Citation: | ZHAO Yanmei, LU Jiakang, SHI Yueya, et al. Influences of Lactate on the High-density Fermentation by Bacillus licheniformis HK[J]. Science and Technology of Food Industry, 2025, 46(7): 151−160. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050140. |
[1] |
ZHANG G Q, CHEN Y K, LI Q H, et al. Growth-coupled evolution and high-throughput screening assisted rapid enhancement for amylase-producing Bacillus licheniformis[J]. Bioresource Technology,2021,337:125467−125467. doi: 10.1016/j.biortech.2021.125467
|
[2] |
AGUILAR J G D S, de CASTRO R J S, SATO H H. Production of antioxidant peptides from pea protein using protease from Bacillus licheniformis LBA 46[J]. International Journal of Peptide Research and Therapeutics,2020,26(1):435−443. doi: 10.1007/s10989-019-09849-9
|
[3] |
DONG Z X, CHEN X L, CAI K, et al. Exploring the metabolomic responses of Bacillus licheniformis to temperature stress by gas chromatography/mass spectrometry[J]. Journal of Microbiology and Biotechnology,2018,28(3):473−481. doi: 10.4014/jmb.1708.08019
|
[4] |
ZHAN Y Y, XU H X, TAN HWEEN T, et al. Systematic adaptation of Bacillus licheniformis to 2-phenylethanol stress[J]. Applied and Environmental Microbiology,2023,89(2):e0156822−e0156822. doi: 10.1128/aem.01568-22
|
[5] |
SHLEEVA M O, KONDRATIEVA D A, KAPRELYANTS A S. Bacillus licheniformis:A producer of antimicrobial substances, including antimycobacterials, which are feasible for medical applications[J]. Pharmaceutics,2023,15(7):1893−1899. doi: 10.3390/pharmaceutics15071893
|
[6] |
de BOER A S, PRIEST F, DIDERICHSEN B. On the industrial use of Bacillus licheniformis:A review[J]. Applied Microbiology and Biotechnology,1994,40:595−598. doi: 10.1007/BF00173313
|
[7] |
CUTTING S M. Bacillus probiotics[J]. Food Microbiology,2011,28(2):214−220. doi: 10.1016/j.fm.2010.03.007
|
[8] |
LEE N K, KIM W S, PAIK H D. Bacillus strains as human probiotics:Characterization, safety, microbiome, and probiotic carrier[J]. Food Science and Biotechnology,2019,28(5):1297−1305. doi: 10.1007/s10068-019-00691-9
|
[9] |
HE H, YU Q, DING Z, et al. Biotechnological and food synthetic biology potential of platform strain:Bacillus licheniformis[J]. Synthetic and Systems Biotechnology,2023,8(2):281−291. doi: 10.1016/j.synbio.2023.03.008
|
[10] |
杨旭, 武天宁, 荀明强, 等. 1株地衣芽孢杆菌发酵条件研究及其微生物制剂的制备[J]. 饲料研究,2022,45(24):91−96. [YANG X, WU T N, XUN M Q, et al. Study on fermentation conditions of Bacillus licheniformis and preparation of microbial preparation[J]. Feed Research,2022,45(24):91−96.]
YANG X, WU T N, XUN M Q, et al. Study on fermentation conditions of Bacillus licheniformis and preparation of microbial preparation[J]. Feed Research, 2022, 45(24): 91−96.
|
[11] |
魏强, 张薇, 石黑虎, 等. 地衣芽孢杆菌(Bacillus licheniformis)10236发酵条件的优化[J]. 河北农业科学, 2019, 23(5):65−70. [WEI Q, ZHANG W, SHI H H, et al. Optimization of fermentation conditions for Bacillus licheniformis 10236[J] Hebei Agricultural Science, 2019, 23(5):65−70.]
WEI Q, ZHANG W, SHI H H, et al. Optimization of fermentation conditions for Bacillus licheniformis 10236[J] Hebei Agricultural Science, 2019, 23(5): 65−70.
|
[12] |
丁跃, 何俊峰, 龚若飞, 等. pH耦合柠檬酸补料策略促进地衣芽孢杆菌产芽孢[J]. 食品工业科技,2023,44(2):152−158. [DING Y, HE J F, GONG R F, et al. pH Coupled citrate supplementation strategy promotes sporulation in Bacillus licheniformis[J]. Food Industry Science and Technology,2023,44(2):152−158.]
DING Y, HE J F, GONG R F, et al. pH Coupled citrate supplementation strategy promotes sporulation in Bacillus licheniformis[J]. Food Industry Science and Technology, 2023, 44(2): 152−158.
|
[13] |
KIM H J, ROUX A, SONENSHEIN A L. Direct and indirect roles of CcpA in regulation of Bacillus subtilis krebs cycle genes[J]. Molecular Microbiology,2002,45(1):179−190. doi: 10.1046/j.1365-2958.2002.03003.x
|
[14] |
FUJITA Y. Carbon catabolite control of the metabolic network in Bacillus subtilis[J]. Bioscience Biotechnology and Biochemistry,2009,73(2):245−259. doi: 10.1271/bbb.80479
|
[15] |
ZHANG Y P, XIAO F X, ZHANG L, et al. A new mechanism of carbon metabolism and acetic acid balance regulated by CcpA[J]. Microorganisms,2023,11(9):2303−2303. doi: 10.3390/microorganisms11092303
|
[16] |
GRUNDY F J, TURINSKY A J, HENKIN T M. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA[J]. Journal of Bacteriology,1994,176(15):4527−4533. doi: 10.1128/jb.176.15.4527-4533.1994
|
[17] |
BARWELL S A E, DUMAN R, WAGNER A, et al. Directional regulation of cytosolic PEPCK catalysis is mediated by competitive binding of anions[J]. Biochemical and Biophysical Research Communications,2022,637:218−223. doi: 10.1016/j.bbrc.2022.11.025
|
[18] |
NAKANO M M, HULETT F M. Adaptation of Bacillus subtilis to oxygen limitation[J]. FEMS Microbiology Letters,1997,157(1):1−7. doi: 10.1111/j.1574-6968.1997.tb12744.x
|
[19] |
KOMMINENI S, LAMA A, POPESCU B, et al. Global transcriptional control by NsrR in Bacillus subtilis[J]. Journal of Bacteriology,2012,194(7):1679−1688. doi: 10.1128/JB.06486-11
|
[20] |
PEREGO M. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis[J]. Molecular Microbiology,2001,42(1):133−143. doi: 10.1046/j.1365-2958.2001.02611.x
|
[21] |
ROBERTSON J B, GOCHT M, MARAHIEL M A, et al. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1989,86(21):8457−8461.
|
[22] |
BROOKS G A. The science and translation of lactate shuttle theory[J]. Cell Metabolism,2018,27(4):757−785. doi: 10.1016/j.cmet.2018.03.008
|
[23] |
HUI S, GHERGUROVICH J M, MORSCHER R J, et al. Glucose feeds the TCA cycle via circulating lactate[J]. Nature,2017,551(7678):115−118. doi: 10.1038/nature24057
|
[24] |
黄雪松, 丁跃, 宋昭, 等. ccpN敲除对地衣芽胞杆菌DW2杆菌肽合成代谢的调控效应[J]. 食品与发酵工业,2022,48(19):23−29. [HUANG X S, DING Y, SONG Z, et al. Regulatory effects of ccpN knockdown on mycopeptide anabolism in Bacillus licheniformis DW2[J]. Food and Fermentation Industry,2022,48(19):23−29.]
HUANG X S, DING Y, SONG Z, et al. Regulatory effects of ccpN knockdown on mycopeptide anabolism in Bacillus licheniformis DW2[J]. Food and Fermentation Industry, 2022, 48(19): 23−29.
|
[25] |
任石苟, 李奠础, 许志芳. 生物传感分析仪在乳酸发酵中的应用研究[J]. 食品工程,2011(3):47−51. [REN S G, LI D C, XU Z F. Application of biosensing analyzer in lactic acid fermentation[J]. Food Engineering,2011(3):47−51.] doi: 10.3969/j.issn.1673-6044.2011.03.021
REN S G, LI D C, XU Z F. Application of biosensing analyzer in lactic acid fermentation[J]. Food Engineering, 2011(3): 47−51. doi: 10.3969/j.issn.1673-6044.2011.03.021
|
[26] |
LI B, DEWEY C N. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics,2011,12:323−324. doi: 10.1186/1471-2105-12-323
|
[27] |
李红宇, 许丽. 玉米浆的营养特点及应用[J]. 饲料研究,2017(19):5−9. [LI H Y, XU L. Nutritional characteristics and application of corn syrup[J]. Feed Research,2017(19):5−9.]
LI H Y, XU L. Nutritional characteristics and application of corn syrup[J]. Feed Research, 2017(19): 5−9.
|
[28] |
TOBISCH S, ZÜHLKE D, BERNHARDT J, et al. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis[J]. Journal of Bacteriology,1999,181(22):6996−7004. doi: 10.1128/JB.181.22.6996-7004.1999
|
[29] |
NAKANO M M, ZUBER P. Anaerobic growth of a "strict aerobe" (Bacillus subtilis)[J]. Annual Review of Microbiology,1998,52:165−190. doi: 10.1146/annurev.micro.52.1.165
|
[30] |
PIGGOT P J, HILBERT D W. Sporulation of Bacillus subtilis[J]. Current Opinion in Microbiology,2004,7(6):579−586. doi: 10.1016/j.mib.2004.10.001
|
[31] |
POTTATHIL M, LAZAZZERA B A. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis[J]. Frontiers in Bioscience:A Journal and Virtual Library,2003,8:d32−d45. doi: 10.2741/913
|
[32] |
KOETJE E J, HAJDO-MILASINOVIC A, KIEWIET R, et al. A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases[J]. Microbiology (Reading, England), 2003, 149(Pt 1):19−28.
|
[33] |
ENGUITA F J, MATIAS P M, MARTINS L O, et al. Spore-coat laccase CotA from Bacillus subtilis:Crystallization and preliminary X-ray characterization by the MAD method[J]. Acta Crystallographica Section D, Biological Crystallography, 2002, 58(Pt 9):1490−1493.
|
[34] |
TAKAMATSU H, IMAMURA D, KUWANA R, et al. Expression of yeeK during Bacillus subtilis sporulation and localization of YeeK to the inner spore coat using fluorescence microscopy[J]. Journal of Bacteriology,2009,191(4):1220−1229. doi: 10.1128/JB.01269-08
|
[35] |
van OOIJ C, EICHENBERGER P, LOSICK R. Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis[J]. Journal of Bacteriology,2004,186(14):4441−4448. doi: 10.1128/JB.186.14.4441-4448.2004
|
[36] |
STÖVER A G, DRIKS A. Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein[J]. Journal of Bacteriology,1999,181(5):1664−1672. doi: 10.1128/JB.181.5.1664-1672.1999
|
[37] |
RAGKOUSI K, SETLOW P. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores[J]. Journal of Bacteriology,2004,186(17):5567−5575. doi: 10.1128/JB.186.17.5567-5575.2004
|