Citation: | YIN Yaxin, LIU Qirui, WANG Zhicheng, et al. Food-grade High Internal Phase Pickering Emulsions: Food-grade Solid Particles, Stabilization Mechanisms and Application in Encapsulating Probiotics[J]. Science and Technology of Food Industry, 2025, 46(8): 411−419. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060018. |
[1] |
DIANAWATI D, MISHRA V, SHAH N P. Survival of microencapsulated probiotic bacteria after processing and during storage:A review[J]. Critical Reviews in Food Science and Nutrition,2015,56(10):1685−1716.
|
[2] |
JIANG Z W, LI M T, MCCLEMENTS D J, et al. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation[J]. Food Hydrocolloids,2022,125:107438. doi: 10.1016/j.foodhyd.2021.107438
|
[3] |
XIAO Y, LU C B, LIU Y Y, et al. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis[J]. ACS Appl Mater Interfaces,2020,12(33):36967−36977. doi: 10.1021/acsami.0c11959
|
[4] |
GAO Y X, WANG X, XUE C H, et al. Latest developments in food-grade delivery systems for probiotics:A systematic review[J]. Critical Reviews in Food Science and Nutrition,2021,63(20):4371−4388.
|
[5] |
GONZALEZ ORTIZ D, POCHAT-BOHATIER C, CAMBEDOUZOU J, et al. Current trends in Pickering emulsions:Particle morphology and applications[J]. Engineering,2020,6(4):468−482. doi: 10.1016/j.eng.2019.08.017
|
[6] |
LIU X, XIE F, ZHOU J J, et al. High internal phase Pickering emulsion stabilized by zein-tannic acid-sodium alginate complexes:β-Carotene loading and 3D printing[J]. Food Hydrocolloids,2023,142:108762. doi: 10.1016/j.foodhyd.2023.108762
|
[7] |
JIAO B, SHI A M, WANG Q, et al. High-internal-phase Pickering emulsions stabilized solely by peanut protein microgel particles with multiple potential applications[J]. Angewandte Chemie International Edition,2018,57(30):9274−9278. doi: 10.1002/anie.201801350
|
[8] |
ZHOU F Z, YU X H, ZENG T, et al. Fabrication and characterization of novel water-insoluble protein porous materials derived from Pickering high internal-phase emulsions stabilized by gliadin–chitosan-complex particles[J]. Journal of Agricultural and Food Chemistry,2019,67(12):3423−3431. doi: 10.1021/acs.jafc.9b00221
|
[9] |
刘树萍, 彭秀文, 张佳美, 等. 大豆分离蛋白与茶多酚稳定的高内相Pickering乳液替代脂肪对肉丸品质的影响[J]. 食品工业科技,2024,45(6):59−66. [LIU S P, PENG X W, ZHANG J M, et al. Effect of soybean protein isolate and tea polyphenol stabilized high interior phase Pickering emulsion replacing fat on meatball quality[J]. Science and Technology of Food Industry,2024,45(6):59−66.]
LIU S P, PENG X W, ZHANG J M, et al. Effect of soybean protein isolate and tea polyphenol stabilized high interior phase Pickering emulsion replacing fat on meatball quality[J]. Science and Technology of Food Industry, 2024, 45(6): 59−66.
|
[10] |
SU J L, WANG X Q, LI W, et al. Enhancing the viability of Lactobacillus plantarum as probiotics through encapsulation with high internal phase emulsions stabilized with whey protein isolate microgels[J]. Journal of Agricultural and Food Chemistry,2018,66(46):12335−12343. doi: 10.1021/acs.jafc.8b03807
|
[11] |
WU C, LIU Z, ZHI L Y, et al. Research progress of food-grade high internal phase Pickering emulsions and their application in 3D printing[J]. Nanomaterials,2022,12(17):2949. doi: 10.3390/nano12172949
|
[12] |
BI C H, CHI S Y, ZHOU T, et al. Characterization of a novel high internal phase Pickering emulsions stabilized by soy protein self-assembled gel particles[J]. Frontiers in Nutrition,2021,8:795396. doi: 10.3389/fnut.2021.795396
|
[13] |
WU J D, SHI M X, LI W, et al. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking[J]. Colloids and Surfaces B:Biointerfaces,2015,127:96−104. doi: 10.1016/j.colsurfb.2015.01.029
|
[14] |
ZHANG X Y, ZHANG S, ZHONG M M, et al. Soy and whey protein isolate mixture/calcium chloride thermally induced emulsion gels:Rheological properties and digestive characteristics[J]. Food Chemistry,2022,380:132212. doi: 10.1016/j.foodchem.2022.132212
|
[15] |
FANG Y, DALGLEISH D G. Dimensions of the adsorbed layers in oil-in-water emulsions stabilized by caseins[J]. Journal of Colloid and Interface Science,1993,156(2):329−334. doi: 10.1006/jcis.1993.1120
|
[16] |
GUO Y, WU C, DU M, et al. In-situ dispersion of casein to form nanoparticles for Pickering high internal phase emulsions[J]. LWT,2021,139:110538. doi: 10.1016/j.lwt.2020.110538
|
[17] |
WIJAYA W, VAN DER MEEREN P, WIJAYA C H, et al. High internal phase emulsions stabilized solely by whey protein isolate-low methoxyl pectin complexes:Effect of pH and polymer concentration[J]. Food & Function,2017,8(2):584−594.
|
[18] |
LIU W, GAO H X, MCCLEMENTS D J, et al. Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels[J]. Food Hydrocolloids,2019,88:210−217. doi: 10.1016/j.foodhyd.2018.10.012
|
[19] |
ZAMANI S, MALCHIONE N, SELIG M J, et al. Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels[J]. Food & Function,2018,9(2):982−990.
|
[20] |
TAN H, TU Z, JIA H Q, et al. Hierarchical porous protein scaffold templated from high internal phase emulsion costabilized by gelatin and gelatin nanoparticles[J]. Langmuir,2018,34(16):4820−4829. doi: 10.1021/acs.langmuir.7b04047
|
[21] |
王斌. 二硫键在疏水蛋白自组装过程中的功能研究[D]. 天津:天津大学, 2019. [WANG B. Functional study of the disulfide bridges in the self-assembly of hydrophobin[D]. Tianjin:Tianjin University, 2019.]
WANG B. Functional study of the disulfide bridges in the self-assembly of hydrophobin[D]. Tianjin: Tianjin University, 2019.
|
[22] |
孟新宇. 壳聚糖的疏水改性及其乳化性能研究[D]. 无锡:江南大学, 2022. [MENG X Y. Hydrophobic modification of chitosan and the emulsifying properties[D]. Wuxi:Jiangnan University, 2022.]
MENG X Y. Hydrophobic modification of chitosan and the emulsifying properties[D]. Wuxi: Jiangnan University, 2022.
|
[23] |
LIU F, TANG C H. Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions[J]. Journal of Agricultural and Food Chemistry,2013,61(37):8888−8898. doi: 10.1021/jf401859y
|
[24] |
XU Y T, LIU T X, TANG C H. Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin[J]. Food Hydrocolloids,2019,88:21−30. doi: 10.1016/j.foodhyd.2018.09.031
|
[25] |
HU Y Q, YIN S W, ZHU J H, et al. Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles[J]. Food Hydrocolloids,2016,61:300−310. doi: 10.1016/j.foodhyd.2016.05.028
|
[26] |
YANG T, ZHENG J, ZHENG B S, et al. High internal phase emulsions stabilized by starch nanocrystals[J]. Food Hydrocolloids,2018,82:230−238. doi: 10.1016/j.foodhyd.2018.04.006
|
[27] |
QIAO M, YANG X C, ZHU Y, et al. Ultralight aerogels with hierarchical porous structures prepared from cellulose nanocrystal stabilized Pickering high internal phase emulsions[J]. Langmuir,2020,36(23):6421−6428. doi: 10.1021/acs.langmuir.0c00646
|
[28] |
ZHU Y, HUAN S Q, BAI L, et al. High internal phase oil-in-water Pickering emulsions stabilized by chitin nanofibrils:3D structuring and solid foam [J]. ACS Applied Materials & Interfaces,2020,12(9):11240−11251.
|
[29] |
佟臻, 韦阳, 高彦祥. 基于食品级胶体颗粒稳定Pickering乳液的研究进展[J]. 食品工业科技,2019,40(4):317−324. [TONG Z, WEI Y, GAO Y X. Research progress of stabilized Pickering emulsion based on food grade colloidal particles[J]. Science and Technology of Food Industry,2019,40(4):317−324.]
TONG Z, WEI Y, GAO Y X. Research progress of stabilized Pickering emulsion based on food grade colloidal particles[J]. Science and Technology of Food Industry, 2019, 40(4): 317−324.
|
[30] |
WANG C, PEI X P, TAN J L, et al. Thermoresponsive starch-based particle-stabilized Pickering high internal phase emulsions as nutraceutical containers for controlled release[J]. International Journal of Biological Macromolecules,2020,146:171−178. doi: 10.1016/j.ijbiomac.2019.12.269
|
[31] |
CHEN Q H, ZHENG J, XU Y T, et al. Surface modification improves fabrication of Pickering high internal phase emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2018,75:125−130. doi: 10.1016/j.foodhyd.2017.09.005
|
[32] |
PERRIN E, BIZOT H, CATHALA B, et al. Chitin nanocrystals for Pickering high internal phase emulsions[J]. Biomacromolecules,2014,15(10):3766−3771. doi: 10.1021/bm5010417
|
[33] |
MUXIKA A, ETXABIDE A, URANGA J, et al. Chitosan as a bioactive polymer:Processing, properties and applications[J]. International Journal of Biological Macromolecules,2017,105:1358−1368. doi: 10.1016/j.ijbiomac.2017.07.087
|
[34] |
SUN G G, ZHAO Q F, LIU S L, et al. Complex of raw chitin nanofibers and zein colloid particles as stabilizer for producing stable Pickering emulsions[J]. Food Hydrocolloids,2019,97:105178. doi: 10.1016/j.foodhyd.2019.105178
|
[35] |
SHARKAWY A, BARREIRO M F, RODRIGUES A E. Chitosan-based Pickering emulsions and their applications:A review[J]. Carbohydrate Polymers,2020,250:116885. doi: 10.1016/j.carbpol.2020.116885
|
[36] |
HUANG C, SUN F S, MA X X, et al. Hydrophobically modified chitosan microgels stabilize high internal phase emulsions with high compliance[J]. Carbohydrate Polymers,2022,288:119277. doi: 10.1016/j.carbpol.2022.119277
|
[37] |
SONG Y, ZHOU L Y, ZHANG D C, et al. Stability and release of peach polyphenols encapsulated by Pickering high internal phase emulsions in vitro and in vivo[J]. Food Hydrocolloids,2023,139:108593. doi: 10.1016/j.foodhyd.2023.108593
|
[38] |
MA L, ZOU L Q, MCCLEMENTS D J, et al. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers:Gliadin nanoparticles/gum Arabic[J]. Food Hydrocolloids,2020,100:105381. doi: 10.1016/j.foodhyd.2019.105381
|
[39] |
ZENG T, WU Z L, ZHU J Y, et al. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs[J]. Food Chemistry,2017,231:122−130. doi: 10.1016/j.foodchem.2017.03.116
|
[40] |
SHEN R, LIN D H, LIU Z, et al. Fabrication of bacterial cellulose nanofibers/soy protein isolate colloidal particles for the stabilization of high internal phase Pickering emulsions by anti-solvent precipitation and their application in the delivery of curcumin[J]. Frontiers in Nutrition,2021,8:734620. doi: 10.3389/fnut.2021.734620
|
[41] |
LIU X, HUANG Y Q, CHEN X W, et al. Whole cereal protein-based Pickering emulsions prepared by zein-gliadin complex particles[J]. Journal of Cereal Science,2019,87:46−51. doi: 10.1016/j.jcs.2019.02.004
|
[42] |
WANG T, LI F S, ZHANG H, et al. Plant-based high internal phase emulsions stabilized by dual protein nanostructures with heat and freeze–thaw tolerance[J]. Food Chemistry,2022,373:131458. doi: 10.1016/j.foodchem.2021.131458
|
[43] |
PANG B, LIU H, REHFELDT F, et al. High internal phase Pickering emulsions stabilized by dialdehyde amylopectin/chitosan complex nanoparticles[J]. Carbohydrate Polymers,2021,258:117655. doi: 10.1016/j.carbpol.2021.117655
|
[44] |
YAN C, MCCLEMENTS D J, ZHU Y, et al. Fabrication of OSA starch/chitosan polysaccharide-based high internal phase emulsion via altering interfacial behaviors[J]. Journal of Agricultural and Food Chemistry,2019,67(39):10937−10946. doi: 10.1021/acs.jafc.9b04009
|
[45] |
XIAO J, LI Y Q, HUANG Q R. Recent advances on food-grade particles stabilized Pickering emulsions:Fabrication, characterization and research trends[J]. Trends in Food Science & Technology,2016,55:48−60.
|
[46] |
LI X M, ZHU J, PAN Y, et al. Fabrication and characterization of pickering emulsions stabilized by octenyl succinic anhydride -modified gliadin nanoparticle[J]. Food Hydrocolloids,2019,90:19−27. doi: 10.1016/j.foodhyd.2018.12.012
|
[47] |
LI F F, LI X H, HUANG K L, et al. Preparation and characterization of pickering emulsion stabilized by hordein-chitosan complex particles[J]. Journal of Food Engineering,2021,292:110275. doi: 10.1016/j.jfoodeng.2020.110275
|
[48] |
吴昱春, 陈小草, 张琦, 等. Pickering乳液稳定机理及其在食品中的应用研究进展[J]. 食品科学, 2021, 42(7):275−282. [WU Y C, CHEN X C, ZHANG Q, et al. Stability mechanism of Pickering emulsion and its application in food industry:A review[J] Food Science, 2021, 42(7):275−282.]
WU Y C, CHEN X C, ZHANG Q, et al. Stability mechanism of Pickering emulsion and its application in food industry: A review[J] Food Science, 2021, 42(7): 275−282.
|
[49] |
SUN F W, CHENG T F, REN S H, et al. Soy protein isolate/carboxymethyl cellulose sodium complexes system stabilized high internal phase Pickering emulsions:Stabilization mechanism based on noncovalent interaction[J]. International Journal of Biological Macromolecules,2024,256:128381. doi: 10.1016/j.ijbiomac.2023.128381
|
[50] |
LIU F, TANG C H. Emulsifying Properties of soy protein nanoparticles:Influence of the protein concentration and/or emulsification process[J]. Journal of Agricultural and Food Chemistry,2014,62(12):2644−2654. doi: 10.1021/jf405348k
|
[51] |
HOROZOV T S, BINKS B P. Particle-stabilized emulsions:A bilayer or a bridging monolayer?[J]. Angewandte Chemie,2006,118(5):787−790. doi: 10.1002/ange.200503131
|
[52] |
WANG S Y, LIU L G, BI S H, et al. Studies on stabilized mechanism of high internal phase Pickering emulsions from the collaboration of low dose konjac glucomannan and myofibrillar protein[J]. Food Hydrocolloids,2023,143:108862. doi: 10.1016/j.foodhyd.2023.108862
|
[53] |
XU Y T, TANG C H, BINKS B P. High internal phase emulsions stabilized solely by a globular protein glycated to form soft particles[J]. Food Hydrocolloids,2020,98:105254. doi: 10.1016/j.foodhyd.2019.105254
|
[54] |
XU Y T, TANG C H, BINKS B P. Ultraefficient stabilization of high internal phase emulsions by globular proteins in the presence of polyols:Importance of a core-shell nanostructure[J]. Food Hydrocolloids,2020,107:105968. doi: 10.1016/j.foodhyd.2020.105968
|
[55] |
IRAVANI S, KORBEKANDI H, MIRMOHAMMADI S V. Technology and potential applications of probiotic encapsulation in fermented milk products[J]. Journal of Food Science and Technology,2014,52(8):4679−4696.
|
[56] |
HIGL B, KURTMANN L, CARLSEN C U, et al. Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix[J]. Biotechnology Progress,2007,23(4):794−800. doi: 10.1002/bp070089d
|
[57] |
陈臣, 张晓丛, 袁海彬, 等. 益生菌包埋前沿技术及其研究进展[J]. 中国食品学报,2023,23(1):384−396. [CHEN C, ZHANG X C, YUAN H B, et al. Research progress on the advanced technology of embedding for probiotics[J]. Journal of Chinese Institute of Food Science and Technology,2023,23(1):384−396.]
CHEN C, ZHANG X C, YUAN H B, et al. Research progress on the advanced technology of embedding for probiotics[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(1): 384−396.
|
[58] |
ESLAMI P, DAVARPANAH L, VAHABZADEH F. Encapsulating role of β-cyclodextrin in formation of pickering water-in-oil-in-water (W1/O/W2) double emulsions containing Lactobacillus dellbrueckii[J]. Food Hydrocolloids,2017,64:133−148. doi: 10.1016/j.foodhyd.2016.10.035
|
[59] |
GAO H X, MA L, CHENG C, et al. Review of recent advances in the preparation, properties, and applications of high internal phase emulsions[J]. Trends in Food Science & Technology,2021,112:36−49.
|
[60] |
QIN X S, GAO Q Y, LUO Z G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles[J]. Food Hydrocolloids,2021,116:106658. doi: 10.1016/j.foodhyd.2021.106658
|
[61] |
SU J Q, CAI Y J, TAI K D, et al. High-internal-phase emulsions (HIPEs) for co-encapsulation of probiotics and curcumin:Enhanced survivability and controlled release[J]. Food & Function,2021,12(1):70−82.
|
[62] |
GAO H X, MA L, SUN W X, et al. Impact of encapsulation of probiotics in oil-in-water high internal phase emulsions on their thermostability and gastrointestinal survival[J]. Food Hydrocolloids,2022,126:107478. doi: 10.1016/j.foodhyd.2021.107478
|
[63] |
SUN C Y, WANG S N, HUANG X Y, et al. Enhancing probiotic viability:Impact of soy hull polysaccharide concentration on stabilized high-internal-phase emulsions encapsulated with Lactobacillus plantarum and their release during gastrointestinal digestive[J]. Food Hydrocolloids,2024,152:109959. doi: 10.1016/j.foodhyd.2024.109959
|
[64] |
ZHANG Y, XIE Y F, LIU H, et al. Probiotic encapsulation in water-in-oil high internal phase emulsions:Enhancement of viability under food and gastrointestinal conditions[J]. LWT,2022,163:113499. doi: 10.1016/j.lwt.2022.113499
|
[65] |
WANG J S, CHEN L M. Impact of a novel nano-protectant on the viability of probiotic bacterium Lactobacillus casei K17[J]. Foods,2021,10(3):529. doi: 10.3390/foods10030529
|
[66] |
RATTANABURI P, CHAROENRAT N, PONGTHARANGKUL T, et al. Hydroxypropyl methylcellulose enhances the stability of o/w Pickering emulsions stabilized with chitosan and the whole cells of Lactococcus lactis IO-1[J]. Food Research International,2019,116:559−565. doi: 10.1016/j.foodres.2018.08.074
|
[67] |
RUAN M J, XIE Y X, ZHOU C Y, et al. Biomacromolecule based water-in-water Pickering emulsion:A fascinating artificial cell-like compartment for the encapsulation of Lactobacillus plantarum[J]. Food Bioscience,2023,55:102916. doi: 10.1016/j.fbio.2023.102916
|
[68] |
WANG L, SONG M Y, ZHAO Z J, et al. Lactobacillus acidophilus loaded Pickering double emulsion with enhanced viability and colon-adhesion efficiency[J]. Lwt,2020,121:108928. doi: 10.1016/j.lwt.2019.108928
|