Citation: | YIN Hao, ZHU Jiangxiong, ZHONG Yu, et al. Insights Into Rapid Screening and Activity Investigation of Novel Hemp Seed Pancreatic Lipase/Cholesterol Esterase Inhibitory Peptides[J]. Science and Technology of Food Industry, 2025, 46(9): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050168. |
[1] |
吕知新, 任龙梅, 李银换. 新时期工业大麻产业发展的机遇与挑战[J]. 南方农机,2021,52(23):117−119. [LÜ Z X, REN L M, LI Y H. Opportunities and challenges in the development of the industrial hemp industry in the new era[J]. China Southern Agricultural Machinery,2021,52(23):117−119.] doi: 10.3969/j.issn.1672-3872.2021.23.037
LÜ Z X, REN L M, LI Y H. Opportunities and challenges in the development of the industrial hemp industry in the new era[J]. China Southern Agricultural Machinery, 2021, 52(23): 117−119. doi: 10.3969/j.issn.1672-3872.2021.23.037
|
[2] |
何锦风, 陈天鹏, 卢蓉蓉, 等. 汉麻籽的综合利用及产业化研究[J]. 中国食品学报,2010,10(3):98−112. [HE J F, CHEN T P, LU R R, et al. Study on the comprehensive utilization and industrialization of hempseed (Fructus cannabis)[J]. Journal of Chinese Institute of Food Science and Technology,2010,10(3):98−112.] doi: 10.3969/j.issn.1009-7848.2010.03.016
HE J F, CHEN T P, LU R R, et al. Study on the comprehensive utilization and industrialization of hempseed (Fructus cannabis)[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(3): 98−112. doi: 10.3969/j.issn.1009-7848.2010.03.016
|
[3] |
孟妍, 曾剑华, 王尚杰, 等. 汉麻籽蛋白研究进展[J]. 食品工业,2020,41(1):268−273. [MENG Y, ZENG J H, WANG S J, et al. Research progress on hemp seed protein[J]. The Food Industry,2020,41(1):268−273.]
MENG Y, ZENG J H, WANG S J, et al. Research progress on hemp seed protein[J]. The Food Industry, 2020, 41(1): 268−273.
|
[4] |
GILDA A, CARMEN L, GIOVANNA B, et al. Exploration of potentially bioactive peptides generated from the enzymatic hydrolysis of hempseed proteins[J]. Journal of Agricultural and Food Chemistry,2017,65(47):10174−10184. doi: 10.1021/acs.jafc.7b03590
|
[5] |
魏连会, 宋淑敏, 董艳, 等. 火麻籽多肽对高脂饮食喂养大鼠血脂的影响[J]. 食品科学,2021,42(11):161−167. [WEI L H, SONG S M, DONG Y, et al. Effect of hemp seed peptide on blood lipids in high-fat diet fed rats[J]. Food Science,2021,42(11):161−167.] doi: 10.7506/spkx1002-6630-20200421-266
WEI L H, SONG S M, DONG Y, et al. Effect of hemp seed peptide on blood lipids in high-fat diet fed rats[J]. Food Science, 2021, 42(11): 161−167. doi: 10.7506/spkx1002-6630-20200421-266
|
[6] |
World Health Organization. World obesity atlas 2023[R]. Geneva:WHO,2024.
|
[7] |
NCD Risk Factor Collaboration. Worldwide trends in underweight and obesity from 1990 to 2022:A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults[J]. Lancet,2024,403(10431):1027−1050. doi: 10.1016/S0140-6736(23)02750-2
|
[8] |
LIU T, LIU X, CHEN Q, et al. Lipase inhibitors for obesity:A review[J]. Biomedicine and Pharmacotherapy,2020,128:110314. doi: 10.1016/j.biopha.2020.110314
|
[9] |
MUDGIL P, BABA W N, KAMAL H, et al. A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion[J]. Food Chemistry,2022,367:130661. doi: 10.1016/j.foodchem.2021.130661
|
[10] |
KUMAR A, CHAUHAN S. Pancreatic lipase inhibitors:The road voyaged and successes[J]. Life Sciences,2021,271:119115. doi: 10.1016/j.lfs.2021.119115
|
[11] |
ESFANDI R, SEIDU I, WILLMORE W, et al. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides[J]. Journal of Food Biochemistry,2022,46:e13762.
|
[12] |
相欢, 崔春. 沙棘籽粕蛋白肽的稳定性及分离纯化[J]. 食品科学,2023,44(18):49−57. [XIANG H, CUI C. Stability and separation of peptides from seabuckthorn seed protein[J]. Food Science,2023,44(18):49−57.]
XIANG H, CUI C. Stability and separation of peptides from seabuckthorn seed protein[J]. Food Science, 2023, 44(18): 49−57.
|
[13] |
钟婉滢, 苗建银, 叶灏铎, 等. 藜麦蛋白肽的酶解制备及体外降血脂与降尿酸活性研究[J]. 食品工业科技,2023,44(23):156−166. [ZHONG W Y, MIAO J Y, YE H D, et al. Enzymatic preparation of quinoa protein peptides and its lipid lowering and uric acid-lowering activity in vitro[J]. Science and Technology of Food Industry,2023,44(23):156−166.]
ZHONG W Y, MIAO J Y, YE H D, et al. Enzymatic preparation of quinoa protein peptides and its lipid lowering and uric acid-lowering activity in vitro[J]. Science and Technology of Food Industry, 2023, 44(23): 156−166.
|
[14] |
ZHANG Y, TANG X, LI F, et al. Inhibitory effects of oat peptides on lipolysis:A physicochemical perspective[J]. Food Chemistry,2022,396:133621. doi: 10.1016/j.foodchem.2022.133621
|
[15] |
YOU H, ZHANG Y, WU T, et al. Identification of dipeptidyl peptidase IV inhibitory peptides from rapeseed proteins[J]. LWT,2022,160:113255. doi: 10.1016/j.lwt.2022.113255
|
[16] |
张李君, 赵甜甜, 陈杰琼, 等. 鲟鱼子酶解产物对酒精损伤肝细胞的保护作用及活性肽虚拟筛选[J]. 食品工业科技,2024,45(19):316−324. [ZHANG L J, ZHAO T T, CHEN J Q, et al. Protective effects of enzymatic products from sturgeon roe on alcohol-induced hepatic cell damage and virtual screening of active peptides[J]. Science and Technology of Food Industry,2024,45(19):316−324.]
ZHANG L J, ZHAO T T, CHEN J Q, et al. Protective effects of enzymatic products from sturgeon roe on alcohol-induced hepatic cell damage and virtual screening of active peptides[J]. Science and Technology of Food Industry, 2024, 45(19): 316−324.
|
[17] |
刘芬娣, 李婧铭, 陈洪娇, 等. 生姜蛋白酶水解产物中二肽基肽酶-Ⅳ抑制肽的虚拟筛选及活性分析[J]. 现代食品科技,2024,40(5):34−42. [LIU F D, LI J M, CHEN H J, et al. Virtual screening and activity evaluation of dipeptidyl peptidase-IV inhibitory peptides from ginger protease hydrolysates[J]. Modern Food Science and Technology,2024,40(5):34−42.]
LIU F D, LI J M, CHEN H J, et al. Virtual screening and activity evaluation of dipeptidyl peptidase-IV inhibitory peptides from ginger protease hydrolysates[J]. Modern Food Science and Technology, 2024, 40(5): 34−42.
|
[18] |
宋炜昱, 尹浩, 钟宇, 等. 不同品种汉麻籽蛋白质结构与功能特性分析[J]. 食品工业科技,2023,44(10):47−53. [SONG W Y, YIN H, ZHONG Y, et al. Analysis of protein structure and functional properties of hemp seeds of different varieties[J]. Science and Technology of Food Industry,2023,44(10):47−53.]
SONG W Y, YIN H, ZHONG Y, et al. Analysis of protein structure and functional properties of hemp seeds of different varieties[J]. Science and Technology of Food Industry, 2023, 44(10): 47−53.
|
[19] |
YIN H, JIANG Y, ZHOU X, et al. Effect of radio frequency, ultrasound, microwave-assisted papain, and alcalase hydrolysis on the structure, antioxidant activity, and peptidomic profile of Rosa roxburghii Tratt. seed protein[J]. Journal of food science,2022,87(9):4040−4055. doi: 10.1111/1750-3841.16266
|
[20] |
HERRERA T, NAVARRO DEL HIERRO J, FORNARI T, et al. Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions[J]. Food Chemistry,2019,270:509−517. doi: 10.1016/j.foodchem.2018.07.145
|
[21] |
谢晋祥, 耿树香, 宁德鲁, 等. 云南3个主栽品种核桃多肽的制备及体外抗氧化活性的研究[J]. 中国油脂,2025,50(2):51−56,94. [XIE J X, GENG S X, NING D L, et al. Preparation and in vitro antioxidant activity of antioxidant peptides from three main walnut varieties grown in Yunnan[J]. China Oils and Fats,2025,50(2):51−56,94.]
XIE J X, GENG S X, NING D L, et al. Preparation and in vitro antioxidant activity of antioxidant peptides from three main walnut varieties grown in Yunnan[J]. China Oils and Fats, 2025, 50(2): 51−56,94.
|
[22] |
江婷, 费博, 庞会娜, 等. 葛根蛋白及其酶解物的体外抗氧化活性和功能特性[J]. 食品研究与开发,2024,45(1):51−59. [JIANG T, FEI B, PANG H N, et al. Antioxidant activities in vitro and functional properties of Pueraria lobata protein and its enzymatic hydrolysates[J]. Food Research and Development,2024,45(1):51−59.]
JIANG T, FEI B, PANG H N, et al. Antioxidant activities in vitro and functional properties of Pueraria lobata protein and its enzymatic hydrolysates[J]. Food Research and Development, 2024, 45(1): 51−59.
|
[23] |
林娈, 柳雯郡, 黄俊媛, 等. 蛋白核小球藻胰脂肪酶抑制肽的分离纯化、鉴定及其降脂活性[J]. 食品科学,2023,44(24):155−163. [LIN L, LIU W J, HUANG J Y, et al. Isolation, purification, identification and hypolipidemic activity of lipase inhibitory peptide from Chlorella pyrenoidosa[J]. Food Science,2023,44(24):155−163.]
LIN L, LIU W J, HUANG J Y, et al. Isolation, purification, identification and hypolipidemic activity of lipase inhibitory peptide from Chlorella pyrenoidosa[J]. Food Science, 2023, 44(24): 155−163.
|
[24] |
刘晓静. 亚麻籽肽降胆固醇作用的研究[D]. 呼和浩特:内蒙古农业大学, 2020. [LIU X J. Study on the cholesterol lowering effect of flaxseed peptide[D]. Hohhot:Inner Mongolia Agricultural University, 2020.]
LIU X J. Study on the cholesterol lowering effect of flaxseed peptide[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[25] |
MCCLEMENTS D J, LI Y. Review of in vitro digestion models for rapid screening of emulsion-based systems[J]. Food Function,2010,1(1):32−59. doi: 10.1039/c0fo00111b
|
[26] |
SHALINI J, SUNDARAPANDIAN T, PRETTINA L, et al. New insights in the activation of human cholesterol esterase to design potent anti-cholesterol drugs[J]. Molecular diversity,2014,18(1):119−31. doi: 10.1007/s11030-013-9464-8
|
[27] |
AWOSIKA O T, ALUKO E R. Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates[J]. International Journal of Food Science Technology,2019,54(6):2021−2034. doi: 10.1111/ijfs.14087
|
[28] |
李汉琪, 王治军, 郑清瑶, 等. 多肽组学联合分子对接筛选玉足海参抗血栓肽[J]. 食品与发酵工业,2024,50(20):104−112. [LI H Q, WANG Z J, ZHENG Q Y, et al. Peptidomics combined with molecular docking screening for antithrombotic peptides from sea cucumber (Holothuria leucospilota)[J]. Food and Fermentation Industries,2024,50(20):104−112.]
LI H Q, WANG Z J, ZHENG Q Y, et al. Peptidomics combined with molecular docking screening for antithrombotic peptides from sea cucumber (Holothuria leucospilota)[J]. Food and Fermentation Industries, 2024, 50(20): 104−112.
|
[29] |
FEYISOLA A F, PRITI M, CHEE-YUEN G, et al. Identification and characterization of cholesterol esterase and lipase inhibitory peptides from amaranth protein hydrolysates[J]. Food Chemistry:X,2021,12:100165.
|
[30] |
XIANG H, WATERHOUSE DS, LIU P, et al. Pancreatic lipase-inhibiting protein hydrolysate and peptides from seabuckthorn seed meal:Preparation optimization and inhibitory mechanism[J]. LWT,2020,134:109870. doi: 10.1016/j.lwt.2020.109870
|
[31] |
EGLOFF M P, MARGUET F, BUONO G, et al. The 2.46Å resolution structure of the pancreatic lipase-colipase complex inhibited by a cll alkyl phosphonate[J]. Biochemistry,1995,34(9):2751−2762. doi: 10.1021/bi00009a003
|
[32] |
WANG X, WANG C S, TANG J, et al. The crystal structure of bovine bile salt activated lipase:Insights into the bile salt activation mechanism[J]. Structure,1997,5(9):1209−1218. doi: 10.1016/S0969-2126(97)00271-2
|
[33] |
DANKWA B, BRONI E, ENNINFUL K S, et al. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19[J]. Structural Chemistry,2022,33(6):2221−2241. doi: 10.1007/s11224-022-02056-1
|
[34] |
TRABUCO L G, LISE S, PETSALAKI E, et al. PepSite:Prediction of peptide-binding sites from protein surfaces[J]. Nucleic Acids Research,2012,40:W423−W427. doi: 10.1093/nar/gks398
|
[35] |
KETPRAYOON T, NOITANG S, SANGTANOO P, et al. An in vitro study of lipase inhibitory peptides obtained from de-oiled rice bran[J]. RSC Advances,2021,11(31):18915−18929. doi: 10.1039/D1RA01411K
|
[36] |
WANG X, AI X, ZHU Z, et al. Pancreatic lipase inhibitory effects of peptides derived from sesame proteins:In silico and in vitro analyses[J]. International Journal of Biological Macromolecules,2022,222:1531−1537. doi: 10.1016/j.ijbiomac.2022.09.259
|
[37] |
YE H, XU Y, SUN Y, et al. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein[J]. Food Research International,2023,165:112450. doi: 10.1016/j.foodres.2022.112450
|
[38] |
GARZÓN A G, CIAN R E, AQUINO M E, et al. Isolation and identification of cholesterol esterase and pancreatic lipase inhibitory peptides from brewer’s spent grain by consecutive chromatography and mass spectrometry[J]. Food and Function,2020,11(6):4994−5003. doi: 10.1039/D0FO00880J
|
[39] |
BABA W N, MUDGIL P, BABY B, et al. New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates:Identification, characterization, and molecular interaction[J]. Journal of Dairy Science,2021,104(7):7393−7405. doi: 10.3168/jds.2020-19868
|
[40] |
NGOH Y Y, CHOI S B, GAN C Y. The potential roles of Pinto bean (Phaseolus vulgaris cv. Pinto) bioactive peptides in regulating physiological functions:Protease activating, lipase inhibiting and bile acid binding activities[J]. Journal of Functional Foods,2017,33:67−75. doi: 10.1016/j.jff.2017.03.029
|
[41] |
NAGAOKA S. Structure-function properties of hypolipidemic peptides[J]. Journal of Food Biochemistry,2019,43(1):e12539. doi: 10.1111/jfbc.12539
|
[42] |
EYDOUX C, SPINELLI S, DAVIS T L, et al. Structure of human pancreatic lipase-related protein 2 with the lid in an open conformation[J]. Biochemistry,2008,47(36):9553−9564. doi: 10.1021/bi8005576
|