Citation: | TIAN Hong, PANG Li, YANG Wentao, et al. Recombinant Expression and Immobilization of Pantoea dispersa DJL-B Alcohol Dehydrogenase[J]. Science and Technology of Food Industry, 2025, 46(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060040. |
[1] |
KING A, RICHARD D J. Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis[J]. Yeast,2000,16(6):499−506. doi: 10.1002/(SICI)1097-0061(200004)16:6<499::AID-YEA548>3.0.CO;2-E
|
[2] |
TAN C S, HASSAN M, MOHAMED H Z A, et al. Structural and kinetic studies of a novel nerol dehydrogenase from Persicaria minor, a nerol-specific enzyme for citral biosynthesis[J]. Plant Physiology and Biochemistry,2018,123:359−368. doi: 10.1016/j.plaphy.2017.12.033
|
[3] |
ANDRADE M A, das GRACAS C M, de ANDRADE J, et al. Chemical composition and antioxidant activity of essential oils from Cinnamodendron dinisii schwacke and Siparuna guianensis aublet[J]. Antioxidants (Basel),2013,2(4):384−397. doi: 10.3390/antiox2040384
|
[4] |
RIBEAUCOURT D, HOFLER G T, YEMLOUL M, et al. Tunable production of (R)-or (S)-citronellal from geraniol via a bienzymatic cascade using a copper radical alcohol oxidase and old yellow enzyme[J]. ACS Catal,2022,12(2):1111−1116. doi: 10.1021/acscatal.1c05334
|
[5] |
周玉慧. 天然柠檬醛衍生物的合成与抑菌活性研究[D]. 南昌:江西农业大学, 2014. [ZHOU Y H. Synthesis and antibacterial activity of natural citral derivatives[D]. Nanchang:Jiangxi Agricultural University, 2014.]
ZHOU Y H. Synthesis and antibacterial activity of natural citral derivatives[D]. Nanchang: Jiangxi Agricultural University, 2014.
|
[6] |
何宗耀, 莫瑶江, 晏日安, 等. (E, E)-8-溴代香叶醛的合成[J]. 中山大学学报:自然科学版,1997(6):121−123. [HE Z Y, MO Y J, YAN R, et al. Synthesis of (E, E)-8-bromocoumarin[J]. Journal of Sun Yat-sen University:Natural Science Edition,1997(6):121−123.]
HE Z Y, MO Y J, YAN R, et al. Synthesis of (E, E)-8-bromocoumarin[J]. Journal of Sun Yat-sen University: Natural Science Edition, 1997(6): 121−123.
|
[7] |
胡建国. 酵母菌转化香叶醇和橙花醇的机制研究[D]. 合肥:安徽农业大学, 2008. [HU J G. Mechanism of conversion of geraniol and nerolidol by Saccharomyces cerevisiae [D]. Hefei:Anhui Agricultural University, 2008.]
HU J G. Mechanism of conversion of geraniol and nerolidol by Saccharomyces cerevisiae [D]. Hefei: Anhui Agricultural University, 2008.
|
[8] |
胡建国. 酵母对香叶醇转变为香叶醛抗黑霉菌的研究[J]. 安徽农学通报,2012,18(10):48−59. [HU J G. Study on the conversion of geraniol to geranial by yeast against black mould[J]. Anhui Agricultural Bulletin,2012,18(10):48−59.] doi: 10.3969/j.issn.1007-7731.2012.10.027
HU J G. Study on the conversion of geraniol to geranial by yeast against black mould[J]. Anhui Agricultural Bulletin, 2012, 18(10): 48−59. doi: 10.3969/j.issn.1007-7731.2012.10.027
|
[9] |
ZHENG Y G, YIN H H, YU D F, et al. Recent advances in biotechnological applications of alcohol dehydrogenases[J]. Appl Microbiol Biotechnol,2017,101(3):987−1001. doi: 10.1007/s00253-016-8083-6
|
[10] |
IIJIMA Y, WANG G, FRIDMAN E, et al. Analysis of the enzymatic formation of citral in the glands of sweet basil[J]. Archives of Biochemistry and Biophysics,2006,448(1-2):141−149. doi: 10.1016/j.abb.2005.07.026
|
[11] |
SATO-MASUMOTO N, ITO M. Two types of alcohol dehydrogenase from Perilla can form citral and perillaldehyde[J]. Phytochemistry,2014,104:12−20. doi: 10.1016/j.phytochem.2014.04.019
|
[12] |
KRAUSE S T, LIAO P, CROCOLL C, et al. The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(52):e2110092118.
|
[13] |
WOLKEN W A, van der WERF M J. Geraniol biotransformation-pathway in spores of Penicillium digitatum[J]. Appl Microbiol Biotechnol,2001,57(5-6):731−737. doi: 10.1007/s002530100821
|
[14] |
YUAN T T, CHEN Q Q, ZHAO P J, et al. Identification of enzymes responsible for the reduction of geraniol to citronellol[J]. Natural Products and Bioprospecting,2011,1(3):108−111. doi: 10.1007/s13659-011-0032-6
|
[15] |
JOHNSON R. Biotransformations for bioremediation[J]. Nat Chem Biol,2023,19(11):1287−1289. doi: 10.1038/s41589-023-01446-8
|
[16] |
HALL M, HAUER B, STUERMER R, et al. Asymmetric whole-cell bioreduction of an α, β-unsaturated aldehyde (citral):Competing prim-alcohol dehydrogenase and C–C lyase activities[J]. Tetrahedron:Asymmetry,2006,17(21):3058−3062.
|
[17] |
张永勤, 许文廷, 邢明霞, 等. 表面脱乙酰化甲壳素颗粒固定溶菌酶及酶学性质研究[J]. 食品工业科技,2019,40(5):188−200. [ZHANG Y Q, XU W T, XING M X, et al. Immobilisation of lysozyme by surface deacetylated chitin particles and study of enzymatic properties[J]. Science and Technology of Food Industry,2019,40(5):188−200.]
ZHANG Y Q, XU W T, XING M X, et al. Immobilisation of lysozyme by surface deacetylated chitin particles and study of enzymatic properties[J]. Science and Technology of Food Industry, 2019, 40(5): 188−200.
|
[18] |
黄珍, 王慧, 黄芳, 等. 壳聚糖固定化海藻糖合酶[J]. 食品工业科技,2018,39(19):130−141. [HUANG Z, WANG H, HUANG F, et al. Chitosan immobilisation of alginate synthase[J]. Science and Technology of Food Industry,2018,39(19):130−141.]
HUANG Z, WANG H, HUANG F, et al. Chitosan immobilisation of alginate synthase[J]. Science and Technology of Food Industry, 2018, 39(19): 130−141.
|
[19] |
DHIMAN S, SRIVASTAVA B, SINGH G, et al. Immobilization of mannanase on sodium alginate-grafted-β-cyclodextrin:An easy and cost effective approach for the improvement of enzyme properties[J]. International Journal of Biological Macromolecules,2020,156:1347−1358. doi: 10.1016/j.ijbiomac.2019.11.175
|
[20] |
BAI Y, WU W. The neutral protease immobilization:physical characterization of sodium alginate-chitosan gel beads[J]. Appl Biochem Biotechnol,2022,194(5):2269−2283. doi: 10.1007/s12010-021-03773-9
|
[21] |
ABKA-KHAJOUEI R, TOUNSI L, SHAHABI N, et al. Structures, properties and applications of alginates[J]. Mar Drugs,2022,20(6):364−382. doi: 10.3390/md20060364
|
[22] |
杨小叶, 马淑凤, 王利强. 海藻酸钠基凝胶球的制备、改性及其食品包装的应用研究进展[J]. 食品工业科技,2023,44(24):376−383. [YANG X Y, MA S F, WANG L Q. Research progress on the preparation and modification of sodium alginate-based gel spheres and their application in food packaging[J]. Science and Technology of Food Industry,2023,44(24):376−383.]
YANG X Y, MA S F, WANG L Q. Research progress on the preparation and modification of sodium alginate-based gel spheres and their application in food packaging[J]. Science and Technology of Food Industry, 2023, 44(24): 376−383.
|
[23] |
张懿婷. 多菌灵降解菌的筛选及转录组分析[D]. 长沙:湖南农业大学, 2022. [ZHANG Y T. Screening and transcriptome analysis of carbendazim-degrading bacteria [D]. Changsha:Hunan Agricultural University, 2022.]
ZHANG Y T. Screening and transcriptome analysis of carbendazim-degrading bacteria [D]. Changsha: Hunan Agricultural University, 2022.
|
[24] |
陈炜烨, 刘冬冬, 徐建华, 等. ImageJ软件在重组质粒pET32a-CDK2中蛋白表达的应用[J]. 中国热带医学,2014,14(1):23−25. [CHEN W Y, LIU D D, XU J H, et al. Application of ImageJ software for protein expression in recombinant plasmid pET32a-CDK2[J]. China Tropical Medicine,2014,14(1):23−25.]
CHEN W Y, LIU D D, XU J H, et al. Application of ImageJ software for protein expression in recombinant plasmid pET32a-CDK2[J]. China Tropical Medicine, 2014, 14(1): 23−25.
|
[25] |
GERST R, CSERESNYES Z, FIGGE M T. JIPipe:visual batch processing for ImageJ[J]. Nat Methods,2023,20(2):168−169. doi: 10.1038/s41592-022-01744-4
|
[26] |
CHEN X, DOU Z, LUO T, et al. Directed reconstruction of a novel ancestral alcohol dehydrogenase featuring shifted pH-profile, enhanced thermostability and expanded substrate spectrum[J]. Bioresour Technol,2022,363:127889. doi: 10.1016/j.biortech.2022.127889
|
[27] |
常开霞, 孙军勇, 李晓敏, 等. 胃乙醇脱氢酶δδ-ADH的原核表达及酶学性质[J]. 食品与生物技术学报,2019,38(7):78−85. [CHANG K X, SUN J Y, LI X M, et al. Prokaryotic expression and enzymatic properties of gastric ethanol dehydrogenase δδ-ADH[J]. Journal of Food Science and Biotechnology,2019,38(7):78−85.] doi: 10.3969/j.issn.1673-1689.2019.07.011
CHANG K X, SUN J Y, LI X M, et al. Prokaryotic expression and enzymatic properties of gastric ethanol dehydrogenase δδ-ADH[J]. Journal of Food Science and Biotechnology, 2019, 38(7): 78−85. doi: 10.3969/j.issn.1673-1689.2019.07.011
|
[28] |
廉德君, 李林, 许根俊. 酵母醇脱氢酶ADHI的纯化及动力学研究[J]. 生物化学与生物物理学报,1996(4):396−403. [LIAN D J, LI L, XU G J. Purification and kinetic study of yeast alcohol dehydrogenase ADHI[J]. Acta Biochimica et Biophysica Sinica,1996(4):396−403.]
LIAN D J, LI L, XU G J. Purification and kinetic study of yeast alcohol dehydrogenase ADHI[J]. Acta Biochimica et Biophysica Sinica, 1996(4): 396−403.
|
[29] |
袁建平, 侯晓强. 固定化技术在壳聚糖酶生产中的应用[J]. 湖北农业科学,2013,52(21):5282−5284. [YUAN J P, HOU X Q. Application of immobilisation technology in chitosanase production[J]. Hubei Agricultural Science,2013,52(21):5282−5284.] doi: 10.3969/j.issn.0439-8114.2013.21.047
YUAN J P, HOU X Q. Application of immobilisation technology in chitosanase production[J]. Hubei Agricultural Science, 2013, 52(21): 5282−5284. doi: 10.3969/j.issn.0439-8114.2013.21.047
|
[30] |
SCHEIN C, NOTEBORN M. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature[J]. Bio/technology,1988,6(3):291−294.
|
[31] |
任彬, 李博, 范超, 等. L-天冬氨酸α-脱羧酶异源表达和转化条件的优化[J]. 大连工业大学学报,2022,41(1):23−26. [REN B, LI B, FAN C, et al. Optimisation of heterologous expression and transformation conditions of L-aspartate α-decarboxylase[J]. Journal of Dalian Polytechnic University,2022,41(1):23−26.]
REN B, LI B, FAN C, et al. Optimisation of heterologous expression and transformation conditions of L-aspartate α-decarboxylase[J]. Journal of Dalian Polytechnic University, 2022, 41(1): 23−26.
|
[32] |
张经纬, 刘晓青, 田健, 等. 基于结构基础的嗜热细菌贝斯其热解纤维素菌木聚糖酶CbXyn10C的热稳定性分子改良[J]. 微生物学通报,2023,50(12):5261−5274. [ZHANG J W, LIU X Q, TIAN J, et al. Structural basis for the molecular improvement of the thermal stability of thermophilic bacterium Beschichtung's thermolabile cellulolytic bacterial xylanase CbXyn10C[J]. Microbiology China,2023,50(12):5261−5274.]
ZHANG J W, LIU X Q, TIAN J, et al. Structural basis for the molecular improvement of the thermal stability of thermophilic bacterium Beschichtung's thermolabile cellulolytic bacterial xylanase CbXyn10C[J]. Microbiology China, 2023, 50(12): 5261−5274.
|
[33] |
TOKSOY E, ONSAN Z I, KIRDAR B. High-level production of TaqI restriction endonuclease by three different expression systems in Escherichia coli cells using the T7 phage promoter[J]. Applied Microbiology and Biotechnology,2002,59:239−245. doi: 10.1007/s00253-002-1001-0
|
[34] |
ZHAO M, TAO X Y, WANG F Q, et al. Establishment of a low-dosage-IPTG inducible expression system construction method in Escherichia coli[J]. J Basic Microbiol,2018,58(9):806−810. doi: 10.1002/jobm.201800160
|
[35] |
EINSFELDT K, SEVERO JÚNIOR J B, CORRÊA ARGONDIZZO A P, et al. Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli:study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability[J]. Vaccine,2011,29(41):7136−7143. doi: 10.1016/j.vaccine.2011.05.073
|
[36] |
EILERTSEN J, SCHNELL S. A Kinetic analysis of coupled (or auxiliary) enzyme reactions[J]. Bulletin of Mathematical Biology,2018,80(32):3154−3183.
|
[37] |
LEE K Y, MOONEY D J. Alginate:properties and biomedical applications[J]. Prog Polym Sci,2012,37(1):106−126. doi: 10.1016/j.progpolymsci.2011.06.003
|
[38] |
罗空亮, 郝红英, 殷勇刚, 等. 多孔HZIF-8固定化酶及其降解苯酚的性能研究[J]. 应用化工,2024,53(3):560−564. [LUO K L, HAO H Y, YIN Y G, et al. Porous HZIF-8 immobilised enzyme and its performance in degrading phenol[J]. Applied Chemical Industry,2024,53(3):560−564.] doi: 10.3969/j.issn.1671-3206.2024.03.012
LUO K L, HAO H Y, YIN Y G, et al. Porous HZIF-8 immobilised enzyme and its performance in degrading phenol[J]. Applied Chemical Industry, 2024, 53(3): 560−564. doi: 10.3969/j.issn.1671-3206.2024.03.012
|