WU Junjie, JIAO Wenya, ZHANG Yu, et al. Preparation and Functional Activity of Nano-silver Materials for Dried Ginger[J]. Science and Technology of Food Industry, 2025, 46(10): 75−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050394.
Citation: WU Junjie, JIAO Wenya, ZHANG Yu, et al. Preparation and Functional Activity of Nano-silver Materials for Dried Ginger[J]. Science and Technology of Food Industry, 2025, 46(10): 75−83. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050394.

Preparation and Functional Activity of Nano-silver Materials for Dried Ginger

More Information
  • Received Date: June 05, 2024
  • Available Online: March 12, 2025
  • To address the lengthy and pollution-intensive process of traditional nano-silver synthesis, This paper developed a method using dried ginger extract, which was rich in active substances. This paper investigated the effects of various factors, including the concentration of dried ginger extract, silver nitrate concentration, heating temperature, and heating time, on nano-silver synthesis through single-factor experiments. The synthesized nano-silver was characterized using ultraviolet-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM), Zeta potential measurement, Fourier transform infrared (FTIR) spectroscopy, and thermal stability analysis. Additionally, its antibacterial and antioxidant activities were examined. The optimized synthesis conditions were found to be: 16 mg/mL dried ginger extract, 0.02 mol/L silver nitrate (AgNO3), a temperature of 60 ℃, and a heating time of 155 min. Under these conditions, the nano-silver exhibited a distinct UV absorption peak at 418 nm, a spherical shape, an average particle size of 22.43 nm, a lattice spacing of 0.2325 nm, good dispersibility, and a face-centered cubic structure. The scavenging capacities of 100 μg/mL nano-silver for DPPH and ABTS+ free radicals were 50% and 52.2%, respectively. The minimum inhibitory concentration (MIC) and 2MIC of silver nanoparticles significantly inhibited the growth of Erwinia carotovora, Pseudomonas fluorescens, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes. The inhibitory mechanism involved disrupting the cell membrane structure, leading to leakage of cellular contents and bacterial death. The nano-silver produced by this method demonstrates good stability and holds promising potential for applications in fruit and vegetable preservation and biomedicine.
  • [1]
    李秋凤. 银杏内生菌介导纳米银的生物合成及抑菌活性研究[D]. 南宁:广西大学, 2023. [LI Q F. Endophytes of ginkgo biloba mediated the biosynthesis and antibacterial activity of silver nanoparticles[D]. Nanning:Guangxi University, 2023.]

    LI Q F. Endophytes of ginkgo biloba mediated the biosynthesis and antibacterial activity of silver nanoparticles[D]. Nanning: Guangxi University, 2023.
    [2]
    王丹丹, 沈庆绪. 纳米银导电油墨及其在柔性印刷电子中的应用[J]. 包装工程,2024,45(5):18−27. [WANG D D, SHEN Q X. Research progress of nano-silver conductive ink and its application in flexible printing electronics[J]. Packaging Engineering,2024,45(5):18−27.]

    WANG D D, SHEN Q X. Research progress of nano-silver conductive ink and its application in flexible printing electronics[J]. Packaging Engineering, 2024, 45(5): 18−27.
    [3]
    张帅. 液相激光烧蚀法制备银/氧化锌核壳纳米粒子及其非线性光学效应研究[D]. 南京:东南大学, 2022. [ZHANG S. Preparation of silver/zinc oxide core-shell nanoparticles by liquid-phase laser ablation and its nonlinear optical effect[D]. Nanjing:Southeast University, 2022.]

    ZHANG S. Preparation of silver/zinc oxide core-shell nanoparticles by liquid-phase laser ablation and its nonlinear optical effect[D]. Nanjing: Southeast University, 2022.
    [4]
    JASSIM A Y, WANG J, CHUNG K W, et al. Comparative assessment of the fate and toxicity of chemically and biologically synthesized silver nanoparticles to juvenile clams[J]. Colloids and Surfaces B:Biointerfaces,2022,209:112173. doi: 10.1016/j.colsurfb.2021.112173
    [5]
    MANIMEGALAI P, SELVAM K, PRAKASH P, et al. Assessment of photocatalytic and biological applications from synthesized silver nanoparticles aqueous leaf extract by Hardwickia binata Roxb[J]. Journal of Photochemistry and Photobiology A:Chemistry,2024,451:115498. doi: 10.1016/j.jphotochem.2024.115498
    [6]
    PALANISAMY S, DAVID R, MADAV E, et al. Green fabrication of silver nanoparticles using leaf extract of tropical vine Momordica charantia :Spectral characterization and in vitro cytotoxicity evaluation on human breast cancer cells[J]. Materials Technology,2024,39(1):2304428. doi: 10.1080/10667857.2024.2304428
    [7]
    NGUYEN V T. Sunlight-driven synthesis of silver nanoparticles using pomelo peel extract and antibacterial testing[J]. Journal of Chemistry,2020,2020:1−9.
    [8]
    佟彤. 柠檬草提取物纳米银的绿色合成及其抗菌保鲜作用研究[D]. 长春:吉林大学, 2023. [TONG T. Green synthesis of silver nanoparticle using from lemon grass extract and its antibacterial and fresh-keeping effect[D]. Changchun:Jilin University, 2023.]

    TONG T. Green synthesis of silver nanoparticle using from lemon grass extract and its antibacterial and fresh-keeping effect[D]. Changchun: Jilin University, 2023.
    [9]
    黄权锋. 纳米银的绿色合成及其抗菌保鲜性能研究[D]. 广州:广东工业大学, 2023. [HUANG Q F. Study on green synthesis of silver nanoparticles and its antibacterial and preservation properties[D]. Guangzhou:Guangdong University of Technology, 2023.]

    HUANG Q F. Study on green synthesis of silver nanoparticles and its antibacterial and preservation properties[D]. Guangzhou: Guangdong University of Technology, 2023.
    [10]
    GOLPOUR M, EBRAHIMNEJAD P, GATABI Z R, et al. Green tea-mediated synthesis of silver nanoparticles:Enhanced anti-cancer activity and reduced cytotoxicity melanoma and normal murine cell lines[J]. Inorganic Chemistry Communications,2024,161:111989. doi: 10.1016/j.inoche.2023.111989
    [11]
    SABZEVAR A H, AFLAKIAN F, HASHEMITABAR G. Characterization and evaluation of antibacterial, antioxidant and cytotoxic activities of green synthesized silver nanoparticles using Haloxylon persicum[J]. Journal of Molecular Structure,2024,1304:137615. doi: 10.1016/j.molstruc.2024.137615
    [12]
    HUA L Y, NING Z, YUEBAO N. Determination of SOD in black ginger extract and its effect on the liver of rats with type 2 diabetes[J]. Food Science and Technology,2022,42:e115021. doi: 10.1590/fst.115021
    [13]
    ZADOROZHNA M, MANGIERI D. Mechanisms of chemopreventive and therapeutic proprieties of ginger extracts in cancer[J]. International Journal of Molecular Sciences,2021,22(12):6599. doi: 10.3390/ijms22126599
    [14]
    何建桥, 张淼, 杨志军, 等. 干姜的性效、炮制历史沿革及成分活性研究进展[J]. 中药材,2024(2):497−505. [HE J Q, ZHANG S, YANG Z J, et al. Research progress on sexual efficacy, processing history and component activity of dried ginger[J]. Journal of Chinese Medicinal Materials,2024(2):497−505.]

    HE J Q, ZHANG S, YANG Z J, et al. Research progress on sexual efficacy, processing history and component activity of dried ginger[J]. Journal of Chinese Medicinal Materials, 2024(2): 497−505.
    [15]
    申海玉, 付静, 韩超, 等. 大金发藓乙醇提取物对4种植物病原真菌的抑菌活性[J]. 食品工业科技,2024,45(14):147−154. [SHEN H Y, FU J, HAN C, et al. Antifungal activity of ethanol extract of polytrichum commune hedw. against four plant pathogenic fungi[J]. Science and Technology of Food Industry,2024,45(14):147−154.]

    SHEN H Y, FU J, HAN C, et al. Antifungal activity of ethanol extract of polytrichum commune hedw. against four plant pathogenic fungi[J]. Science and Technology of Food Industry, 2024, 45(14): 147−154.
    [16]
    LI Y, SANG Y X, YU W L, et al. Antibacterial actions of Ag nanoparticles synthesized from Cimicifuga dahurica (Turcz.) Maxim. and their application in constructing a hydrogel spray for healing skin wounds[J]. Food Chemistry,2023,418:135981. doi: 10.1016/j.foodchem.2023.135981
    [17]
    杨雯雯, 叶明琦, 张敏新, 等. 紫草银纳米粒的绿色合成及抗浅部真菌作用研究[J]. 现代生物医学进展,2024,24(12):2228−2236. [YANG W W, YE M Q, ZHANG M X, et al. Green synthesis of silver nanoparticles of arnebia euchroma and their anti-superficial fungi effects[J]. Progress in Modern Biomedicine,2024,24(12):2228−2236.]

    YANG W W, YE M Q, ZHANG M X, et al. Green synthesis of silver nanoparticles of arnebia euchroma and their anti-superficial fungi effects[J]. Progress in Modern Biomedicine, 2024, 24(12): 2228−2236.
    [18]
    韩婉毓, 李会珍, 张志军, 等. 紫苏籽壳提取物纳米银颗粒的制备及性能表征[J]. 食品工业科技,2024,45(6):49−58. [HAN W Y, LI H Z, ZHANG Z J, et al. Preparation and performance characterization of silver nanoparticles of perilla seed shell extract[J]. Science and Technology of Food Industry,2024,45(6):49−58.]

    HAN W Y, LI H Z, ZHANG Z J, et al. Preparation and performance characterization of silver nanoparticles of perilla seed shell extract[J]. Science and Technology of Food Industry, 2024, 45(6): 49−58.
    [19]
    曹雪玲, 陆书来, 张东杰, 等. 纳米银作为抗菌剂的抗菌性能研究[J]. 吉林化工学院学报,2017,34(11):30−34. [CAO X L, LU S L, ZHANG D J, et al. Study on antimicrobial activity of nano silver as antimicrobial agents[J]. Journal of Jilin Institute of Chemical Technology,2017,34(11):30−34.]

    CAO X L, LU S L, ZHANG D J, et al. Study on antimicrobial activity of nano silver as antimicrobial agents[J]. Journal of Jilin Institute of Chemical Technology, 2017, 34(11): 30−34.
    [20]
    王斌, 靳梦月, 胡雨虹, 等. 载银硅藻土抗菌材料的制备及性能研究[J]. 化学工程师,2023,37(2):8−12. [WANG B, JIN M Y, HU Y H, et al. Preparation and properties of silver-carrying diatomite antibacterial materials[J]. Chemical Engineer,2023,37(2):8−12.]

    WANG B, JIN M Y, HU Y H, et al. Preparation and properties of silver-carrying diatomite antibacterial materials[J]. Chemical Engineer, 2023, 37(2): 8−12.
    [21]
    程体艳, 张振. 菊苣叶提取物绿色合成纳米银的表征及其生物活性研究[J]. 食品与发酵工业,2024,50(15):119−125. [CHENG T Y, ZHANG Z. Characterization and bioactivity of green synthesis nano-silver from chicory leaf extract[J]. Food and Fermentation Industries,2024,50(15):119−125.]

    CHENG T Y, ZHANG Z. Characterization and bioactivity of green synthesis nano-silver from chicory leaf extract[J]. Food and Fermentation Industries, 2024, 50(15): 119−125.
    [22]
    王鑫, 周卓, 遇世友, 等. 甜玉米芯多糖纳米银的合成、表征及体外活性研究[J]. 食品工业科技,2024,45(13):58−66. [WANG X, ZHOU Z, YU S Y, et al. Study on synthesis, characterization and in vitro activity of sweet corncob polysaccharide nano-silver[J]. Science and Technology of Food Industry,2024,45(13):58−66.]

    WANG X, ZHOU Z, YU S Y, et al. Study on synthesis, characterization and in vitro activity of sweet corncob polysaccharide nano-silver[J]. Science and Technology of Food Industry, 2024, 45(13): 58−66.
    [23]
    KHAN S, SINGH S, GAIKWAD S, et al. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity[J]. Environmental Science and Pollution Research,2020,27(22):27221−27233. doi: 10.1007/s11356-019-05239-2
    [24]
    TOMAR R S, PREET S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus[J]. Journal of Helminthology,2017,91(4):454−461. doi: 10.1017/S0022149X16000444
    [25]
    邱泽奎. 白芨提取物生物合成纳米银及其生物活性研究[D]. 福州:福建农林大学, 2023. [QIU Z K. Biosynthesis of silver nanoparticles using bletilla striata extract and its biological activities[D]. Fuzhou:Fujian Agriculture and Forestry University, 2023.]

    QIU Z K. Biosynthesis of silver nanoparticles using bletilla striata extract and its biological activities[D]. Fuzhou: Fujian Agriculture and Forestry University, 2023.
    [26]
    POURMORTAZAVI S M, TAGHDIRI M, MAKARI V, et al. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,136:1249−1254. doi: 10.1016/j.saa.2014.10.010
    [27]
    高大响, 杨鹤同. 利用南瓜蒸煮液绿色制备纳米银及其抑菌性能的研究[J]. 包装工程,2024,45(5):81−90. [GAO D X, YANG H T. Green preparation of AgNPs by pumpkin cooking liquid and its antibacterial properties[J]. Packaging Engineering,2024,45(5):81−90.]

    GAO D X, YANG H T. Green preparation of AgNPs by pumpkin cooking liquid and its antibacterial properties[J]. Packaging Engineering, 2024, 45(5): 81−90.
    [28]
    公昊. 基于植物纤维的纳米银绿色制备及应用研究[D]. 广州:华南理工大学, 2020. [GONG H. Green preparation and application of nanosilver based on plant fiber[D]. Guangzhou:South China University of Technology, 2020.]

    GONG H. Green preparation and application of nanosilver based on plant fiber[D]. Guangzhou: South China University of Technology, 2020.
    [29]
    席金凤. 杜仲提取物合成纳米银及其生物学功能的初步探索[D]. 合肥:中国科学技术大学, 2023. [XI J F. synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological functions[D]. Hefei:University of Science and Technology of China, 2023.]

    XI J F. synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological functions[D]. Hefei: University of Science and Technology of China, 2023.
    [30]
    PHILIP P, JOSE T, KS S, et al. Green synthesised silver nanoparticles incorporated electrospun poly (methyl methacrylate) nanofibers with different architectures for ophthalmologic alternatives[J]. Journal of Bioactive and Compatible Polymers,2021,36(2):93−110. doi: 10.1177/0883911521997856
    [31]
    曹兴业, 谢闰生, 赵志远, 等. 百香果提取液绿色制备银纳米粒子及其抗菌研究[J]. 食品与发酵工业,2024,50(6):130−137. [CAO X Y, XIE R S, ZHAO Z Y, et al. Green preparation of silver nanoparticles from passion fruit extract and their antibacterial research[J]. Food and Fermentation Industries,2024,50(6):130−137.]

    CAO X Y, XIE R S, ZHAO Z Y, et al. Green preparation of silver nanoparticles from passion fruit extract and their antibacterial research[J]. Food and Fermentation Industries, 2024, 50(6): 130−137.
    [32]
    李文. 樟树叶合成纳米银及其对南丰蜜桔的保鲜性探究[D]. 南昌:南昌大学, 2023. [LI W. Synthesis of nano-silver from Cinnamomum camphora leaves and its preservation of Nanfeng tangerine[D]. Nanchang:Nanchang University, 2023.]

    LI W. Synthesis of nano-silver from Cinnamomum camphora leaves and its preservation of Nanfeng tangerine[D]. Nanchang: Nanchang University, 2023.
    [33]
    朱赫男. 陈皮/乌拉草制备纳米银及其抗菌性能的研究[D]. 吉林:吉林化工学院, 2023. [ZHU H N. Preparation and antibacterial properties of nano silver from chenopodium/carex meyeriana kunth[D]. Jilin:Jilin Institute of Chemical Technology, 2023.]

    ZHU H N. Preparation and antibacterial properties of nano silver from chenopodium/carex meyeriana kunth[D]. Jilin: Jilin Institute of Chemical Technology, 2023.
    [34]
    魏亚楠. 腊梅提取物生物合成纳米银/壳聚糖复合材料抑菌活性的研究[D]. 烟台:鲁东大学, 2021. [WEI Y N. Antibacterial study of AgNPs/CS composite biosynthesized from chimonanthus praecox extract[D]. Yantai:Ludong University, 2021.]

    WEI Y N. Antibacterial study of AgNPs/CS composite biosynthesized from chimonanthus praecox extract[D]. Yantai: Ludong University, 2021.
    [35]
    何悦, 杜津, 任丹, 等. 利用柚子皮提取液制备具有抗氧化和抗菌性能的纳米银[J]. 食品与发酵工业,2022,48(23):165−172. [HE Y, DU J, REN D, et al. Preparation of silver nanoparticles with antioxidation and antibacterial properties using pomelo peel extract[J]. Food and Fermentation Industries,2022,48(23):165−172.]

    HE Y, DU J, REN D, et al. Preparation of silver nanoparticles with antioxidation and antibacterial properties using pomelo peel extract[J]. Food and Fermentation Industries, 2022, 48(23): 165−172.

Catalog

    Article Metrics

    Article views (13) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return