Citation: | LU Liyi, GAO Yecheng, CHEN Junlong, et al. Effect of Probiotics Complex on Improving Antibiotic-associated Diarrhea in Mice[J]. Science and Technology of Food Industry, 2025, 46(9): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050212. |
[1] |
LI W, ZHANG S, WANG Y, et al. Complex probiotics alleviate ampicillin-induced antibiotic-associated diarrhea in mice[J]. Frontiers in Microbiology,2023,14:1156058. doi: 10.3389/fmicb.2023.1156058
|
[2] |
苏钢, 杨光勇, 张庚鑫, 等. 基于肠道菌群探究葛根芩连汤短期治疗抗生素相关性腹泻[J]. 时珍国医国药,2023,34(9):2049−2053. [SU G, YANG G Y, ZHANG G X, et al. To study on the short-term treatment of antibiotic-associated diarrhea with Gegen Qinlian ecoction based on intestinal flora[J]. Lishizhen Medicine and Materia Medica Research,2023,34(9):2049−2053.]
SU G, YANG G Y, ZHANG G X, et al. To study on the short-term treatment of antibiotic-associated diarrhea with Gegen Qinlian ecoction based on intestinal flora[J]. Lishizhen Medicine and Materia Medica Research, 2023, 34(9): 2049−2053.
|
[3] |
杨璐嘉, 来智慧, 官松美, 等. 几种临床常用抗生素诱导小鼠腹泻的研究[J]. 中国抗生素杂志,2020,45(8):825−833. [YANG L J, LAI Z H, GUAN S M, et al. Study on diarrhea induced by several commonly used antibiotics in mice[J]. Chinese Journal of Antibiotics,2020,45(8):825−833.]
YANG L J, LAI Z H, GUAN S M, et al. Study on diarrhea induced by several commonly used antibiotics in mice[J]. Chinese Journal of Antibiotics, 2020, 45(8): 825−833.
|
[4] |
邹标, 舒赛男. 益生菌在儿童抗生素相关性腹泻应用进展[J]. 中国实用儿科杂志,2024,39(1):36−42. [ZOU B, SHU S N. Application progress of probiotics in the antibiotic associated diarrhea in children[J]. Chinese Journal of Practical Pediatrics,2024,39(1):36−42.]
ZOU B, SHU S N. Application progress of probiotics in the antibiotic associated diarrhea in children[J]. Chinese Journal of Practical Pediatrics, 2024, 39(1): 36−42.
|
[5] |
MEKONNEN S A, MERENSTEIN D, FRASER C M, et al. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea[J]. Current Opinion in Biotechnology,2020,61:226−234. doi: 10.1016/j.copbio.2020.01.005
|
[6] |
WANG J, JI H, WANG S, et al. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota[J]. Frontiers in Microbiology,2018,9:1953. doi: 10.3389/fmicb.2018.01953
|
[7] |
TURRONI F, MILANI C, DURANTI S, et al. Bifidobacteria and the infant gut:An example of co-evolution and natural selection[J]. Cellular and Molecular Life Sciences,2018,75(1):103−118. doi: 10.1007/s00018-017-2672-0
|
[8] |
FERNÁNDEZ-CIGANDA S, FRAGA M, ZUNINO P. Probiotic Lactobacilli administration induces changes in the fecal microbiota of preweaned dairy calves[J]. Probiotics and Antimicrobial Proteins,2022,14(5):804−815. doi: 10.1007/s12602-021-09834-z
|
[9] |
ANDERSON R C, COOKSON A L, MCNABB W C, et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation[J]. BMC Microbiology,2010,10(1):316. doi: 10.1186/1471-2180-10-316
|
[10] |
KOPP M V, GOLDSTEIN M, DIETSCHEK A, et al. Lactobacillus GG has in vitro effects on enhanced interleukin-10 and interferon-γ release of mononuclear cells but no in vivo effects in supplemented mothers and their neonates[J]. Clinical & Experimental Allergy,2008,38(4):602−610.
|
[11] |
VILLENA J, CHIBA E, VIZOSO-PINTO M, et al. Immunobiotic Lactobacillus rhamnosus strains differentially modulate antiviral immune response in porcine intestinal epithelial and antigen presenting cells[J]. BMC Microbiology,2014,14(1):126. doi: 10.1186/1471-2180-14-126
|
[12] |
FARKAS O, MÁTIS G, PÁSZTI-GERE E, et al. Effects of Lactobacillus plantarum 2142 and sodium n-butyrate in lipopolysaccharide-triggered inflammation:Comparison of a porcine intestinal epithelial cell line and primary hepatocyte monocultures with a porcine enterohepatic co-culture system12[J]. Journal of Animal Science,2014,92(9):3835−3845. doi: 10.2527/jas.2013-7453
|
[13] |
XU B, LIANG S, ZHAO J, et al. Bifidobacterium animalis subsp. lactis XLTG11 improves antibiotic-related diarrhea by alleviating inflammation, enhancing intestinal barrier function and regulating intestinal flora[J]. Food & Function,2022,13(11):6404−6418.
|
[14] |
牟龙恺, 史晓丹, 杨雨宁, 等. 复合益生菌改善免疫低下的效果研究[J]. 中国乳品工业,2024,52(8):1−11. [MU L K, SHI X D, YANG Y N, et al. Study on the effect of compound probiotics on improving immunosuppression[J]. China Dairy Industry,2024,52(8):1−11.]
MU L K, SHI X D, YANG Y N, et al. Study on the effect of compound probiotics on improving immunosuppression[J]. China Dairy Industry, 2024, 52(8): 1−11.
|
[15] |
WU J, GAN T, ZHANG Y, et al. The prophylactic effects of BIFICO on the antibiotic-induced gut dysbiosis and gut microbiota[J]. Gut Pathogens,2020,12(1):41. doi: 10.1186/s13099-020-00379-0
|
[16] |
吴绮霞, 高前程, 梁枝聪, 等. 一款益生菌复合制剂双向调节斑马鱼肠道动力作用研究[J]. 现代食品,2023,29(21):204−209. [WU Q X, GAO Q C, LIANG Z C, et al. A study on the bidirectional regulation of zebrafish intestinal motility by a probiotic complex preparation[J]. Modern Food,2023,29(21):204−209.]
WU Q X, GAO Q C, LIANG Z C, et al. A study on the bidirectional regulation of zebrafish intestinal motility by a probiotic complex preparation[J]. Modern Food, 2023, 29(21): 204−209.
|
[17] |
戴明珠, 郭胜亚, 徐懿乔, 等. 用于功效评价的斑马鱼转换人用剂量的换算方法:中国, 202010256107.8[P]. 2021-10-12. [DAI M Z, GUO S Y, XU Y Q, et al. Conversion method of zebrafish dose to human dose for efficacy evaluation:China, 202010256107.8[P]. 2021-10-12.]
DAI M Z, GUO S Y, XU Y Q, et al. Conversion method of zebrafish dose to human dose for efficacy evaluation: China, 202010256107.8[P]. 2021-10-12.
|
[18] |
马岩, 王中江, 杨靖瑜, 等. 动物双歧杆菌乳亚种XLTG11对克林霉素诱导的抗生素相关性腹泻的改善作用[J]. 食品科学,2023,44(3):170−178. [MA Y, WANG Z J, YANG J Y, et al. Alleviative effect of Bifidobacterium animalis subsp. lactis XLTG11 on antibiotic-associated diarrhea induced by clindamycin[J]. Food Science,2023,44(3):170−178.]
MA Y, WANG Z J, YANG J Y, et al. Alleviative effect of Bifidobacterium animalis subsp. lactis XLTG11 on antibiotic-associated diarrhea induced by clindamycin[J]. Food Science, 2023, 44(3): 170−178.
|
[19] |
GUO H, YU L, TIAN F, et al. Effects of bacteroides-based microecologics against antibiotic-associated diarrhea in mice[J]. Microorganisms,2021,9(12):2492. doi: 10.3390/microorganisms9122492
|
[20] |
CAPALDO C T, POWELL D N, KALMAN D. Layered defense:How mucus and tight junctions seal the intestinal barrier[J]. Journal of Molecular Medicine,2017,95(9):927−934. doi: 10.1007/s00109-017-1557-x
|
[21] |
赵丽. 腹泻型肠易激综合征大鼠肠道菌群和肠道屏障功能的变化及相关分子机制的研究[D]. 兰州:兰州大学, 2020. [ZHAO L. Changes in intestinal flora and intestinal barrier function in diarrhea-predominant IBS rats and related molecular mechanisms[D]. Lanzhou:Lanzhou University, 2020.]
ZHAO L. Changes in intestinal flora and intestinal barrier function in diarrhea-predominant IBS rats and related molecular mechanisms[D]. Lanzhou: Lanzhou University, 2020.
|
[22] |
HAGIHARA M, KUROKI Y, ARIYOSHI T, et al. Clostridium butyricum modulates the microbiome to protect intestinal barrier function in mice with antibiotic-induced dysbiosis[J]. iScience,2020,23(1):100772. doi: 10.1016/j.isci.2019.100772
|
[23] |
BINDER H J. Role of colonic short-chain fatty acid transport in diarrhea[J]. Annual Review of Physiology,2010,72(1):297−313. doi: 10.1146/annurev-physiol-021909-135817
|
[24] |
LIU C, SONG C, WANG Y, et al. Deep-fried Atractylodes lancea rhizome alleviates spleen deficiency diarrhea-induced short-chain fatty acid metabolic disorder in mice by remodeling the intestinal flora[J]. Journal of Ethnopharmacology,2023,303:115967. doi: 10.1016/j.jep.2022.115967
|
[25] |
张学强, 章从恩, 于小红, 等. 干姜改善抗生素相关性腹泻及对肠道菌群的作用研究[J]. 中国中药杂志,2022,47(5):1316−1326. [ZAHNG X Q, ZHANG C E, YU X H, et al. Modulation of gut microbiota during alleviation of antibiotic-associated diarrhea with Zingiberis Rhizoma[J]. China Journal of Chinese Materia Medica,2022,47(5):1316−1326.]
ZAHNG X Q, ZHANG C E, YU X H, et al. Modulation of gut microbiota during alleviation of antibiotic-associated diarrhea with Zingiberis Rhizoma[J]. China Journal of Chinese Materia Medica, 2022, 47(5): 1316−1326.
|
[26] |
曾祥瑞, 姜彩霞, 刘晓兰, 等. 玉米皮可溶性膳食纤维对洛哌丁胺诱导小鼠便秘的作用及机制[J]. 食品工业科技,2025,46(4):374−384. [ZENG X R, JIANG C X, LIU X L, et al. Effect and mechanism of soluble dietary fiber from corn bran on loperamide-induced constipation in mice[J]. Science and Technology of Food Industry,2025,46(4):374−384.]
ZENG X R, JIANG C X, LIU X L, et al. Effect and mechanism of soluble dietary fiber from corn bran on loperamide-induced constipation in mice[J]. Science and Technology of Food Industry, 2025, 46(4): 374−384.
|
[27] |
WANG G, WANG X, MA Y, et al. Lactobacillus reuteri improves the development and maturation of fecal microbiota in piglets through mother-to-infant microbe and metabolite vertical transmission[J]. Microbiome,2022,10(1):211. doi: 10.1186/s40168-022-01336-6
|
[28] |
SAKAMOTO M, IKEYAMA N, YUKI M, et al. Draft genome sequence of Faecalimonas umbilicata JCM 30896T, an acetate-producing bacterium isolated from human feces[J]. Microbiology Resource Announcements,2018,7(9):e01091−18.
|
[29] |
MAO B, GUO W, CUI S, et al. Blautia producta displays potential probiotic properties against dextran sulfate sodium-induced colitis in mice[J]. Food Science and Human Wellness,2024,13(2):709−720. doi: 10.26599/FSHW.2022.9250060
|
[30] |
ZHANG X, YU D, WU D, et al. Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance[J]. Cell Host & Microbe, 2023, 31(3):418-432.e8.
|
[31] |
SATHE N, BEECH P, CROFT L, et al. Pseudomonas aeruginosa:Infections and novel approaches to treatment "Knowing the enemy" the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment[J]. Infectious Medicine,2023,2(3):178−194. doi: 10.1016/j.imj.2023.05.003
|
[32] |
KORPELA K, SALONEN A, VIRTA L J, et al. Lactobacillus rhamnosus GG intake modifies preschool children’s intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use[J]. PLoS One,2016,11(4):e0154012. doi: 10.1371/journal.pone.0154012
|
[33] |
TOSCANO M, de GRANDI R, STRONATI L, et al. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level:A preliminary study[J]. World Journal of Gastroenterology,2017,23(15):2696. doi: 10.3748/wjg.v23.i15.2696
|