Citation: | GUO Shuaikang, SONG Na, ZHANG Guo, et al. Research Progress on the Bacteriostatic Mechanism, Biosynthesis and Application of Phenyllactic Acid[J]. Science and Technology of Food Industry, 2025, 46(9): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040383. |
[1] |
WOODRUFF T J. Making it real—the environmental burden of disease. What does it take to make people pay attention to the environment and health?[J]. Journal of Clinical Endocrinology and Metabolism,2015,100(4):1241−1244. doi: 10.1210/jc.2015-1622
|
[2] |
HUANG C H, CHEN W C, GAO Y H, et al. Production of phenyllactic acid from porphyra residues by lactic acid bacterial fermentation[J]. Processes,2021,9(4):678−688. doi: 10.3390/pr9040678
|
[3] |
WU H, GUANG C, ZHANG W, et al. Recent development of phenyllactic acid:Physicochemical properties, biotechnological production strategies and applications[J]. Critical Reviews in Biotechnology,2023,43(2):293−308. doi: 10.1080/07388551.2021.2010645
|
[4] |
GUAN J, HAN C, GUAN Y, et al. Optimizational production of phenyllactic acid by a Lactobacillus buchneri strain via uniform design with overlay sampling methodology[J]. Chinese Journal of Chemical Engineering,2019,27(2):418−425. doi: 10.1016/j.cjche.2018.04.005
|
[5] |
陆永祥, 李平, 白史且. 苯乳酸的研究进展[J]. 草学,2020(4):19−24. [LU Y X, LI P, BAI S Q. Research progress on phenyllactic acid[J]. Cao Xue,2020(4):19−24.]
LU Y X, LI P, BAI S Q. Research progress on phenyllactic acid[J]. Cao Xue, 2020(4): 19−24.
|
[6] |
吕孟敏, 白凤翎, 崔方超, 等. 鱼肠道中高产苯乳酸乳酸菌的筛选、鉴定及发酵条件优化[J]. 中国酿造,2023,42(9):125−130. [LÜ M M, BAI F L, CUI F C, et al. Screening, identification, and optimization of fermentation conditions for high-yield phenyllactic acid bacteria in fish intestines[J]. Chinese Brewing,2023,42(9):125−130.]
LÜ M M, BAI F L, CUI F C, et al. Screening, identification, and optimization of fermentation conditions for high-yield phenyllactic acid bacteria in fish intestines[J]. Chinese Brewing, 2023, 42(9): 125−130.
|
[7] |
LUO X, WANG Y, ZHENG W, et al. Simultaneous improvement of the thermostability and activity of lactic dehydrogenase from Lactobacillus rossiae through rational design[J]. RSC Adv,2022,12(51):33251. doi: 10.1039/D2RA05599F
|
[8] |
LI T, QIN Z, WANG D, et al. Coenzyme self-sufficiency system-recent advances in microbial production of high-value chemical phenyllactic acid[J]. World J Microbiol Biotechnol,2022,39(1):36−46.
|
[9] |
HOU Y, GAO B, CUI J, et al. Combination of multi-enzyme expression fine-tuning and co-substrates addition improves phenyllactic acid production with an Escherichia coli whole-cell biocatalyst[J]. Bioresource Technology,2019,287:121423. doi: 10.1016/j.biortech.2019.121423
|
[10] |
程一凡, 刘念丽, 侯颖. 苯乳酸的研究进展[J]. 发酵科技通讯,2023,52(4):212−217. [CHENG Y F, LIU N L, HOU Y. Research progress on phenyllactic acid[J]. Fermentation Technology Communication,2023,52(4):212−217.]
CHENG Y F, LIU N L, HOU Y. Research progress on phenyllactic acid[J]. Fermentation Technology Communication, 2023, 52(4): 212−217.
|
[11] |
RAJANIKAR R V, NATARAJ B H, NAITHANI H, et al. Phenyllactic acid:A green compound for food biopreservation[J]. Food Control,2021,128:108184. doi: 10.1016/j.foodcont.2021.108184
|
[12] |
NAVARE P S, MACDONALD J C. Investigation of stability and structure in three homochiral and heterochiral crystalline forms of 3-phenyllactic acid[J]. Crystal Growth & Design,2011,11(6):2422−2428.
|
[13] |
CORTES-ZAVALETA O, LOPEZ-MALO A, HERNANDEZ-MENDOZA A, et al. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production[J]. Int J Food Microbiol,2014,173:30−35. doi: 10.1016/j.ijfoodmicro.2013.12.016
|
[14] |
DIEULEVEUX V, VAN DER PYL D, CHATAUD J, et al. Purification and characterization of anti-listeria compounds produced by Geotrichum candidum[J]. Appl Environ Microbiol,1998,64(2):800−803. doi: 10.1128/AEM.64.2.800-803.1998
|
[15] |
MAIONE A, IMPARATO M, BUONANNO A, et al. Anti-biofilm activity of phenyllactic acid against clinical isolates of fluconazole-resistant Candida albicans[J]. J Fungi (Basel),2023,9(3):335−351. doi: 10.3390/jof9030335
|
[16] |
LI M, YAO B, MENG X. Inhibitory effect and possible mechanism of phenyllactic acid on Aspergillus flavus spore germination[J]. J Basic Microbiol,2022,62(12):1457−1466. doi: 10.1002/jobm.202200274
|
[17] |
FAN W, LI B, DU N, et al. Energy metabolism as the target of 3-phenyllactic acid against Rhizopus oryzae[J]. Int J Food Microbiol,2022,369:109606. doi: 10.1016/j.ijfoodmicro.2022.109606
|
[18] |
NING Y, YAN A, YANG K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms[J]. Food Chemistry,2017,228:533−540. doi: 10.1016/j.foodchem.2017.01.112
|
[19] |
LIU F, WANG F, DU L, et al. Antibacterial and antibiofilm activity of phenyllactic acid against Enterobacter cloacae[J]. Food Control,2018,84:442−448. doi: 10.1016/j.foodcont.2017.09.004
|
[20] |
JIANG Y H, YING J P, XIN W G, et al. Antibacterial activity and action target of phenyllactic acid against Staphylococcus aureus and its application in skim milk and cheese[J]. Journal of Dairy Science,2022,105(12):9463−9475. doi: 10.3168/jds.2022-22262
|
[21] |
FANG M, WANG R, AGYEKUMWAA A K, et al. Antibacterial effect of phenyllactic acid against Vibrio parahaemolyticus and its application on raw salmon fillets[J]. LWT,2022,154:112586. doi: 10.1016/j.lwt.2021.112586
|
[22] |
CHATTERJEE M, D'MORRIS S, PAUL V, et al. Mechanistic understanding of phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa[J]. Appl Microbiol Biotechnol,2017,101(22):8223−8236. doi: 10.1007/s00253-017-8546-4
|
[23] |
JIANG Y H, YANG L Y, XIN W G, et al. Combined antibacterial and antibiofilm activity of phenyllactic acid and bacteriocin XJS01 against Shigella flexneri[J]. Food Bioscience,2022,45:101512. doi: 10.1016/j.fbio.2021.101512
|
[24] |
ZHOU Q, GU R, LI P, et al. Anti-Salmonella mode of action of natural L-phenyl lactic acid purified from Lactobacillus plantarum ZJ316[J]. Appl Microbiol Biotechnol,2020,104(12):5283−5292. doi: 10.1007/s00253-020-10503-4
|
[25] |
胡虹, 张秀江, 向凌云, 等. 高产D-苯乳酸菌株的选育及发酵工艺的试验研究[J]. 饲料研究,2021,44(22):73−77. [HU H, ZHANG X J, XIANG L Y, et al. Experimental study on the breeding and fermentation process of high-yield D-phenyllactic acid strains[J]. Feed Research,2021,44(22):73−77.]
HU H, ZHANG X J, XIANG L Y, et al. Experimental study on the breeding and fermentation process of high-yield D-phenyllactic acid strains[J]. Feed Research, 2021, 44(22): 73−77.
|
[26] |
LUO X, ZHANG Y, YIN L, et al. Efficient synthesis of d-phenyllactic acid by a whole-cell biocatalyst co-expressing glucose dehydrogenase and a novel d-lactate dehydrogenase from Lactobacillus rossiae[J]. 3 Biotech,2020,10(1):1−9. doi: 10.3390/biotech10010001
|
[27] |
LUO X, ZHANG Y, YIN F, et al. Enzymological characterization of a novel d-lactate dehydrogenase from Lactobacillus rossiae and its application in d-phenyllactic acid synthesis[J]. 3 Biotech,2020,10(3):1−2.
|
[28] |
DIEULEVEUX V, LEMARINIER S, GUEGUEN M. Antimicrobial spectrum and target site of D-3-phenyllactic acid[J]. Int J Food Microbiol,1998,40(3):177−183. doi: 10.1016/S0168-1605(98)00031-2
|
[29] |
SVANSTROM A, BOVERI S, BOSTROM E, et al. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi[J]. BMC Res Notes,2013,6(1):1−9. doi: 10.1186/1756-0500-6-1
|
[30] |
SORRENTINO E, TREMONTE P, SUCCI M, et al. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model[J]. Front Microbiol,2018,9:1373−1381. doi: 10.3389/fmicb.2018.01373
|
[31] |
SHAKYA S, DANSHIITSOODOL N, NODA M, et al. 3-Phenyllactic acid generated in medicinal plant extracts fermented with plant-derived lactic acid bacteria inhibits the biofilm synthesis of Aggregatibacter actinomycetemcomitans[J]. Front Microbiol,2022,13:991144. doi: 10.3389/fmicb.2022.991144
|
[32] |
ZHAO C, PENTTINEN P, ZHANG L, et al. Mechanism of inhibiting the growth and aflatoxin B(1) biosynthesis of Aspergillus flavus by phenyllactic acid[J]. Toxins (Basel),2023,15(6):370−385. doi: 10.3390/toxins15060370
|
[33] |
SHARIFF M, CHATTERJEE M, MORRIS S D, et al. Enhanced inhibition of Pseudomonas aeruginosa virulence factor production and biofilm development by sublethal concentrations of eugenol and phenyllactic acid[J]. Lett Appl Microbiol,2022,75(5):1336−1345. doi: 10.1111/lam.13803
|
[34] |
REUTER K, STEINBACH A, HELMS V. Interfering with bacterial quorum sensing[J]. Perspect Medicin Chem,2016,8:1−15.
|
[35] |
宁亚维, 付浴男, 何建卓, 等. 苯乳酸和醋酸联用对单核细胞增生李斯特菌的协同抑菌机理[J]. 食品科学,2020,41(23):70−76. [NING Y W, FU Y N, HE J Z, et al. Synergistic antibacterial mechanism of the combination of phenyllactic acid and acetic acid against Listeria monocytogenes[J]. Food Science,2020,41(23):70−76.]
NING Y W, FU Y N, HE J Z, et al. Synergistic antibacterial mechanism of the combination of phenyllactic acid and acetic acid against Listeria monocytogenes[J]. Food Science, 2020, 41(23): 70−76.
|
[36] |
WANG R, HU X, AGYEKUMWAA A K, et al. Synergistic effect of kojic acid and tea polyphenols on bacterial inhibition and quality maintenance of refrigerated sea bass (Lateolabrax japonicus) fillets[J]. LWT,2021,137:110452. doi: 10.1016/j.lwt.2020.110452
|
[37] |
NING Y, FU Y, HOU L, et al. iTRAQ-based quantitative proteomic analysis of synergistic antibacterial mechanism of phenyllactic acid and lactic acid against Bacillus cereus[J]. Food Res Int,2021,139:109562. doi: 10.1016/j.foodres.2020.109562
|
[38] |
闫爱红. 苯乳酸与常用食品防腐剂和有机酸的联合抑菌作用及机理研究[D]. 石家庄:河北科技大学, 2016. [YAN A H. Study on the combined antibacterial effect and mechanism of phenyllactic acid with commonly used food preservatives and organic acids[D]. Shijiazhuang:Hebei University of Science and Technology, 2016.]
YAN A H. Study on the combined antibacterial effect and mechanism of phenyllactic acid with commonly used food preservatives and organic acids[D]. Shijiazhuang: Hebei University of Science and Technology, 2016.
|
[39] |
LIU J, HUANG R, SONG Q, et al. Combinational antibacterial activity of nisin and 3-phenyllactic acid and their co-production by engineered Lactococcus lactis[J]. Frontiers in Bioengineering and Biotechnology,2021,9:612105. doi: 10.3389/fbioe.2021.612105
|
[40] |
YU S, ZHOU C, ZHANG T, et al. 3-Phenyllactic acid production in milk by SK25 during laboratory fermentation process[J]. Journal of Dairy Science,2015,98(2):813−817. doi: 10.3168/jds.2014-8645
|
[41] |
XU J J, SUN J Z, SI K L, et al. 3-Phenyllactic acid production by Lactobacillus crustorum strains isolated from naturally fermented vegetables[J]. LWT,2021,149:111780. doi: 10.1016/j.lwt.2021.111780
|
[42] |
赵天行. 产苯乳酸乳酸菌的生物学特性分析及其在食醋生产中的应用[D]. 武汉:华中农业大学, 2022. [ZHAO T X. Biological characteristics analysis of lactic acid bacteria producing phenyllactic acid and their application in vinegar production[D]. Wuhan:Huazhong Agricultural University, 2022.]
ZHAO T X. Biological characteristics analysis of lactic acid bacteria producing phenyllactic acid and their application in vinegar production[D]. Wuhan: Huazhong Agricultural University, 2022.
|
[43] |
KAWTHARANI H, SNINI S P, HEANG S, et al. Phenyllactic acid produced by Geotrichum candidum reduces Fusarium sporotrichioides and F. langsethiae growth and T-2 toxin concentration[J]. Toxins (Basel),2020,12(4):209−224. doi: 10.3390/toxins12040209
|
[44] |
魏娜. 猪源乳酸菌分离鉴定及初步应用[D]. 成都:四川农业大学, 2016. [WEI N. Isolation, identification and preliminary application of lactic acid bacteria from pigs[D]. Chengdu:Sichuan Agricultural University, 2016.]
WEI N. Isolation, identification and preliminary application of lactic acid bacteria from pigs[D]. Chengdu: Sichuan Agricultural University, 2016.
|
[45] |
李士龙. 传统发酵食品中高产苯乳酸菌株的筛选及发酵工艺条件优化[D]. 大庆:黑龙江八一农垦大学, 2012. [LI S L. Screening of high-yield strains of phenyllactic acid in traditional fermented foods and optimization of fermentation process conditions[D]. Daqing:Heilongjiang Bayi Agricultural University, 2012.]
LI S L. Screening of high-yield strains of phenyllactic acid in traditional fermented foods and optimization of fermentation process conditions[D]. Daqing: Heilongjiang Bayi Agricultural University, 2012.
|
[46] |
吴文妤. 植物乳杆菌YM-4-3苯乳酸合成代谢调控机制及相关基因的功能研究[D]. 昆明:昆明理工大学, 2021. [WU W Y. Research on the regulatory mechanism of phenyllactic acid synthesis metabolism and related genes in Lactobacillus plantarum YM-4-3[D]. Kunming:Kunming University of Science and Technology, 2021.]
WU W Y. Research on the regulatory mechanism of phenyllactic acid synthesis metabolism and related genes in Lactobacillus plantarum YM-4-3[D]. Kunming: Kunming University of Science and Technology, 2021.
|
[47] |
倪正, 关今韬, 沈绍传, 等. 苯乳酸的微生物合成及分离研究进展[J]. 化工进展,2016,35(11):3627−3633. [NI Z, GUAN J T, SHEN S C, et al. An overview of recent advances in microbial synthesis and separation of phenyllactic acid[J]. Chemical Industry and Engineering Progress,2016,35(11):3627−3633.]
NI Z, GUAN J T, SHEN S C, et al. An overview of recent advances in microbial synthesis and separation of phenyllactic acid[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3627−3633.
|
[48] |
WU W, DENG G, LIU C, et al. Optimization and multiomic basis of phenyllactic acid overproduction by Lactobacillus plantarum[J]. J Agric Food Chem,2020,68(6):1741−1749. doi: 10.1021/acs.jafc.9b07136
|
[49] |
KAWAGUCHI H, MIYAGAWA H, NAKAMURA-TSURUTA S, et al. Enhanced phenyllactic acid production in Escherichia coli via oxygen limitation and shikimate pathway gene expression[J]. Biotechnology Journal,2019,14(6):10.
|
[50] |
YOO J A, LIM Y M, YOON M H. Production and antifungal effect of 3-phenyllactic acid (PLA) by lactic acid bacteria[J]. Journal of Applied Biological Chemistry,2016,59(3):173−178. doi: 10.3839/jabc.2016.032
|
[51] |
VERMEULEN N, GÁNZLE M G, VOGEL R F. Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1.468[J]. Journal of Agricultural and Food Chemistry,2006,54(11):3832−3829. doi: 10.1021/jf052733e
|
[52] |
ZHANG D, ZHANG T, LEI Y, et al. Enantioselective biosynthesis of L-phenyllactic acid from phenylpyruvic acid in vitro by L-lactate dehydrogenase coupling with glucose dehydrogenase[J]. Front Bioeng Biotechnol,2022,10:846489. doi: 10.3389/fbioe.2022.846489
|
[53] |
田雪娇. 高产苯乳酸菌株的诱变选育及发酵条件优化[D]. 大庆:黑龙江八一农垦大学. 2013. [TIAN X J. Breeding of high-yield phenyllactic acid strains and optimization of fermentation conditions[D]. Daqing:Heilongjiang Bayi Agricultural University, 2013.]
TIAN X J. Breeding of high-yield phenyllactic acid strains and optimization of fermentation conditions[D]. Daqing: Heilongjiang Bayi Agricultural University, 2013.
|
[54] |
ZHOU Y, SUN X, HU J, et al. Enhanced catalytic activity and stability of lactate dehydrogenase for cascade catalysis of D-PLA by rational design[J]. J Biotechnol,2024,382:1−7. doi: 10.1016/j.jbiotec.2024.01.004
|
[55] |
HOU Y, HOSSAIN G S, LI J, et al. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis:Comparison of enzymatic and whole-cell biotransformation approaches[J]. Appl Microbiol Biotechnol,2015,99(20):8391−402. doi: 10.1007/s00253-015-6757-0
|
[56] |
REEVE H A, LAUTERBACH L, LENZ O, et al. Enzyme-modified particles for selective biocatalytic hydrogenation by hydrogen-driven NADH recycling[J]. ChemCatChem,2015,7(21):3480−3487. doi: 10.1002/cctc.201500766
|
[57] |
QIN Z, WANG D, LUO R, et al. Using unnatural protein fusions to engineer a coenzyme self-sufficiency system for D-phenyllactic acid biosynthesis in Escherichia coli[J]. Front Bioeng Biotechnol,2021,9:795885. doi: 10.3389/fbioe.2021.795885
|
[58] |
ROCHA R A, NORTH A J, SPEIGHT R E, et al. Cofactor and process engineering for nicotinamide recycling and retention in intensified biocatalysis[J]. Catalysts,2022,12(11):1454−1466. doi: 10.3390/catal12111454
|
[59] |
晏雄鹰, 王振, 娄吉芸, 等. 生物燃料高效生产微生物细胞工厂构建研究进展[J]. 合成生物学, 2023, 4(6):1082-121. [YAN X Y, WANG Z, LOU J Y, et al. Research progress on the construction of microbial cell factories for efficient production of biofuels[J]. Synthetic Biology, 2023, 4(6):1082.]
YAN X Y, WANG Z, LOU J Y, et al. Research progress on the construction of microbial cell factories for efficient production of biofuels[J]. Synthetic Biology, 2023, 4(6): 1082.
|
[60] |
ZHOU X, ZHOU J, XIN F, et al. Heterologous expression of a novel d-lactate dehydrogenase from Lactobacillus sp. ZX1 and its application for d-phenyllactic acid production[J]. International Journal of Biological Macromolecules,2018,119:1171−1178. doi: 10.1016/j.ijbiomac.2018.08.036
|
[61] |
ZHU Y, JIANG Z, CHEN J, et al. Fusion of D-lactate dehydrogenase and formate dehydrogenase for increasing production of (R)-3-phenyllactic acid in recombinant Escherichia coli BL21 (DE3)[J]. Journal of Biobased Materials and Bioenergy,2017,11(4):372−378. doi: 10.1166/jbmb.2017.1680
|
[62] |
WANG X, HOU Y, LIU L, et al. A new approach for efficient synthesis of phenyllactic acid from L-phenylalanine:Pathway design and cofactor engineering[J]. Journal of Food Biochemistry,2018,42(5):e12584. doi: 10.1111/jfbc.12584
|
[63] |
XU H, CHENG Q, QIU Y, et al. A novel strategy for whole-cell biotransformation enabling simultaneous L-phenyllactic acid production and coenzyme regeneration[J]. Journal of Agricultural and Food Chemistry,2023,71(51):20772−20781. doi: 10.1021/acs.jafc.3c06387
|
[64] |
LOU X, JIANG Y, ZHAO F, et al. Preparation and characterization of semi-hydrophobic cryogels for culture of Lactobacillus strains and bioconversion towards phenyllactic acid bioproduction[J]. Biochemical Engineering Journal,2022,179:108312. doi: 10.1016/j.bej.2021.108312
|
[65] |
SUN X, HU J, WANG Y, et al. One-pot encapsulation of lactate dehydrogenase and Fe3O4 nanoparticles into a metal-organic framework:A novel magnetic recyclable biocatalyst for the synthesis of D-phenyllactic acid[J]. Front Bioeng Biotechnol,2022,10:1124450.
|
[66] |
CHEN H, YAN X, DU G, et al. Recent developments in antifungal lactic acid bacteria:Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms[J]. Critical Reviews in Food Science and Nutrition,2021,63(15):2544−2558.
|
[67] |
林广智. 水果保鲜纸基材料的结构与性能研究[D]. 济南:齐鲁工业大学, 2023. [LIN G Z. Research on the structure and properties of fruit preservation paper based materials[D]. Jinan:Qilu University of Technology, 2023.]
LIN G Z. Research on the structure and properties of fruit preservation paper based materials[D]. Jinan: Qilu University of Technology, 2023.
|
[68] |
GAO Y, LI Y, LI F, et al. Phenyllactic acid treatment for controlling anthracnose disease (Colletotrichum musae) and preserving banana fruit quality during storage[J]. Physiological and Molecular Plant Pathology,2024,129:102181. doi: 10.1016/j.pmpp.2023.102181
|
[69] |
WAN Y L , CHEN L S, XIE D, et al. The effect of D-phenyllactic acid combined with coating treatment on anti-microbial and preservation of grapes during storage[J]. Food and Machinery, 2018, 34(1):117-120.
|
[70] |
高羽莎, 李奕星, 李芬芳, 等. 苯乳酸处理对香蕉果实后熟品质的影响[J]. 保鲜与加工,2024,24(2):8−14. [GAO Y S, LI Y X, LI F F, et al. The effect of phenyllactic acid treatment on the ripening quality of banana fruits[J]. Preservation and Processing,2024,24(2):8−14.] doi: 10.3969/j.issn.1009-6221.2024.02.002
GAO Y S, LI Y X, LI F F, et al. The effect of phenyllactic acid treatment on the ripening quality of banana fruits[J]. Preservation and Processing, 2024, 24(2): 8−14. doi: 10.3969/j.issn.1009-6221.2024.02.002
|
[71] |
XU H, LIU J, JIN Y, et al. Phenyllactic acid maintains the postharvest quality of winter jujube fruit via activating ascorbic acid metabolism[J]. Scientia Horticulturae,2023,322:112443. doi: 10.1016/j.scienta.2023.112443
|
[72] |
ZHANG S, LI C, WANG M, et al. Phenyllactic acid maintains the storage quality of ‘Zaosu’ pears by regulating respiration and energy metabolism[J]. Postharvest Biology and Technology,2024,207:112607. doi: 10.1016/j.postharvbio.2023.112607
|
[73] |
HUANG P, YU L, TIAN F, et al. Untargeted metabolomics revealed the key metabolites in milk fermented with starter cultures containing Lactobacillus plantarum CCFM8610[J]. LWT,2022,165:113768. doi: 10.1016/j.lwt.2022.113768
|
[74] |
ZHANG D, TONG D, WANG Z, et al. Inactivation mechanism of phenyllactic acid against Bacillus cereus spores and its application in milk beverage[J]. Food Chemistry,2024,453:139601. doi: 10.1016/j.foodchem.2024.139601
|
[75] |
JIANG X, JIANG C, YU T, et al. Phenyllactic acid application to control Listeria monocytogenes biofilms and its growth in milk and spiced beef[J]. Int J Food Microbiol,2022,381:109910. doi: 10.1016/j.ijfoodmicro.2022.109910
|
[76] |
VALERIO F. Production of phenyllactic acid by lactic acid bacteria:An approach to the selection of strains contributing to food quality and preservation[J]. FEMS Microbiology Letters,2004,233(2):289−295. doi: 10.1111/j.1574-6968.2004.tb09494.x
|
[77] |
YVON M, RIJNEN L. Cheese flavour formation by amino acid catabolism[J]. International Dairy Journal,2001,11(4−7):185−201. doi: 10.1016/S0958-6946(01)00049-8
|
[78] |
KIERONCZYK A, SKEIE S, LANGSRUD T, et al. Cooperation between Lactococcus lactis and nonstarter Lactobacilli in the formation of cheese aroma from amino acids[J]. Applied and Environmental Microbiology,2003,69(2):734−739. doi: 10.1128/AEM.69.2.734-739.2003
|
[79] |
ZHOU Q, GU R, XUE B, et al. Phenyl lactic acid alleviates Samonella Typhimurium-induced colitis via regulating microbiota composition, SCFA production and inflammatory responses[J]. Food & Function,2021,12(12):5591−5606.
|
[80] |
路飞, 顾孟清, 朱轶群, 等. 天然保鲜剂的抗菌机理及在肉制品中的应用[J]. 沈阳师范大学学报(自然科学版),2023,41(5):419−426. [LU F, GU M Q, ZHU Y Q. et al. The antibacterial mechanism of natural preservatives and their application in meat products[J]. Journal of Shenyang Normal University (Natural Science Edition),2023,41(5):419−426.]
LU F, GU M Q, ZHU Y Q. et al. The antibacterial mechanism of natural preservatives and their application in meat products[J]. Journal of Shenyang Normal University (Natural Science Edition), 2023, 41(5): 419−426.
|
[81] |
ZHENG R, ZHAO T, HUNG Y C, et al. Evaluation of bactericidal effects of phenyllactic acid on Escherichia coli O157:H7 and Salmonella Typhimurium on beef meat[J]. Journal of Food Protection,2019,82(12):2016−2022. doi: 10.4315/0362-028X.JFP-19-217
|
[82] |
刘绍鹏, 曹秀娟, 贺峰. 苯乳酸复合保鲜剂在鸡肉保鲜中的应用[J]. 肉类工业,2019(6):46−50. [LIU S P, CAO X J, HE F. Application of phenyllactic acid compound preservative in chicken preservation[J]. Meat Industry,2019(6):46−50.] doi: 10.3969/j.issn.1008-5467.2019.06.010
LIU S P, CAO X J, HE F. Application of phenyllactic acid compound preservative in chicken preservation[J]. Meat Industry, 2019(6): 46−50. doi: 10.3969/j.issn.1008-5467.2019.06.010
|
[83] |
PIUS BASSEY A, PEI LIU P, CHEN J, et al. Antibacterial efficacy of phenyllactic acid against Pseudomonas lundensis and Brochothrix thermosphacta and its synergistic application on modified atmosphere/air-packaged fresh pork loins[J]. Food Chemistry,2024,430:137002. doi: 10.1016/j.foodchem.2023.137002
|
[84] |
CAMPOS C A, AUBOURG S P, SCHELEGUEDA L I. Use of biopreservation to improve the quality of fresh aquatic products [M]. Postharvest and Postmortem Processing of Raw Food Materials, Elsevier, 2022:343-378.
|
[85] |
黄琪, 王世哲, 胡传峰, 等. 苯乳酸处理对鮰鱼低温贮藏品质的影响[J]. 肉类研究,2023,37(11):35−41. [HUANG Q, WANG S Z, HU C F, et al. The effect of phenyllactic acid treatment on the low-temperature storage quality of catfish[J]. Meat Research,2023,37(11):35−41.]
HUANG Q, WANG S Z, HU C F, et al. The effect of phenyllactic acid treatment on the low-temperature storage quality of catfish[J]. Meat Research, 2023, 37(11): 35−41.
|
[86] |
范晓然. 太湖白虾低温贮藏时的菌相分析及其保鲜剂的开发[D]. 南京:南京财经大学, 2018. [FAN X R. Microflora analysis and preservation of Taihu white prawn (Exopalaemon modestus) during low temperature storage[D]. Nanjing:Nanjing University of Finance Economics, 2018.]
FAN X R. Microflora analysis and preservation of Taihu white prawn (Exopalaemon modestus) during low temperature storage[D]. Nanjing: Nanjing University of Finance Economics, 2018.
|
[87] |
MANU D K. Antimicrobial effectiveness of phenyllactic acid against foodborne pathogenicbacteria and Penicillium and Aspergillus molds[D]. ISU:University of Iowa, 2012.
|
[88] |
DOPAZO V, ILLUECA F, LUZ C, et al. Evaluation of shelf life and technological properties of bread elaborated with lactic acid bacteria fermented whey as a bio-preservation ingredient[J]. LWT,2023,174:114427. doi: 10.1016/j.lwt.2023.114427
|
[89] |
REN H, DU N, NIU X, et al. Inhibitory effects of L-3-phenyllacitc acid on the activity of mushnroom pholyphenol oxidase [J]. Food Science and Technology, 2021, 41(suppl 1):343-351.
|
[90] |
孔保华, 刁新平. 冷却肉包装保鲜技术的研究进展[J]. 肉类研究,2008(2):54−59. [KONG B H, DIAO X P. The review of extending the shelf-life of chilled meat by packaging[J]. Meat Research,2008(2):54−59.] doi: 10.3969/j.issn.1001-8123.2008.02.015
KONG B H, DIAO X P. The review of extending the shelf-life of chilled meat by packaging[J]. Meat Research, 2008(2): 54−59. doi: 10.3969/j.issn.1001-8123.2008.02.015
|
[91] |
LIU Y, WANG R, WANG D, et al. Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken[J]. Food Hydrocolloids, 2022, 127.
|
[92] |
ZHANG J, CHEN J, ZHANG C, et al. Characterization and antibacterial properties of chitosan–polyvinyl alcohol-3-phenyllactic acid as a biodegradable active food packaging[J]. Food Packaging and Shelf Life, 2022, 34.
|
[93] |
SUN X, YIN L, ZHU H, et al. Enhanced antimicrobial cellulose/chitosan/ZnO biodegradable composite membrane[J]. Membranes (Basel),2022,12(2):239−251. doi: 10.3390/membranes12020239
|
[94] |
李兴峰, 江波, 潘蓓蕾. 新型生物防腐剂——苯乳酸在食品中的研究与应用[J]. 食品与发酵工业,2007(5):87−91. [LI X F, JIANG B, PAN B L. Research and application in food of phenyllactic acid as a novel biopreservative:A review[J]. Food and Fermentation Industries,2007(5):87−91.] doi: 10.3321/j.issn:0253-990X.2007.05.022
LI X F, JIANG B, PAN B L. Research and application in food of phenyllactic acid as a novel biopreservative: A review[J]. Food and Fermentation Industries, 2007(5): 87−91. doi: 10.3321/j.issn:0253-990X.2007.05.022
|