Citation: | LI Tao, JI Wenhua, DONG Hongjing, et al. Effect of Pectin Oligosaccharides from Hawthorn on the H2O2-induced Human Embryonic Lung Fibroblast Cells[J]. Science and Technology of Food Industry, 2025, 46(7): 346−354. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050308. |
[1] |
LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. Hallmarks of aging:An expanding universe[J]. Cell,2023,186(2):243−278. doi: 10.1016/j.cell.2022.11.001
|
[2] |
HOSSEINI L, FAROKHI-SISAKHT F, BADALZADEH R, et al. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus[J]. Neuroscience,2019,423:29−37. doi: 10.1016/j.neuroscience.2019.09.037
|
[3] |
ZHANG J, CHEN Z W, YU H X, et al. Anti-aging effects of a functional food via the action of gut microbiota and metabolites in aging mice[J]. Aging-US,2021,13(13):17880−17900. doi: 10.18632/aging.202873
|
[4] |
LI R Y, LUAN F, ZHAO Y Y, et al. Crataegus pinnatifida:A botanical, ethnopharmacological, phytochemical, and pharmacological overview[J]. Journal of Ethnopharmacology,2023,301:115819. doi: 10.1016/j.jep.2022.115819
|
[5] |
WANG X X, LI X, LI L Y, et al. Hawthorn fruit extract ameliorates H2O2-induced oxidative damage in neuronal PC12 cells and prolongs the lifespan of Caenorhabditis elegans via the IIS signaling pathway[J]. Food and Function,2022,13(20):10680−10694. doi: 10.1039/D2FO01657E
|
[6] |
ZHANG S Y, SUN X L, YANG X L, et al. Botany, traditional uses, phytochemistry and pharmacological activity of Crataegus pinnatifida (Chinese hawthorn):A review[J]. Journal of Pharmacy and Pharmacology,2022,74(11):1507−1545. doi: 10.1093/jpp/rgac050
|
[7] |
GUO Q B, DU J H, JIANG Y, et al. Pectic polysaccharides from hawthorn:Physicochemical and partial structural characterization[J]. Food Hydrocolloids,2019,90:146−153. doi: 10.1016/j.foodhyd.2018.10.011
|
[8] |
MIAO J, LI X, FAN Y, et al. Effect of different solvents on the chemical composition, antioxidant activity and alpha-glucosidase inhibitory activity of hawthorn extracts[J]. International Journal of Food Science and Technology,2016,51(5):1244−1251. doi: 10.1111/ijfs.13076
|
[9] |
LU M, ZHANG L, PAN J, et al. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn (Crataegus anamesa Sarg.) extracts in cardiovascular diseases[J]. Food and Function,2023,14(13):5870−5890. doi: 10.1039/D3FO01688A
|
[10] |
ZHANG X, HAN Y, HUANG W, et al. The influence of the gut microbiota on the bioavailability of oral drugs[J]. Acta Pharmaceutica Sinica B,2021,11(7):1789−1812. doi: 10.1016/j.apsb.2020.09.013
|
[11] |
LI T P, LI S H, DU L J, et al. Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet[J]. Food Chemistry,2010,121:1010−1013. doi: 10.1016/j.foodchem.2010.01.039
|
[12] |
ZHU R G, SUN Y D, LI T P, et al. Comparative effects of hawthorn (Crataegus pinnatifida Bunge) pectin and pectin hydrolyzates on the cholesterol homeostasis of hamsters fed high-cholesterol diets[J]. Chemico-Biological Interactions,2015,238:42−47. doi: 10.1016/j.cbi.2015.06.006
|
[13] |
YANG S Q, WU C X, YAN Q J, et al. Nondigestible functional oligosaccharides:Enzymatic production and food applications for intestinal health[J]. Annual Review of Food Science and Technology,2023,14:297−322. doi: 10.1146/annurev-food-052720-114503
|
[14] |
NERI-NUMA I A, PASTORE G M. Novel insights into prebiotic properties on human health:A review[J]. Food Research International,2020,131:108973. doi: 10.1016/j.foodres.2019.108973
|
[15] |
ZHU D, YAN Q J, LIU J, et al. Can functional oligosaccharides reduce the risk of diabetes mellitus?[J]. FASEB Journal,2019,33(11):11655−11667. doi: 10.1096/fj.201802802RRR
|
[16] |
XU Q X, FU Q, LI Z, et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice[J]. Nature Metabolism,2021,3(12):1706−1726. doi: 10.1038/s42255-021-00491-8
|
[17] |
LIU X Y, LIU D, LIN G P, et al. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice[J]. International Journal of Biological Macromolecules,2019,139:342−351. doi: 10.1016/j.ijbiomac.2019.07.195
|
[18] |
TUSI S K, KHALAJ L, ASHABI G, et al. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress[J]. Biomaterials,2011,32(23):5438−5458. doi: 10.1016/j.biomaterials.2011.04.024
|
[19] |
牟婕, 冯文静, 毛拥军. 甘露糖醛酸寡糖对过氧化氢诱导的衰老心肌细胞的影响[J]. 青岛大学学报(医学版),2019,55(4):411−414,418. [MOU J, FENG W J, MAO Y J. Effect of mannuronic acid oligosaccharides on hydrogen peroxide-induced cardiomyocyte senescence[J]. Journal of Qingdao University (Medical Sciences),2019,55(4):411−414,418.]
MOU J, FENG W J, MAO Y J. Effect of mannuronic acid oligosaccharides on hydrogen peroxide-induced cardiomyocyte senescence[J]. Journal of Qingdao University (Medical Sciences), 2019, 55(4): 411−414,418.
|
[20] |
LI T, YANG S Q, LIU X Y, et al. Dietary neoagarotetraose extends lifespan and impedes brain aging in mice via regulation of microbiota-gut-brain axis[J]. Journal of Advanced Research,2023,52:119−134. doi: 10.1016/j.jare.2023.04.014
|
[21] |
李涛, 刘晓艳, 王楠楠, 等. β-甘露聚糖酶部分水解香豆胶对自然衰老小鼠的抗衰老作用[J]. 食品科学,2022,43(9):111−119. [LI T, LIU X Y, WANG N N, et al. Anti-aging effect of partially hydrolyzed fenugreek gum by β-mannanase on naturally aging mice[J]. Food Science,2022,43(9):111−119.]
LI T, LIU X Y, WANG N N, et al. Anti-aging effect of partially hydrolyzed fenugreek gum by β-mannanase on naturally aging mice[J]. Food Science, 2022, 43(9): 111−119.
|
[22] |
李涛, 许云聪, 陈峻波, 等. 部分水解瓜尔豆胶对阿尔茨海默病小鼠学习记忆能力的改善作用[J]. 食品科学技术学报,2023,41(5):34−44. [LI T, XU Y C, CHEN J B, et al. Effect of partially hydrolyzed guar gum on learning and memory ability of Alzheimer's disease mice[J]. Journal of Food Science and Technology,2023,41(5):34−44.] doi: 10.12301/spxb202300039
LI T, XU Y C, CHEN J B, et al. Effect of partially hydrolyzed guar gum on learning and memory ability of Alzheimer's disease mice[J]. Journal of Food Science and Technology, 2023, 41(5): 34−44. doi: 10.12301/spxb202300039
|
[23] |
LI Q, WANG M, ZHANG Y, et al. Pectin-derived oligogalacturonic acids ameliorate high-fat diet-induced obesity in mice by regulating gut microbiota and inflammation[J]. Journal of Functional Foods,2024,112:105928. doi: 10.1016/j.jff.2023.105928
|
[24] |
LI S H, LI T P, JIA Y F, et al. Fractionation and structural characterization of haw pectin oligosaccharides[J]. European Food Research and Technology,2011,233:731−734. doi: 10.1007/s00217-011-1568-8
|
[25] |
LI T, LI Y X, YAN Q J, et al. Co-treatment of nicotinamide mononucleotide and neoagarooligosaccharide mitigates aging-induced cognitive impairment by promoting mitochondrial dynamics[J]. Journal of Functional Foods,2024,112:105922. doi: 10.1016/j.jff.2023.105922
|
[26] |
CHEN P X, ZHANG L Y, CHEN Y, et al. Mitochondrial stress and aging:Lessons from C. elegans[J]. Seminars in Cell & Developmental Biology,2024,154:69−76.
|
[27] |
OGRODNIK M. Cellular aging beyond cellular senescence:Markers of senescence prior to cell cycle arrest in vitro and in vivo[J]. Aging Cell,2021,20(4):e13338. doi: 10.1111/acel.13338
|
[28] |
LI L, ZHANG H, CHEN B B, et al. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1 alpha-TERT signaling pathways in aging mice[J]. Journal of Ethnopharmacology,2022,282:114653. doi: 10.1016/j.jep.2021.114653
|
[29] |
WANG C C, WANG D, XU J, et al. DHA enriched phospholipids with different polar groups (PC and PS) had different improvements on MPTP-induced mice with Parkinson’s disease[J]. Journal of Functional Foods,2018,45:417−426. doi: 10.1016/j.jff.2018.04.017
|
[30] |
DIMRI G P, LEE X, BASILE G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo[J]. PNAS,1995,92(20):9363−9367. doi: 10.1073/pnas.92.20.9363
|
[31] |
GREEN D R, REED J C. Mitochondria and apoptosis[J]. Science,1998,281:1309−1312. doi: 10.1126/science.281.5381.1309
|
[32] |
KUMAR P, LIU C, SULIBURK J, et al. Supplementing glycine and n-acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks:A randomized clinical trial[J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences,2023,78(1):75−89. doi: 10.1093/gerona/glac135
|
[33] |
BHATT M P, LIM Y C, KIM Y M, et al. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes[J]. Diabetes,2013,62:3851−3862. doi: 10.2337/db13-0039
|
[34] |
LU J T, QI C L, LIMBU S M, et al. Dietary mannan oligosaccharide (MOS) improves growth performance, antioxidant capacity, non-specific immunity and intestinal histology of juvenile Chinese mitten crabs (Eriocheir sinensis)[J]. Aquaculture,2019,510(15):337−346.
|
[35] |
DENG X J, LIANG X H, YANG H Y, et al. Nicotinamide mononucleotide (NMN) protects bEnd. 3 cells against H2O2-induced damage via NAMPT and the NF-κB p65 signalling pathway[J]. FEBS Open Bio,2021,11:866−879. doi: 10.1002/2211-5463.13067
|
[36] |
MORRONE M D, de ASSIS A M, da ROCHA R F, et al. Passiflora manicata (Juss.) aqueous leaf extract protects against reactive oxygen species and protein glycation in vitro and exvivo models[J]. Food and Chemical Toxicology,2013,60:45−51. doi: 10.1016/j.fct.2013.07.028
|
[37] |
SHADAB M, AGRAWAL D K, ASLAM M, et al. Occupational health hazards among sewage workers:Oxidative stress and deranged lung functions[J]. Journal of Clinical and Diagnostic Research,2014,8(4):BC11−BC12.
|
[38] |
YANG F, YI M Q, LIU Y, et al. Glutaredoxin-1 silencing induces cell senescence via p53/p21/p16 signaling axis[J]. Journal of Proteome Research,2018,17(3):1091−1100. doi: 10.1021/acs.jproteome.7b00761
|
[39] |
BAO Y Z, HE X Y, WU W L, et al. Sulfated galactofucan from Sargassum thunbergii induces senescence in human lung cancer A549 cells[J]. Food and Function,2020,11(5):4785−4792. doi: 10.1039/D0FO00699H
|
1. |
陶思琪,封炳迪,孟彩云,穆歆迪,张语涵,马隆煜,韩齐,李鹤. 清洁标签在食品加工中的应用及研究进展. 农产品加工. 2025(05): 95-98 .
![]() | |
2. |
刘欣睿,王美娟,计云龙,孔保华,曹传爱,孙方达,张宏伟,刘骞. 低温慢煮时间对即食鸡胸肉品质及消化特性的影响. 食品工业科技. 2024(03): 114-122 .
![]() | |
3. |
白恒丽,李来好,吴燕燕,王悦齐. 基于超声联合滚揉腌制改善低盐预制调理海鲈鱼品质特性. 食品科学. 2024(14): 161-171 .
![]() | |
4. |
曾昱,陈季旺,王欣欣,王柳清,张鹏,杨海琦,田宏伟. 辣椒油树脂乳液在卤鸭脖中的应用研究. 武汉轻工大学学报. 2024(05): 41-49 .
![]() | |
5. |
田梦瑶,肖珧,伍岳,娄爱华. 响应面法优化鸭肉间歇真空滚揉腌制工艺. 中国调味品. 2024(12): 132-136 .
![]() | |
6. |
周银娜,魏相茹,张德权,王振宇. 不同升温模式对北京鸭肉肌球蛋白热凝胶特性的影响. 肉类研究. 2023(06): 8-14 .
![]() | |
7. |
贺俊杰,曹传爱,孔保华,赵伟焱,李元钢,计云龙,刘骞. 蒸煮时间对低温即食鸭胸肉品质特性的影响. 肉类研究. 2023(06): 21-28 .
![]() | |
8. |
董智铭,姜萩婉,蒋泽临,王辉,王见钊,孔保华,刘骞,陈倩. 超声时间对牛肉干品质及其肌原纤维蛋白结构的影响. 食品工业科技. 2023(20): 36-42 .
![]() |