Citation: | CHEN Juan, ZHONG Yuanyi, FU Guowen, et al. Research Progress on Novel Salt Reduction Strategy and Mechanism of Dry-cured Ham[J]. Science and Technology of Food Industry, 2025, 46(9): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050210. |
[1] |
ZHOU Y, ZHOU C Y, PAN D, et al. The effect of sodium chloride levels on the taste and texture of dry-cured ham[J]. Journal of Food Measurement and Characterization,2020,14:2646−2655. doi: 10.1007/s11694-020-00511-3
|
[2] |
吴亮亮, 罗瑞明, 孔丰, 等. 食盐添加量对滩羊肉蒸煮损失、嫩度及水分分布的影响[J]. 食品工业科技,2016,37(2):322−325, 366. [WU L L, LUO R M, KONG F, et al. Effect of cooking loss, tenderness and water distribution of Tan sheep at different salt addition treatment[J]. Science and Technology of Food Industry,2016,37(2):322−325, 366.]
WU L L, LUO R M, KONG F, et al. Effect of cooking loss, tenderness and water distribution of Tan sheep at different salt addition treatment[J]. Science and Technology of Food Industry, 2016, 37(2): 322−325, 366.
|
[3] |
孟嘉珺, 许树荣, 邓莎, 等. 食盐腌制对鸡肉品质、肌原纤维蛋白结构和功能特性的影响[J]. 食品工业科技,2022,43(24):45−53. [MENG J J, XU S R, DENG S, et al. Effects of salt marinating on chicken quality and structure characteristics, function characteristics of chicken myofibrin protein[J]. Science and Technology of Food Industry,2022,43(24):45−53.]
MENG J J, XU S R, DENG S, et al. Effects of salt marinating on chicken quality and structure characteristics, function characteristics of chicken myofibrin protein[J]. Science and Technology of Food Industry, 2022, 43(24): 45−53.
|
[4] |
BARCENILLA C, ÁLVAREZ-ORDÓÑEZ A, LÓPEZ M, et al. Microbiological safety and shelf-life of low-salt meat products-a review[J]. Foods,2022,11(15):2331. doi: 10.3390/foods11152331
|
[5] |
WATSO J C, FANCHER I S, GOMEZ D H, et al. The damaging duo:Obesity and excess dietary salt contribute to hypertension and cardiovascular disease[J]. Obesity Reviews,2023,24(8):e13589. doi: 10.1111/obr.13589
|
[6] |
BOVÉE D M, UIJL E, SEVERS D, et al. Dietary salt modifies the blood pressure response to renin-angiotensin inhibition in experimental chronic kidney disease[J]. American Journal of Physiology-Renal Physiology,2021,320(4):F654−F668. doi: 10.1152/ajprenal.00603.2020
|
[7] |
TAKASE H, TAKEUCHI Y, FUJITA T, et al. Excessive salt intake reduces bone density in the general female population[J]. European Journal of Clinical Investigation,2023,53(10):e14034. doi: 10.1111/eci.14034
|
[8] |
WU X M, CHEN L L, CHENG J X, et al. Effect of dietary salt intake on risk of gastric cancer:A systematic review and meta-analysis of case-control studies[J]. Nutrients,2022,14(20):4260. doi: 10.3390/nu14204260
|
[9] |
国务院. “健康中国2030”规划纲要[OL]. (2016-10-25) [2024-4-18]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm. [The State Council. “Healthy China 2030” plan outline[OL]. (2016-10-25) [2024-4-18]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm.]
The State Council. “Healthy China 2030” plan outline[OL]. (2016-10-25) [2024-4-18]. https://www.gov.cn/zhengce/2016-10/25/content_5124174.htm.
|
[10] |
皮若冰, 李大鹏, 洪惠, 等. 肉制品中减盐策略研究进展[J]. 食品工业科技,2022,43(13):408−415. [PI R B, LI D P, HONG H, et al. Research progress on sodium salt reduction strategies in processed meat products[J]. Science and Technology of Food Industry,2022,43(13):408−415.]
PI R B, LI D P, HONG H, et al. Research progress on sodium salt reduction strategies in processed meat products[J]. Science and Technology of Food Industry, 2022, 43(13): 408−415.
|
[11] |
WANG J, HUANG X H, ZHANG Y Y, et al. Effect of sodium salt on meat products and reduction sodium strategie-A review[J]. Meat Science,2023,205:109296. doi: 10.1016/j.meatsci.2023.109296
|
[12] |
陈文彬, 黎良浩, 王健, 等. 部分KCl替代NaCl对强化高温成熟工艺干腌火腿肌肉色泽形成的影响[J]. 食品科学,2017,38(17):77−84. [CHEN W B, LI H L, WANG J, et al. Effect of partial repiacement of NaCl with KCl combined with high-temperature ripening on color formation in dry-cured hams[J]. Food Science,2017,38(17):77−84.] doi: 10.7506/spkx1002-6630-201717014
CHEN W B, LI H L, WANG J, et al. Effect of partial repiacement of NaCl with KCl combined with high-temperature ripening on color formation in dry-cured hams[J]. Food Science, 2017, 38(17): 77−84. doi: 10.7506/spkx1002-6630-201717014
|
[13] |
黎良浩, 王永丽, 唐静, 等. KCl部分替代NaCl对干腌火腿工艺过程中蛋白质水解的影响[J]. 食品工业科技,2015,36(18):103−107,112. [LI H L, WANG Y L, TANG J, et al. Influence of partial replacement of NaCl with KCl on proteolysis during processing of dry-cured hams[J]. Science and Technology of Food Industry,2015,36(18):103−107,112.]
LI H L, WANG Y L, TANG J, et al. Influence of partial replacement of NaCl with KCl on proteolysis during processing of dry-cured hams[J]. Science and Technology of Food Industry, 2015, 36(18): 103−107,112.
|
[14] |
ZHANG Y Y, WU H Z, TANG J, et al. Influence of partial replacement of NaCl with KCl on formation of volatile compounds in Jinhua ham during processing[J]. Food Science and Biotechnology,2016,25:379−391. doi: 10.1007/s10068-016-0053-3
|
[15] |
DING X L, WANG G Y, ZOU Y L, et al. Evaluation of small molecular metabolites and sensory properties of Xuanwei ham salted with partial replacement of NaCl by KCl[J]. Meat Science,2021,175:108465. doi: 10.1016/j.meatsci.2021.108465
|
[16] |
ARMENTEROS M, ARISTOY M C, BARAT J M, et al. Biochemical and sensory changes in dry-cured ham salted with partial replacements of NaCl by other chloride salts[J]. Meat Science,2012,90(2):361−367. doi: 10.1016/j.meatsci.2011.07.023
|
[17] |
BLESA E, ALIÑO M, BARAT J M, et al. Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts[J]. Meat Science,2008,78(1-2):135−142. doi: 10.1016/j.meatsci.2007.07.008
|
[18] |
RIPOLLÉS S, CAMPAGNOL P C, ARMENTEROS M, et al. Influence of partial replacement of NaCl with KCl, CaCl2 and MgCl2 on lipolysis and lipid oxidation in dry-cured ham[J]. Meat Science,2011,89(1):58−64. doi: 10.1016/j.meatsci.2011.03.021
|
[19] |
XUE S W, ZOU Y F, CHEN X, et al. Effects of sodium tripolyphosphate on functional properties of low-salt single-step high-pressure processed chicken breast sausage[J]. International Journal of Food Science & Technology,2016,51(9):2106−2113.
|
[20] |
YANG S J, MA X L, HUANG Y F, et al. Comprehensive effects of potassium lactate, calcium ascorbate and magnesium chloride as alternative salts on physicochemical properties, sensory characteristics and volatile compounds in low-sodium marinated beef[J]. Foods,2024,13(2):291. doi: 10.3390/foods13020291
|
[21] |
SHELEF L A. Antimicrobial effects of lactates:A review[J]. Journal of Food Protection,1994,57(5):445−450. doi: 10.4315/0362-028X-57.5.445
|
[22] |
LIAO R, WANG Y, XIA Q, et al. Effects of potassium lactate on sensory attributes, bacterial community succession and biogenic amines formation in Rugao ham[J]. Food Science and Human Wellness,2024,13(1):198−210. doi: 10.26599/FSHW.2022.9250017
|
[23] |
AKSU M I, EBRU E. The effect of potassium lactate on the free amino acid composition, lipid oxidation, colour, microbiological, and sensory properties of ready-to-eat pastırma, a dry-cured and dried meat product[J]. Journal of Food Science and Technology,2022,59(4):1288−1298. doi: 10.1007/s13197-021-05137-x
|
[24] |
FULLADOSA E, SERRA X, GOU P, et al. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content[J]. Meat Science,2009,82(2):213−218. doi: 10.1016/j.meatsci.2009.01.013
|
[25] |
COSTA-CORREDOR A, SERRA X, ARNAU J, et al. Reduction of NaCl content in restructured dry-cured hams:Post-resting temperature and drying level effects on physicochemical and sensory parameters[J]. Meat Science,2009,83(3):390−397. doi: 10.1016/j.meatsci.2009.06.011
|
[26] |
李苗云, 张秋会, 柳艳霞, 等. 不同磷酸盐对肉品保水性的影响[J]. 河南农业大学学报,2008(4):439−442. [LI M Y, ZHANG Q H, LIU Y X, et al. Effect of phosphates on meat water-holding capacity[J]. Journal of Henan Agricultural University,2008(4):439−442.]
LI M Y, ZHANG Q H, LIU Y X, et al. Effect of phosphates on meat water-holding capacity[J]. Journal of Henan Agricultural University, 2008(4): 439−442.
|
[27] |
朱晓龙. 磷酸盐在肉类加工中的应用及检测[J]. 肉类工业,2003(7):36−41. [ZHU X L. Application and detection of phosphate in meat processing[J]. Meat Industry,2003(7):36−41.]
ZHU X L. Application and detection of phosphate in meat processing[J]. Meat Industry, 2003(7): 36−41.
|
[28] |
丁武, 寇莉萍, 任建. 不同磷酸盐对猪肌肉嫩度及保水性的影响[J]. 食品科学,2009,30(21):56−58. [DING W, KOU L P, REN J. Effect of polyphosphates on tenderness and water-holding capacity of pork muscles[J]. Food Science,2009,30(21):56−58.]
DING W, KOU L P, REN J. Effect of polyphosphates on tenderness and water-holding capacity of pork muscles[J]. Food Science, 2009, 30(21): 56−58.
|
[29] |
乔晓铃, 张迎阳. 肉类工业面临新的磷酸盐问题[J]. 肉类研究,2004(4):36−38. [QIAO X L, ZHANG Y Y. The meat industry faces a new phosphate problem[J]. Meat Research,2004(4):36−38.]
QIAO X L, ZHANG Y Y. The meat industry faces a new phosphate problem[J]. Meat Research, 2004(4): 36−38.
|
[30] |
ŞEN Y, EVREN B. Utilization of yeast extract as a flavor enhancer and masking agent in sodium-reduced marinated shrimp[J]. Molecules,2023,29(1):182. doi: 10.3390/molecules29010182
|
[31] |
LIU S X, ZHANG Y W, HARLINA P W, et al. Sensory characteristics of low sodium dry-cured beef and their relation to odor intensity and electronic nose signals[J]. International Journal of Food Properties,2020,23(1):116−126. doi: 10.1080/10942912.2019.1708927
|
[32] |
LIU X, PIAO C X, JU M. Effects of low salt on lipid oxidation and hydrolysis, fatty acids composition and volatiles flavor compounds of dry-cured ham during ripening[J]. LWT-Food Science and Technology,2023,187:115347. doi: 10.1016/j.lwt.2023.115347
|
[33] |
KREMER S, MOJET J, SHIMOJO R. Salt reduction in foods using naturally brewed soy sauce[J]. Journal of Food Science,2009,74(6):S255−S262.
|
[34] |
DELGADO-PANDO G, ALLEN P, KERRY J P, et al. Optimising the acceptability of reduced-salt ham with flavourings using a mixture design[J]. Meat Science,2019,156:1−10. doi: 10.1016/j.meatsci.2019.05.010
|
[35] |
VIDAL V A S, SANTANA J B, PAGLARINI C S, et al. Adding lysine and yeast extract improves sensory properties of low sodium salted meat[J]. Meat Science,2020,159:107911. doi: 10.1016/j.meatsci.2019.107911
|
[36] |
CAMPAGNOL P C B, dos SANTOS B A, MORGANO M A, et al. Application of lysine, taurine, disodium inosinate and disodium guanylate in fermented cooked sausages with 50% replacement of NaCl by KCl[J]. Meat Science,2011,87(3):239−243. doi: 10.1016/j.meatsci.2010.10.018
|
[37] |
RIOS-MERA J D, SELANI M M, PATINHO I, et al. Modification of NaCl structure as a sodium reduction strategy in meat products:An overview[J]. Meat Science,2021,174:108417. doi: 10.1016/j.meatsci.2020.108417
|
[38] |
SUN C X, ZHOU X L, HU Z N, et al. Food and salt structure design for salt reducing[J]. Innovative Food Science & Emerging Technologies,2021,67:102570.
|
[39] |
VINITHA K, SETHUPATHY P, MOSES J A, et al. Conventional and emerging approaches for reducing dietary intake of salt[J]. Food Research International,2022,152:110933. doi: 10.1016/j.foodres.2021.110933
|
[40] |
TUNIEVA E K, GORBUNOVA N A. Alternative methods of technological processing to reduce salt in meat products[J]. Theory and Practice of Meat Processing,2017,2(1):47−56. doi: 10.21323/2414-438X-2017-2-1-47-56
|
[41] |
RIOS-MERA J D, SALDAÑA E, CRUZADO-BRAVO M L M, et al. Reducing the sodium content without modifying the quality of beef burgers by adding micronized salt[J]. Food Research International,2019,121:288−295. doi: 10.1016/j.foodres.2019.03.044
|
[42] |
GALVÃO M T E L, MOURA D B, BARRETTO A C S, et al. Effects of micronized sodium chloride on the sensory profile and consumer acceptance of turkey ham with reduced sodium content[J]. Food Science and Technology,2014,34(1):189−194. doi: 10.1590/S0101-20612014005000009
|
[43] |
ZHANG L L, QIAO Z Y, LIU S Q, et al. Particle size reduction technique for NaCl crystals as effective and applicable strategy for saltiness enhancement in solid foods[J]. LWT-Food Science and Technology,2023,191:115655.
|
[44] |
HU Y Y, BADAR I H, LIU Y, et al. Advancements in production, assessment, and food applications of salty and saltiness-enhancing peptides:A review[J]. Food Chemistry,2024,453:139664. doi: 10.1016/j.foodchem.2024.139664
|
[45] |
TADA M, SHINODA I, OKAI H. L-Ornithyltaurine, a new salty peptide[J]. Journal of Agricultural and Food Chemistry,1984,32(5):992−996. doi: 10.1021/jf00125a009
|
[46] |
LE B, YU B B, AMIN M S, et al. Salt taste receptors and associated salty/salt taste-enhancing peptides:A comprehensive review of structure and function[J]. Trends in Food Science & Technology,2022,129:657−666.
|
[47] |
SCHINDLER A, DUNKEL A, STÄHLER F, et al. Discovery of salt taste enhancing arginyl dipeptides in protein digests and fermented fish sauces by means of a sensomics approach[J]. Journal of Agricultural and Food Chemistry,2011,59(23):12578−12588. doi: 10.1021/jf2041593
|
[48] |
WANG H Y, CHEN D, LU W J, et al. Novel salty peptides derived from bovine bone:Identification, taste characteristic, and salt-enhancing mechanism[J]. Food Chemistry,2024,447:139035. doi: 10.1016/j.foodchem.2024.139035
|
[49] |
王欣, 安灿, 陈美龄, 等. 酶水解哈氏仿对虾蛋白提高咸味的研究[J]. 中国调味品,2017,42(5):12−16. [WANG X, AN C, CHEN M L, et al. Enzymatic hydrolysis of Parapenaeopsis hardwickii (Miers) protein for enhancing saltiness[J]. China Condiment,2017,42(5):12−16.]
WANG X, AN C, CHEN M L, et al. Enzymatic hydrolysis of Parapenaeopsis hardwickii (Miers) protein for enhancing saltiness[J]. China Condiment, 2017, 42(5): 12−16.
|
[50] |
严方. 豌豆蛋白美拉德肽制备及其呈味特性研究[D]. 无锡:江南大学, 2021. [YAN F. Preparation of pea protein Maillard peptides and their flavor characteristics[D]. Wuxi:Jiangnan University, 2021.]
YAN F. Preparation of pea protein Maillard peptides and their flavor characteristics[D]. Wuxi: Jiangnan University, 2021.
|
[51] |
赵立, 曹雨欣, 宋子伟, 等. 咸味猪骨肽部分替代NaCl 对低盐香肠品质和风味的影响[J/OL]. 食品工业科技. 1−21. [2024-08-31]. https://doi.org/10.13386/j.issn1002-0306.2023120208. [ZHAO L, CAO Y X, SONG Z W, et al. Study on salt reduction of yeast extract and its application in broth powder[J/OL]. Science and Technology of Food Industry, 1−21. [2024-08-31]. https://doi.org/10.13386/j.issn1002-0306.2023120208.]
ZHAO L, CAO Y X, SONG Z W, et al. Study on salt reduction of yeast extract and its application in broth powder[J/OL]. Science and Technology of Food Industry, 1−21. [2024-08-31]. https://doi.org/10.13386/j.issn1002-0306.2023120208.
|
[52] |
侯婷婷, 刘鑫, 崔福顺, 等. 低钠发酵肉制品理化特性及风味分析[J]. 食品与机械,2019,35(10):126−130,205. [HOU T T, LIU X, CUI F S, et al. Study on physicochemical property and flavor of fermented meat products with low sodium[J]. Food & Machinery,2019,35(10):126−130,205.]
HOU T T, LIU X, CUI F S, et al. Study on physicochemical property and flavor of fermented meat products with low sodium[J]. Food & Machinery, 2019, 35(10): 126−130,205.
|
[53] |
JIA S L, SHEN H R, WANG D, et al. Novel NaCl reduction technologies for dry-cured meat products and their mechanisms:A comprehensive review[J]. Food Chemistry,2023,431:137142.
|
[54] |
SALEENA P, JAYASHREE E, ANEES K. A comprehensive review on vacuum impregnation:Mechanism, applications and prospects[J]. Food and Bioprocess Technology,2023,17:1−14.
|
[55] |
BAMPI M, DOMSCHKE N N, SCHMIDT F C, et al. Influence of vacuum application, acid addition and partial replacement of NaCl by KCl on the mass transfer during salting of beef cuts[J]. LWT-Food Science and Technology,2016,74:26−33. doi: 10.1016/j.lwt.2016.07.009
|
[56] |
HAYES J E, KENNY T A, WARD P, et al. Development of a modified dry curing process for beef[J]. Meat Science,2007,77(3):314−323. doi: 10.1016/j.meatsci.2007.03.021
|
[57] |
ZHANG R U, XING L J, KANG D C, et al. Effects of ultrasound-assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins[J]. Ultrasonics Sonochemistry,2021,74:105582. doi: 10.1016/j.ultsonch.2021.105582
|
[58] |
MARRIOTT N G, GRAHAM P P, BOLING J W, et al. Vacuum tumbling of dry-cured hams[J]. Journal of Animal Science,1984,58(6):1376−1381. doi: 10.2527/jas1984.5861376x
|
[59] |
付浩华. 低盐腊肉加工工艺优化[J]. 肉类工业,2019(7):14−18,22. [FU H H. Optimization of processing technology for low-salt bacon[J]. Meat Industry,2019(7):14−18,22.]
FU H H. Optimization of processing technology for low-salt bacon[J]. Meat Industry, 2019(7): 14−18,22.
|
[60] |
JIANG F Y, ZHANG J, ZHANG R Y, et al. Effects of ultrasound-assisted vacuum tumbling on the flavor of spiced beef[J]. Food Bioscience,2024,58:103652. doi: 10.1016/j.fbio.2024.103652
|
[61] |
LI Y, FENG T, SUN J X, et al. Physicochemical and microstructural attributes of marinated chicken breast influenced by breathing ultrasonic tumbling[J]. Ultrasonics Sonochemistry,2020,64:105022. doi: 10.1016/j.ultsonch.2020.105022
|
[62] |
GÓMEZ-SALAZAR J A, GALVÁN-NAVARRO A, LORENZO J M, et al. Ultrasound effect on salt reduction in meat products:A review[J]. Current Opinion in Food Science,2021,38:71−78. doi: 10.1016/j.cofs.2020.10.030
|
[63] |
PEREZ-SANTAESCOLASTICA C, FRAEYE I, BARBA F J, et al. Application of non-invasive technologies in dry-cured ham:An overview[J]. Trends in Food Science & Technology,2019,86:360−374.
|
[64] |
INGUGLIA E S, GRANATO D, KERRY J P, et al. Ultrasound for meat processing:Effects of salt reduction and storage on meat quality parameters[J]. Applied Sciences,2020,11(1):117. doi: 10.3390/app11010117
|
[65] |
BARRETTO T L, POLLONIO M A R, TELIS-ROMERO J, et al. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction[J]. Meat Science,2018,145:55−62. doi: 10.1016/j.meatsci.2018.05.023
|
[66] |
高子武, 吴丹璇, 王恒鹏, 等. 腌制方式对牛肉肌原纤维蛋白特性及水分分布的影响[J]. 食品与发酵工业,2021,47(24):179−186. [GAO Z W, WU D X, WANG H P, et al. Effects of curing process on myofibrillar protein characteristics and water distribution of beef[J]. Food and Fermentation Industries,2021,47(24):179−186.]
GAO Z W, WU D X, WANG H P, et al. Effects of curing process on myofibrillar protein characteristics and water distribution of beef[J]. Food and Fermentation Industries, 2021, 47(24): 179−186.
|
[67] |
PINGRET D, FABIANO-TIXIER A S, CHEMAT F. Degradation during application of ultrasound in food processing:A review[J]. Food Control,2013,31(2):593−606. doi: 10.1016/j.foodcont.2012.11.039
|
[68] |
KANG D C, ZOU Y H, CHENG Y P, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry,2016,33:47−53. doi: 10.1016/j.ultsonch.2016.04.024
|
[69] |
BOSSE R, MÜLLER A, GIBIS M, et al. Recent advances in cured raw ham manufacture[J]. Critical Reviews in Food Science and Nutrition,2018,58(4):610−630. doi: 10.1080/10408398.2016.1208634
|
[70] |
PICOUET P A, SALA X, GARCIA-GIL N, et al. High pressure processing of dry-cured ham:Ultrastructural and molecular changes affecting sodium and water dynamics[J]. Innovative Food Science & Emerging Technologies,2012,16:335−340.
|
[71] |
ZHOU Y, WATKINS P, OISETH S, et al. High pressure processing improves the sensory quality of sodium-reduced chicken sausage formulated with three anion types of potassium salt[J]. Food Control,2021,126:108008. doi: 10.1016/j.foodcont.2021.108008
|
[72] |
BOLUMAR T, ORLIEN V, SIKES A, et al. High-pressure processing of meat:Molecular impacts and industrial applications[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(1):332−368. doi: 10.1111/1541-4337.12670
|
[73] |
FULLADOSA E, SALA X, GOU P, et al. K-lactate and high pressure effects on the safety and quality of restructured hams[J]. Meat Science,2012,91(1):56−61. doi: 10.1016/j.meatsci.2011.12.006
|
[74] |
NUYGEN M, ARVAJ L, BALAMURUGAN S. The use of high pressure processing to compensate for the effects of salt reduction in ready-to-eat meat products[J]. Critical Reviews in Food Science and Nutrition,2024,64(9):2533−2547. doi: 10.1080/10408398.2022.2124398
|
[75] |
CLARIANA M, GUERRERO L, SÁRRAGA C, et al. Influence of high pressure application on the nutritional, sensory and microbiological characteristics of sliced skin vacuum packed dry-cured ham. Effects along the storage period[J]. Innovative Food Science & Emerging Technologies,2011,12(4):456−465.
|
[76] |
BHAT Z F, MORTON J D, MASON S L, et al. Current and future prospects for the use of pulsed electric field in the meat industry[J]. Critical Reviews in Food Science and Nutrition,2019,59(10):1660−1674. doi: 10.1080/10408398.2018.1425825
|
[77] |
ZHANG Y, WANG R, WEN Q H, et al. Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process[J]. Innovative Food Science & Emerging Technologies,2022,80:103061.
|
[78] |
DONG Z Q, LI X F, LIU Z, et al. Pulsed electric field using the needle–needle electrodes for improving the salt diffusion of pork brine salting[J]. Journal of Food Science,2023,88(5):2023−2035. doi: 10.1111/1750-3841.16528
|
[79] |
GUO Y C, HAN M Y, CHEN L, et al. Pulsed electric field:A novel processing technology for meat quality enhancing[J]. Food Bioscience,2024,58:103645. doi: 10.1016/j.fbio.2024.103645
|
[80] |
JEONG S H, KIM E C, LEE D U. The impact of a consecutive process of pulsed electric field, sous-vide cooking, and reheating on the properties of beef semitendinosus muscle[J] Foods, 2020, 9(11):1674.
|
[81] |
KHAN A A, RANDHAWA M A, CARNE A, et al. Effect of low and high pulsed electric field on the quality and nutritional minerals in cold boned beef M. longissimus et lumborum[J]. Innovative Food Science & Emerging Technologies,2017,41:135−143.
|
[82] |
SAULIS G. Electroporation of cell membranes:The fundamental effects of pulsed electric fields in food processing[J]. Food Engineering Reviews,2010,2:52−73. doi: 10.1007/s12393-010-9023-3
|
[83] |
O'DOWD L P, ARIMI J M, NOCI F, et al. An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle[J]. Meat Science,2013,93(2):303−309. doi: 10.1016/j.meatsci.2012.09.010
|
[84] |
GONG X H, WAN J, ZHOU Y, et al. Mediated curing strategy:An overview of salt reduction for dry-cured meat products[J]. Food Reviews International,2023,39(7):4565−4580. doi: 10.1080/87559129.2022.2029478
|
[85] |
CHEN D, ZHU Q J, ZHOU Y, et al. Simulation study of xylitol-mediated effect on NaCl diffusion behavior in cured pork tenderloin[J]. Foods,2023,12(7):1451. doi: 10.3390/foods12071451
|
[86] |
DIMAKOPOULOU-PAPAZOGLOU D, KATSANIDIS E. Diffusion coefficients and volume changes of beef meat during osmotic dehydration in binary and ternary solutions[J]. Food and Bioproducts Processing,2019,116:10−19. doi: 10.1016/j.fbp.2019.04.007
|
[87] |
CHEN C, LI W Z, SONG Y C, et al. Concentration dependence of water self-diffusion coefficients in dilute glycerol–water binary and glycerol–water–sodium chloride ternary solutions and the insights from hydrogen bonds[J]. Molecular Physics,2012,110(5):283−291. doi: 10.1080/00268976.2011.641602
|
[88] |
刘春丽. 新型腌制对发酵里脊火腿品质影响及蛋白质组学的研究[D]. 贵阳:贵州大学, 2020. [LIU C L. Effect of new curing on quality and proteomics of fermented loin ham[D]. Guiyang:Guizhou University, 2020.]
LIU C L. Effect of new curing on quality and proteomics of fermented loin ham[D]. Guiyang: Guizhou University, 2020.
|
[89] |
GU S, ZHU Q J, ZHOU Y, et al. Effect of ultrasound combined with glycerol-mediated low-sodium curing on the quality and protein structure of pork tenderloin[J]. Foods,2022,11(23):3798. doi: 10.3390/foods11233798
|
[90] |
LIU L G, ZHOU Y, WAN J, et al. Mechanism of polyhydroxy alcohol-mediated curing on moisture migration of minced pork tenderloin:On the basis of molecular docking[J]. Food Chemistry:X,2022,15:100401.
|