK2[J]. China Tropical Medicine, 2014, 14(1): 23−25.
    [25]
    GERST R, CSERESNYES Z, FIGGE M T. JIPipe:visual batch processing for ImageJ[J]. Nat Methods,2023,20(2):168−169. doi: 10.1038/s41592-022-01744-4
    [26]
    CHEN X, DOU Z, LUO T, et al. Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum[J]. Bioresour Technol,2022,363:127889. doi: 10.1016/j.biortech.2022.127889
    [27]
    常开霞, 孙军勇, 李晓敏, 等. 胃乙醇脱氢酶δδ-ADH的原核表达及酶学性质[J]. 食品与生物技术学报,2019,38(7):78−85. [CHANG K X, SUN J Y, LI X M, et al. Prokaryotic expression and enzymatic properties of gastric ethanol dehydrogenase δδ-ADH[J]. Journal of Food Science and Biotechnology,2019,38(7):78−85.] doi: 10.3969/j.issn.1673-1689.2019.07.011

    CHANG K X, SUN J Y, LI X M, et al. Prokaryotic expression and enzymatic properties of gastric ethanol dehydrogenase δδ-ADH[J]. Journal of Food Science and Biotechnology, 2019, 38(7): 78−85. doi: 10.3969/j.issn.1673-1689.2019.07.011
    [28]
    廉德君, 李林, 许根俊. 酵母醇脱氢酶ADHI的纯化及动力学研究[J]. 生物化学与生物物理学报,1996(4):396−403. [LIAN D J, LI L, XU G J. Purification and kinetic study of yeast alcohol dehydrogenase ADHI[J]. Acta Biochimica et Biophysica Sinica,1996(4):396−403.]

    LIAN D J, LI L, XU G J. Purification and kinetic study of yeast alcohol dehydrogenase ADHI[J]. Acta Biochimica et Biophysica Sinica, 1996(4): 396−403.
    [29]
    袁建平, 侯晓强. 固定化技术在壳聚糖酶生产中的应用[J]. 湖北农业科学,2013,52(21):5282−5284. [YUAN J P, HOU X Q. Application of immobilisation technology in chitosanase production[J]. Hubei Agricultural Science,2013,52(21):5282−5284.] doi: 10.3969/j.issn.0439-8114.2013.21.047

    YUAN J P, HOU X Q. Application of immobilisation technology in chitosanase production[J]. Hubei Agricultural Science, 2013, 52(21): 5282−5284. doi: 10.3969/j.issn.0439-8114.2013.21.047
    [30]
    SCHEIN C, NOTEBORN M. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature[J]. Bio/technology,1988,6(3):291−294.
    [31]
    任彬, 李博, 范超, 等. L-天冬氨酸α-脱羧酶异源表达和转化条件的优化[J]. 大连工业大学学报,2022,41(1):23−26. [REN B, LI B, FAN C, et al. Optimisation of heterologous expression and transformation conditions of L-aspartate α-decarboxylase[J]. Journal of Dalian Polytechnic University,2022,41(1):23−26.]

    REN B, LI B, FAN C, et al. Optimisation of heterologous expression and transformation conditions of L-aspartate α-decarboxylase[J]. Journal of Dalian Polytechnic University, 2022, 41(1): 23−26.
    [32]
    张经纬, 刘晓青, 田健, 等. 基于结构基础的嗜热细菌贝斯其热解纤维素菌木聚糖酶CbXyn10C的热稳定性分子改良[J]. 微生物学通报,2023,50(12):5261−5274. [ZHANG J W, LIU X Q, TIAN J, et al. Structural basis for the molecular improvement of the thermal stability of thermophilic bacterium Beschichtung's thermolabile cellulolytic bacterial xylanase CbXyn10C[J]. Microbiology China,2023,50(12):5261−5274.]

    ZHANG J W, LIU X Q, TIAN J, et al. Structural basis for the molecular improvement of the thermal stability of thermophilic bacterium Beschichtung's thermolabile cellulolytic bacterial xylanase CbXyn10C[J]. Microbiology China, 2023, 50(12): 5261−5274.
    [33]
    TOKSOY E, ONSAN Z I, KIRDAR B. High-level production of TaqI restriction endonuclease by three different expression systems in Escherichia coli cells using the T7 phage promoter[J]. Applied Microbiology and Biotechnology,2002,59:239−245. doi: 10.1007/s00253-002-1001-0
    [34]
    ZHAO M, TAO X Y, WANG F Q, et al. Establishment of a low-dosage-IPTG inducible expression system construction method in Escherichia coli[J]. J Basic Microbiol,2018,58(9):806−810. doi: 10.1002/jobm.201800160
    [35]
    EINSFELDT K, SEVERO JÚNIOR J B, CORRÊA ARGONDIZZO A P, et al. Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli:study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability[J]. Vaccine,2011,29(41):7136−7143. doi: 10.1016/j.vaccine.2011.05.073
    [36]
    EILERTSEN J, SCHNELL S. A Kinetic analysis of coupled (or auxiliary) enzyme reactions[J]. Bulletin of Mathematical Biology,2018,80(32):3154−3183.
    [37]
    LEE K Y, MOONEY D J. Alginate:properties and biomedical applications[J]. Prog Polym Sci,2012,37(1):106−126. doi: 10.1016/j.progpolymsci.2011.06.003
    [38]
    罗空亮, 郝红英, 殷勇刚, 等. 多孔HZIF-8固定化酶及其降解苯酚的性能研究[J]. 应用化工,2024,53(3):560−564. [LUO K L, HAO H Y, YIN Y G, et al. Porous HZIF-8 immobilised enzyme and its performance in degrading phenol[J]. Applied Chemical Industry,2024,53(3):560−564.] doi: 10.3969/j.issn.1671-3206.2024.03.012

    LUO K L, HAO H Y, YIN Y G, et al. Porous HZIF-8 immobilised enzyme and its performance in degrading phenol[J]. Applied Chemical Industry, 2024, 53(3): 560−564. doi: 10.3969/j.issn.1671-3206.2024.03.012

Catalog

    Article Metrics

    Article views (12) PDF downloads (3) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return