Citation: | XIAO Shuailei, JIANG Yu, TONG Qiang. Meat Products 3D Printing Technology and Application Progress[J]. Science and Technology of Food Industry, 2025, 46(7): 435−443. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050332. |
[1] |
ALEXANDRATOS N, BRUINSMA J. World agriculture towards 2030/2050:The 2012 revision[J]. World Agriculture Towards, 2012.
|
[2] |
UNITED NATIONS. World population prospects 2019[J]. Vol (ST/ESA/SE. A/424) Department of Economic and Social Affairs:Population Division, 2019.
|
[3] |
王强, 杜洪振, 徐舰航, 等. 基于肉类原料的3D打印技术研究进展[J]. 食品科学,2022,43(1):353−361. [LI Q, DU H Z, XU J H, et al. Research progress on 3D printing technology based on meat raw materials[J]. Food Science,2022,43(1):353−361.] doi: 10.7506/spkx1002-6630-20201110-097
LI Q, DU H Z, XU J H, et al. Research progress on 3D printing technology based on meat raw materials[J]. Food Science, 2022, 43(1): 353−361. doi: 10.7506/spkx1002-6630-20201110-097
|
[4] |
FIALA N. Meeting the demand:An estimation of potential future greenhouse gas emissions from meat production[J]. Ecological Economics,2008,67(3):412−419. doi: 10.1016/j.ecolecon.2007.12.021
|
[5] |
GIBSON I, ROSEN D W, STUCKER B, et al. Additive manufacturing technologies[M]. Cham, Switzerland:Springer, 2021.
|
[6] |
HUANG Y, LEU M C, MAZUMDER J, et al. Additive manufacturing:Current state, future potential, gaps and needs, and recommendations[J]. Journal of Manufacturing Science and Engineering,2015,137(1):014001. doi: 10.1115/1.4028725
|
[7] |
杨庆余, 王妍文, 李响, 等. 基于食品3D打印技术的食品原料研究及应用[J]. 食品工业科技,2021,42(8):1−7. [YANG Q Y, WANG Y W, LI X, et al. Research and application of food raw materials based on food 3D printing technology[J]. Food Industry Science and Technology,2021,42(8):1−7.]
YANG Q Y, WANG Y W, LI X, et al. Research and application of food raw materials based on food 3D printing technology[J]. Food Industry Science and Technology, 2021, 42(8): 1−7.
|
[8] |
MANTIHAL S, PRAKASH S, GODOI F C,et al. Optimization of chocolate 3D printing by correlating thermal and flow properties with 3D structure modeling[J]. Innovative Food Science & Emerging Technologies, 2017, 44:21−29.
|
[9] |
LE TOHIC C, O'SULLIVAN J J, DRAPALA K P, et al. Effect of 3D printing on the structure and textural properties of processed cheese[J]. Journal of Food Engineering,2018,220:56−64. doi: 10.1016/j.jfoodeng.2017.02.003
|
[10] |
LIPTON J I, CUTLER M, NIGL F, et al. Additive manufacturing for the food industry[J]. Trends in Food Science & Technology,2015,43(1):114−123.
|
[11] |
AZAM R S M, ZHANG M, BHANDARI B, et al. Effect of different gums on features of 3D printed object based on vitamin-D enriched orange concentrate[J]. Food Biophysics,2018,13(3):250−262. doi: 10.1007/s11483-018-9531-x
|
[12] |
HOLLAND S, FOSTER T, MACNAUGHTAN W, et al. Design and characterisation of food grade powders and inks for microstructure control using 3D printing[J]. Journal of Food Engineering,2018,220:12−19. doi: 10.1016/j.jfoodeng.2017.06.008
|
[13] |
DICK A, BHANDARI B, PRAKASH S. 3D Printing of meat[J]. Meat Science,2019,153:35−44. doi: 10.1016/j.meatsci.2019.03.005
|
[14] |
CHENG Y, FU Y, MA L, et al. Rheology of edible food inks from 2D/3D/4D printing, and its role in future 5D/6D printing[J]. Food Hydrocolloids,2022,132:107855. doi: 10.1016/j.foodhyd.2022.107855
|
[15] |
KIM H W, LEE J H, PARK S M, et al. Effect of hydrocolloids on rheological properties and printability of vegetable inks for 3D food printing[J]. Journal of Food Science,2018,83(12):2923−2932. doi: 10.1111/1750-3841.14391
|
[16] |
LIPTON J, ARNOLD D, NIGL F, et al. Multi-material food printing with complex internal structure suitable for conventional post-processing[J]. Solid Freeform Fabrication Annual International Symposium,2010,16(2):140−149.
|
[17] |
童强, 肖帅磊, 李易, 等. 3D打印技术在太空食品加工领域的研究进展[J]. 食品科学,2024,45(18):299−306. [TONG Q, XIAO S L, LI Y, et al. Research progress of 3D printing technology in the field of space food processing[J]. Food Science,2024,45(18):299−306.]
TONG Q, XIAO S L, LI Y, et al. Research progress of 3D printing technology in the field of space food processing[J]. Food Science, 2024, 45(18): 299−306.
|
[18] |
WANG M, LI D, ZANG Z, et al. 3D Food printing:Applications of plant-based materials in extrusion-based food printing[J]. Critical Reviews in Food Science and Nutrition,2022,62(26):7184−7198. doi: 10.1080/10408398.2021.1911929
|
[19] |
WANG X, ZHANG M, ZHANG L, et al. Inkjet-printed flexible sensors:From function materials, manufacture process, and applications perspective[J]. Materials Today Communications,2022,31:103263. doi: 10.1016/j.mtcomm.2022.103263
|
[20] |
LIU Z, ZHANG M, BHANDARI B, et al. 3D Printing:Printing precision and application in food sector[J]. Trends in Food Science & Technology,2017,69:83−94.
|
[21] |
TENG X, ZHANG M, MUJUMDAR A S. Potential application of laser technology in food processing[J]. Trends in Food Science & Technology,2021,118:711−722.
|
[22] |
林健嫦, 陈君丽, 付开霞, 等. 3D打印食品材料的研究进展[J]. 粮食与油脂,2024,37(6):11−14,33. [LIN J C, CHEN J L, FU K X, et al. Research progress of 3D printing food materials[J]. Grain and Oils,2024,37(6):11−14,33.] doi: 10.3969/j.issn.1008-9578.2024.06.003
LIN J C, CHEN J L, FU K X, et al. Research progress of 3D printing food materials[J]. Grain and Oils, 2024, 37(6): 11−14,33. doi: 10.3969/j.issn.1008-9578.2024.06.003
|
[23] |
KHEMACHEEVAKUL K, WOLODKO J, NGUYEN H, et al. Temporal sensory perceptions of sugar-reduced 3D printed chocolates[J]. Foods,2021,10(9):2082. doi: 10.3390/foods10092082
|
[24] |
CHEN Y Y, ZHANG M, SUN Y N, et al. Improving 3D/4D printing characteristics of natural food gels by novel additives:A review[J]. Food Hydrocolloids,2022,123:107160. doi: 10.1016/j.foodhyd.2021.107160
|
[25] |
JIANG Q, ZHANG M, MUJUMDAR A S. Novel evaluation technology for the demand characteristics of 3D food printing materials:A review[J]. Critical Reviews in Food Science and Nutrition,2022,62(17):4669−4683. doi: 10.1080/10408398.2021.1878099
|
[26] |
DEROSSI A, CAPORIZZI R, AZZOLLINI D, et al. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children[J]. Journal of Food Engineering,2018,220:65−75. doi: 10.1016/j.jfoodeng.2017.05.015
|
[27] |
SRINIVASAN R, GIANNIKAS V, MCFARLANE D, et al. Customising with 3D printing:The role of intelligent control[J]. Computers in Industry,2018,103:38−46. doi: 10.1016/j.compind.2018.09.003
|
[28] |
ZHAO L, ZHANG M, CHITRAKAR B, et al. Recent advances in functional 3D printing of foods:A review of functions of ingredients and internal structures[J]. Critical Reviews in Food Science and Nutrition,2021,61(21):3489−3503. doi: 10.1080/10408398.2020.1799327
|
[29] |
FAHMY A R, AMANN L S, DUNKEL A, et al. Sensory design in food 3D printing-Structuring, texture modulation, taste localization, and thermal stabilization[J]. Innovative Food Science & Emerging Technologies,2021,72:102743.
|
[30] |
LE-BAIL A, MANIGLIA B C, LE-BAIL P. Recent advances and future perspective in additive manufacturing of foods based on 3D printing[J]. Current Opinion in Food Science,2020,35:54−64. doi: 10.1016/j.cofs.2020.01.009
|
[31] |
DANKAR I, HADDARAH A, OMAR F E L, et al. 3D printing technology:The new era for food customization and elaboration[J]. Trends in Food Science & Technology,2018,75:231−242.
|
[32] |
WONG G H C, PANT A, ZHANG Y, et al. 3D Food printing-sustainability through food waste upcycling[J]. Materials Today:Proceedings,2022,70:627−630.
|
[33] |
YANG G, TAO Y, WANG P, et al. Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm:Feasibility study of 3D printed chicken product[J]. LWT,2022,154:112693. doi: 10.1016/j.lwt.2021.112693
|
[34] |
杨耿涵, 韩瑜, 陶阳, 等. 明胶对鸡肉糜3D打印成型稳定性的影响[J]. 食品科学,2022,43(12):51−57. [YANG G H, HAN Y, TAO Y, et al. Effect of gelatin on the stability of 3D printing of chicken mince[J]. Food Science,2022,43(12):51−57.] doi: 10.7506/spkx1002-6630-20210719-210
YANG G H, HAN Y, TAO Y, et al. Effect of gelatin on the stability of 3D printing of chicken mince[J]. Food Science, 2022, 43(12): 51−57. doi: 10.7506/spkx1002-6630-20210719-210
|
[35] |
BAIANO A. Edible insects:An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications[J]. Trends in Food Science & Technology,2020,100:35−50.
|
[36] |
CHAO C, HWANG J S, KIM I W, et al. Coaxial 3D printing of chicken surimi incorporated with mealworm protein isolate as texture-modified food for the elderly[J]. Journal of Food Engineering,2022,333:111151. doi: 10.1016/j.jfoodeng.2022.111151
|
[37] |
PAN Y, SUN Q, LIU Y, et al. The relationship between rheological and textural properties of shrimp surimi adding starch and 3D printability based on principal component analysis[J]. Food Science & Nutrition,2021,9(6):2985−2999.
|
[38] |
PAN Y, SUN Q, LIU Y, et al. Investigation on 3D printing of shrimp surimi adding three edible oils[J]. Foods,2024,13(3):429. doi: 10.3390/foods13030429
|
[39] |
刘莹, 傅宝尚, 姜鹏飞, 等. 羟丙基木薯淀粉对南极磷虾混合虾糜3D打印特性及凝胶特性的影响[J]. 食品与发酵工业,2022,48(21):180−187. [LIU Y, FU B S, JIANG P F, et al. Effect of hydroxypropyl tapioca starch on the 3D printing properties and gel properties of Antarctic krill mixed with shrimp mince[J]. Food and Fermentation Industry,2022,48(21):180−187.]
LIU Y, FU B S, JIANG P F, et al. Effect of hydroxypropyl tapioca starch on the 3D printing properties and gel properties of Antarctic krill mixed with shrimp mince[J]. Food and Fermentation Industry, 2022, 48(21): 180−187.
|
[40] |
PORTANGUEN S, TOURNAYRE P, SICARD J, et al. Toward the design of functional foods and biobased products by 3D printing:A review[J]. Trends in Food Science & Technology,2019,86:188−198.
|
[41] |
TONG Q, JIANG Y, XIAO S, et al. Research on improving the structural stability of surimi 3D printing through laser cooking techniques[J]. Journal of Food Engineering,2024,375:112075. doi: 10.1016/j.jfoodeng.2024.112075
|
[42] |
GONG X, MORTON J D, BHAT Z F, et al. Comparative efficacy of actinidin from green and gold kiwi fruit extract on in vitro simulated protein digestion of beef semitendinosus and its myofibrillar protein fraction[J]. International Journal of Food Science & Technology,2020,55(2):742−750.
|
[43] |
LIU P, DANG X, WOO M W, et al. Feasibility study of starch-based biomass incorporated 3D printed beef[J]. Starch-Stärke,2022,74(5-6):2200030.
|
[44] |
HUNT M R, GARMYN A J, O'QUINN T G, et al. Consumer assessment of beef palatability from four beef muscles from USDA choice and select graded carcasses[J]. Meat Science,2014,98(1):1−8. doi: 10.1016/j.meatsci.2014.04.004
|
[45] |
CORBIN C H, O'QUINN T G, GARMYN A J, et al. Sensory evaluation of tender beef strip loin steaks of varying marbling levels and quality treatments[J]. Meat Science,2015,100:24−31. doi: 10.1016/j.meatsci.2014.09.009
|
[46] |
KILLINGER K M, CALKINS C R, UMBERGER W J, et al. Consumer sensory acceptance and value for beef steaks of similar tenderness, but differing in marbling level[J]. Journal of Animal Science,2004,82(11):3294−3301. doi: 10.2527/2004.82113294x
|
[47] |
PARK J W, LEE S H, KIM H W, et al. Application of extrusion-based 3D food printing to regulate marbling patterns of restructured beef steak[J]. Meat Science,2023,202:109203. doi: 10.1016/j.meatsci.2023.109203
|
[48] |
DICK A, BHANDARI B, PRAKASH S. Post-processing feasibility of composite-layer 3D printed beef[J]. Meat Science,2019,153:9−18. doi: 10.1016/j.meatsci.2019.02.024
|
[49] |
K. HANDRAL H, HUA TAY S, WAN CHAN W, et al. 3D Printing of cultured meat products[J]. Critical Reviews in Food Science and Nutrition,2022,62(1):272−281. doi: 10.1080/10408398.2020.1815172
|
[50] |
张智霞, 马鑫淼, 许慧, 等. 人造肉技术的研究现状及展望[J]. 食品工业科技,2024,45(17):416−425. [ZHANG Z X, MA X M, XU H, et al. Research status and prospects of artificial meat technology[J]. Food Industry Science and Technolog,2024,45(17):416−425.]
ZHANG Z X, MA X M, XU H, et al. Research status and prospects of artificial meat technology[J]. Food Industry Science and Technolog, 2024, 45(17): 416−425.
|
[51] |
WANG T, KAUR L, FURUHATA Y, et al. 3D Printing of textured soft hybrid meat analogues[J]. Foods,2022,11(3):478. doi: 10.3390/foods11030478
|
[52] |
CHENG-RONG T, YUNG-KAI L. Artificial steak:A 3D printable hydrogel composed of egg albumen, pea protein, gellan gum, sodium alginate and rice mill by-products[J]. Future Foods,2022,5:100121. doi: 10.1016/j.fufo.2022.100121
|
[53] |
KO H J, WEN Y, CHOI J H, et al. Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing[J]. Food Hydrocolloids,2021,120:106898. doi: 10.1016/j.foodhyd.2021.106898
|
[54] |
TIAN H, WANG K, QIU R, et al. Effects of incubation temperature on the mechanical and structure performance of beeswax-carrageenan-xanthan hybrid gelator system in 3D printing[J]. Food Hydrocolloids,2022,127:107541. doi: 10.1016/j.foodhyd.2022.107541
|
[55] |
LIU Z, BHANDARI B, PRAKASH S, et al. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing[J]. Food Hydrocolloids,2019,87:413−424. doi: 10.1016/j.foodhyd.2018.08.026
|
[56] |
LIPTON J, ARNOLD D, NIGL F, et al. Multi-material food printing with complex internal structure suitable for conventional post-processing[C]//2010 International Solid Freeform Fabrication Symposium. University of Texas at Austin, 2010.
|
[57] |
LIU C, HO C, WANG J. The development of 3D food printer for printing fibrous meat materials[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing, 2018, 284:012019.
|
[58] |
潘禹希, 于婉莹, 赵文宇, 等. 鲢鱼糜和海参复配3D打印食品材料[J]. 现代食品科技,2020,36(8):175−183,30. [PANG Y X, YU W Y, ZHAO W Y, et al. Silver carp surimi and sea cucumber compound 3D printing food material[J]. Modern Food Technology,2020,36(8):175−183,30.]
PANG Y X, YU W Y, ZHAO W Y, et al. Silver carp surimi and sea cucumber compound 3D printing food material[J]. Modern Food Technology, 2020, 36(8): 175−183,30.
|
[59] |
HAO L, MELLOR S, SEAMAN O, et al. Material characterisation and process development for chocolate additive layer manufacturing[J]. Virtual and Physical Prototyping,2010,5(2):57−64. doi: 10.1080/17452751003753212
|
[60] |
WANG L, ZHANG M, BHANDARI B, et al. Investigation on fish surimi gel as promising food material for 3D printing[J]. Journal of Food Engineering,2018,220:101−108. doi: 10.1016/j.jfoodeng.2017.02.029
|
[61] |
BULUT E G, CANDOĞAN K. Development and characterization of a 3D printed functional chicken meat based snack:Optimization of process parameters and gelatin level[J]. LWT,2022,154:112768. doi: 10.1016/j.lwt.2021.112768
|
[62] |
DICK A, BHANDARI B, PRAKASH S. Effect of reheating method on the post-processing characterisation of 3D printed meat products for dysphagia patients[J]. LWT,2021,150:111915. doi: 10.1016/j.lwt.2021.111915
|
[63] |
BLUTINGER J D, MEIJERS Y, LIPSON H. Selective laser broiling of Atlantic salmon[J]. Food Research International,2019,120:196−208. doi: 10.1016/j.foodres.2019.02.043
|
[64] |
BLUTINGER J D, TSAI A, STORVICK E, et al. Precision cooking for printed foods via multiwavelength lasers[J]. NPJ Science of Food,2021,5(1):24. doi: 10.1038/s41538-021-00107-1
|
1. |
陶思琪,封炳迪,孟彩云,穆歆迪,张语涵,马隆煜,韩齐,李鹤. 清洁标签在食品加工中的应用及研究进展. 农产品加工. 2025(05): 95-98 .
![]() | |
2. |
刘欣睿,王美娟,计云龙,孔保华,曹传爱,孙方达,张宏伟,刘骞. 低温慢煮时间对即食鸡胸肉品质及消化特性的影响. 食品工业科技. 2024(03): 114-122 .
![]() | |
3. |
白恒丽,李来好,吴燕燕,王悦齐. 基于超声联合滚揉腌制改善低盐预制调理海鲈鱼品质特性. 食品科学. 2024(14): 161-171 .
![]() | |
4. |
曾昱,陈季旺,王欣欣,王柳清,张鹏,杨海琦,田宏伟. 辣椒油树脂乳液在卤鸭脖中的应用研究. 武汉轻工大学学报. 2024(05): 41-49 .
![]() | |
5. |
田梦瑶,肖珧,伍岳,娄爱华. 响应面法优化鸭肉间歇真空滚揉腌制工艺. 中国调味品. 2024(12): 132-136 .
![]() | |
6. |
周银娜,魏相茹,张德权,王振宇. 不同升温模式对北京鸭肉肌球蛋白热凝胶特性的影响. 肉类研究. 2023(06): 8-14 .
![]() | |
7. |
贺俊杰,曹传爱,孔保华,赵伟焱,李元钢,计云龙,刘骞. 蒸煮时间对低温即食鸭胸肉品质特性的影响. 肉类研究. 2023(06): 21-28 .
![]() | |
8. |
董智铭,姜萩婉,蒋泽临,王辉,王见钊,孔保华,刘骞,陈倩. 超声时间对牛肉干品质及其肌原纤维蛋白结构的影响. 食品工业科技. 2023(20): 36-42 .
![]() |