Citation: | GUO Peifeng, ZENG Jiayan, QIAN Ruiqi, et al. Effect of Combination of Pulsed Electric Field and pH Shifting on Structure and Functional Properties of Soybean Protein Isolates[J]. Science and Technology of Food Industry, 2025, 46(7): 112−122. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050128. |
[1] |
谭孟娜. 超高压协同pH偏移处理对大豆分离蛋白及其糖基化产物乳化性质影响研[D]. 合肥:合肥工业大学, 2021. [TAN M N. Effects of combined high hydrostatic pressure and pH shifting pretreatment on the emulsifying properties of soy protein isolates and its glycosylation products[D]. Hefei:Hefei University of Technology, 2021.]
TAN M N. Effects of combined high hydrostatic pressure and pH shifting pretreatment on the emulsifying properties of soy protein isolates and its glycosylation products[D]. Hefei: Hefei University of Technology, 2021.
|
[2] |
丁小娜. 超声协同离子液体调控大豆分离蛋白聚集结构及乳化性能研究[D]. 镇江:江苏大学, 2019. [DIN X N. The aggregation, structures and emulsifying properties of soybean protein isolate induced by synergism between ultrasound and ionic liquids[D]. Zhenjiang:Jiangsu University, 2019.]
DIN X N. The aggregation, structures and emulsifying properties of soybean protein isolate induced by synergism between ultrasound and ionic liquids[D]. Zhenjiang: Jiangsu University, 2019.
|
[3] |
刘紫薇, 朱明明, 王凤新, 等. 高温湿热处理对大豆分离蛋白的结构及其功能特性的影响[J]. 食品与发酵工业,2021,47(15):157−164. [LIU Z W, ZHU M M, WANG F X, et al. Effect of high temperature hydrothermal treatment on structure and functional properties of soybean protein isolate[J]. Food and Fermentation Industries,2021,47(15):157−164.]
LIU Z W, ZHU M M, WANG F X, et al. Effect of high temperature hydrothermal treatment on structure and functional properties of soybean protein isolate[J]. Food and Fermentation Industries, 2021, 47(15): 157−164.
|
[4] |
王硕, 王俊平, 张燕, 等. 非热加工技术对食品中蛋白质结构和功能特性的影响[J]. 中国农业科技导报,2015,17(5):114−120. [WANG S, WANG J P, ZHANG Y, et al. Effect of non-thermal processing technology on the structure and function of protein in food[J]. Journal of Agricultural Science and Technology,2015,17(5):114−120.]
WANG S, WANG J P, ZHANG Y, et al. Effect of non-thermal processing technology on the structure and function of protein in food[J]. Journal of Agricultural Science and Technology, 2015, 17(5): 114−120.
|
[5] |
曾新安. 脉冲电场食品非热加工技术[M]. 北京:科学出版社, 2019:24−26. [ZENG X A. Pulsed electric field food non-thermal processing technology[M]. Beijing:Science Press, 2019:24−26.]
ZENG X A. Pulsed electric field food non-thermal processing technology[M]. Beijing: Science Press, 2019: 24−26.
|
[6] |
卢姗, 王文敏, 罗丹, 等. 探析脉冲电场对食品蛋白质改性作用的研究进展[J]. 现代食品,2020(21):73−76. [LU S, WANG W M, LUO D, et al. Research progress on effects of pulse electric field on food protein modification[J]. Modern Food,2020(21):73−76.]
LU S, WANG W M, LUO D, et al. Research progress on effects of pulse electric field on food protein modification[J]. Modern Food, 2020(21): 73−76.
|
[7] |
李迎秋. 脉冲电场对大豆蛋白理化性质和脂肪氧化酶的影响[D]. 无锡:江南大学, 2007. [LI Y Q. Effects of pulsed electric fields on physicochemical properties of soybean protein and lipoxygenase[D]. Wuxi:Jiangnan University, 2007.]
LI Y Q. Effects of pulsed electric fields on physicochemical properties of soybean protein and lipoxygenase[D]. Wuxi: Jiangnan University, 2007.
|
[8] |
WANG R, WANG L H, WEN Q H, et al. Combination of pulsed electric field and pH shifting improves the solubility, emulsifying, foaming of commercial soy protein isolate[J]. Food Hydrocolloids,2023,134:108049. doi: 10.1016/j.foodhyd.2022.108049
|
[9] |
HUANG L, DING X, LI Y, et al. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid[J]. Food Chemistry,2019,279:114−119. doi: 10.1016/j.foodchem.2018.11.147
|
[10] |
HUANG L, ZHANG W, DING X, et al. Effects of dual-frequency ultrasound with different energy irradiation modes on the structural and emulsifying properties of soy protein isolate[J]. Food and Bioproducts Processing,2020,123:419−426. doi: 10.1016/j.fbp.2020.07.021
|
[11] |
SUN P, ZHANG Q, ZHAO Y, et al. Improving gel properties of soy protein isolate through alkaline pH-shifting, mild heat treatment, and TGase cross-linking[J]. Food Hydrocolloids,2023,144:108924. doi: 10.1016/j.foodhyd.2023.108924
|
[12] |
林凤岩, 黄永娜, 褚洪俊, 等. 我国大豆蛋白加工产业现状及发展趋势[J]. 中国油脂,2023,48(11):33−37. [LIN F Y, HUANG Y N, CHU H J, et al. Current situation san development trend of Chinese soybean protein processing industry[J]. China Oils and Fats,2023,48(11):33−37.]
LIN F Y, HUANG Y N, CHU H J, et al. Current situation san development trend of Chinese soybean protein processing industry[J]. China Oils and Fats, 2023, 48(11): 33−37.
|
[13] |
齐宝坤, 李杨, 王中江, 等. 不同品种大豆分离蛋白Zeta电位和粒径分布与表面疏水性的关系[J]. 食品科学,2017,38(3):114−118. [QI B K, LI Y, WANG Z J, et al. Relationship between surface hydrophobicity and zeta potential as well as particle size distribution of soybean protein isolates from different varieties[J]. Food Science,2017,38(3):114−118.]
QI B K, LI Y, WANG Z J, et al. Relationship between surface hydrophobicity and zeta potential as well as particle size distribution of soybean protein isolates from different varieties[J]. Food Science, 2017, 38(3): 114−118.
|
[14] |
SMITH P K, KROHN R I, HERMANSON G T, et al. Measurement of protein using bicinchoninic acid[J]. Analytical Biochemistry,1985,150(1):76−85. doi: 10.1016/0003-2697(85)90442-7
|
[15] |
KATO A, NAKAI S. Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure,1980,624(1):13−20. doi: 10.1016/0005-2795(80)90220-2
|
[16] |
TAN M, XU J, GAO H, et al. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates[J]. Journal of Food Engineering,2021,306:110622. doi: 10.1016/j.jfoodeng.2021.110622
|
[17] |
WANG R, LIU Y, HU X, et al. New insights into the binding mechanism between osthole and β-lactoglobulin:Spectroscopic, chemometrics and docking studies[J]. Food Research International,2019,120:226−234. doi: 10.1016/j.foodres.2019.02.042
|
[18] |
唐永欣, 彭松林, 郭晨晨, 等. 温和热辅助pH值碱性偏移处理对猪肝蛋白结构和功能特性的影响[J]. 食品科学,2023,44(24):88−96. [TANG Y X, PENG S L, GUO C C, et al. Effect of mild heating assisted alkaline pH shift treatment on the structural and functional properties of porcine liver protein[J]. Food Science,2023,44(24):88−96.] doi: 10.7506/spkx1002-6630-20230407-059
TANG Y X, PENG S L, GUO C C, et al. Effect of mild heating assisted alkaline pH shift treatment on the structural and functional properties of porcine liver protein[J]. Food Science, 2023, 44(24): 88−96. doi: 10.7506/spkx1002-6630-20230407-059
|
[19] |
源博恩. 亚基解离与重聚集对大豆蛋白结构和功能特性的影响[D]. 广州:华南理工大学, 2012. [YUAN B E. Effect of subunits dissociation and aggregation on structure and functional properties of soy protein[D]. Guangzhou:South China University of Technology, 2012.]
YUAN B E. Effect of subunits dissociation and aggregation on structure and functional properties of soy protein[D]. Guangzhou: South China University of Technology, 2012.
|
[20] |
LI Y, MAO L W, WANG L F, et al. Physicochemical and foam properties of ovalbumin-carboxymethylcellulose mixtures after mild heat treatment:Comparison of electrostatic repulsion and attraction[J]. Food Hydrocolloids,2024,153:110042. doi: 10.1016/j.foodhyd.2024.110042
|
[21] |
RODRIGUES R M, AVELAR Z, VICENTE A A, et al. Influence of moderate electric fields in β-lactoglobulin thermal unfolding and interactions[J]. Food Chemistry,2020,304:125442. doi: 10.1016/j.foodchem.2019.125442
|
[22] |
YU Y, GUAN Y, LIU J, et al. Molecular structural modification of egg white protein by pH-shifting for improving emulsifying capacity and stability[J]. Food Hydrocolloids,2021,121:107071. doi: 10.1016/j.foodhyd.2021.107071
|
[23] |
RAJNI V, SUNEELA P, CONNAGH E. R, et al. Detection and identification of amino acids and proteins using their intrinsic fluorescence in the visible light spectrum[J]. Analytica Chimica Acta,2023,1282:341925. doi: 10.1016/j.aca.2023.341925
|
[24] |
DJAMILA B. Molecular dynamics simulations at high temperatures of the Aeropyrum pernix L7Ae thermostable protein:Insight into the unfolding pathway[J]. Journal of Molecular Graphics and Modelling,2024,127:108700. doi: 10.1016/j.jmgm.2023.108700
|
[25] |
YANG J, DUAN Y, GENG F, et al. Ultrasonic-assisted pH shift-induced interfacial remodeling for enhancing the emulsifying and foaming properties of perilla protein isolate[J]. Ultrasonics Sonochemistry,2022,89:106108. doi: 10.1016/j.ultsonch.2022.106108
|
[26] |
安然. 大豆分离蛋白可溶性热聚集行为及其超声调控研究[D]. 哈尔滨:东北农业大学, 2019. [AN R. Study on soluble thermal aggregates of soybean protein isolate and its ultrasonic regulation[D]. Harbin:Northeast Agricultural University, 2019.]
AN R. Study on soluble thermal aggregates of soybean protein isolate and its ultrasonic regulation[D]. Harbin: Northeast Agricultural University, 2019.
|
[27] |
CAO W, GAO R, WAN X, et al. Effects of globular and flexible structures on the emulsifying and interfacial properties of mixed soy proteins[J]. Food Hydrocolloids,2022,127:107539. doi: 10.1016/j.foodhyd.2022.107539
|
[28] |
LUCA A L, JULIANA V C S, MAXIME S, et al. On the foaming properties of plant proteins:Current status and future opportunities[J]. Trends in Food Science & Technology,2021,118(A):261−272.
|
[29] |
XIONG W, WANG Y, ZHANG C, et al. High intensity ultrasound modified ovalbumin:Structure, interface and gelation properties[J]. Ultrasonics Sonochemistry,2016,31:302−309. doi: 10.1016/j.ultsonch.2016.01.014
|
[30] |
WANG Y, WANG S, LI R, et al. Effects of combined treatment with ultrasound and pH shifting on foaming properties of chickpea protein isolate[J]. Food Hydrocolloids,2022,124:107351. doi: 10.1016/j.foodhyd.2021.107351
|
[31] |
SRUTEE R, PREM P S. Modification of soy protein isolate and pea protein isolate by high voltage dielectric barrier discharge (DBD) atmospheric cold plasma:Comparative study on structural, rheological and techno-functional characteristics[J]. Food Chemistry,2024,447:138914. doi: 10.1016/j.foodchem.2024.138914
|
[32] |
YANG H, LI L, XIE C, et al. Characteristics and structure of a soy protein isolate-lutein nanocomplex produced via high-pressure homogenization[J]. Journal of the Science of Food and Agriculture,2022,102(12):5411−5421. doi: 10.1002/jsfa.11894
|
[33] |
LI H J, ZHANG Y M, LIU T T, et al. Transglutaminase, glucono-δ-lactone, and citric acid-induced whey protein isolation-milk fat emulsion gel embedding lutein and its application in processed cheese[J]. Journal of Dairy Science,2023,106(10):6635−6645. doi: 10.3168/jds.2022-23097
|
[34] |
YI J, FAN Y, YOKOYAMA W, et al. Characterization of milk proteins-lutein complexes and the impact on lutein chemical stability[J]. Food Chemistry,2016,200:91−97. doi: 10.1016/j.foodchem.2016.01.035
|
[35] |
崔宁. 叶黄素异构体抗氧化应激、抗炎活性、蛋白转运及应用研究[D]. 无锡:江南大学, 2023. [CUI N. Study on the anti-oxidative stress, anti-inflammatory effects, protein transport and application of lutein isomers[D]. Wuxi:Jiangnan University, 2023.]
CUI N. Study on the anti-oxidative stress, anti-inflammatory effects, protein transport and application of lutein isomers[D]. Wuxi: Jiangnan University, 2023.
|
[36] |
WANG R, WEN Q H, ZENG X A, et al. Binding affinity of curcumin to bovine serum albumin enhanced by pulsed electric field pretreatment[J]. Food Chemistry,2022,377:131945. doi: 10.1016/j.foodchem.2021.131945
|
[37] |
ZHANG S, LI Y, BAO Z, et al. Internal cavity amplification of shell-like ferritin regulated with the change of the secondary and tertiary structure induced by PEF technology[J]. International Journal of Biological Macromolecules,2021,182:849−857. doi: 10.1016/j.ijbiomac.2021.04.072
|