Citation: | CHEN Peiyu, LIU Xueming, TANG Daobang, et al. Regulation of Prunus mume Polyphenols Extracts on Muscle Protein Oxidation and Nitrosation[J]. Science and Technology of Food Industry, 2025, 46(7): 87−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040192. |
[1] |
ZHANG W, XIAO S, AHN D U. Protein oxidation:Basic principles and implications for meat quality[J]. Critical Reviews in Food Science and Nutrition,2013,53(11):1191−201. doi: 10.1080/10408398.2011.577540
|
[2] |
DE MEY E, DE MAERE H, PAELINCK H, et al. Volatile N-nitrosamines in meat products:Potential precursors, influence of processing, and mitigation strategies[J]. Critical Reviews in Food Science and Nutrition,2017,57(13):2909−2923. doi: 10.1080/10408398.2015.1078769
|
[3] |
YANG H, MENG P P, XIONG Y L, et al. Oxidation in HiOx-packaged pork Longissimus muscle predisposes myofibrillar and sarcoplasmic proteins to N-nitrosamine formation in nitrite-curing solution[J]. Meat Science,2013,95(3):465−471. doi: 10.1016/j.meatsci.2013.05.038
|
[4] |
HUANG X, SUN L, LIU L, et al. Study on the mechanism of mulberry polyphenols inhibiting oxidation of beef myofibrillar protein[J]. Food Chemistry,2022,372:131241. doi: 10.1016/j.foodchem.2021.131241
|
[5] |
CHEN X, HE Z, WANG Z, et al. The effect of the purslane polyphenols on the structure of rabbit meat myofibrillar protein under malondialdehyde-induced oxidative stress[J]. Journal of Food Science,2023,88(5):1924−1938. doi: 10.1111/1750-3841.16510
|
[6] |
LEE S Y, MUNEROL B, POLLARD S, et al. The reaction of flavanols with nitrous acid protects against N-nitrosamine formation and leads to the formation of nitroso derivatives which inhibit cancer cell growth[J]. Free Radical Biology and Medicine,2006,40(2):323−334. doi: 10.1016/j.freeradbiomed.2005.08.031
|
[7] |
TIAN T T, CAO H, FARAG M A, et al. Current and potential trends in the bioactive properties and health benefits of Prunus mume Sieb. Et Zucc:A comprehensive review for value maximization[J]. Critical Reviews in Food Science and Nutrition,2023,63(24):7091−7107. doi: 10.1080/10408398.2022.2042186
|
[8] |
PARK D, XIONG Y L, ALDERTON A L. Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein[J]. Food Chemistry,2007,101(3):1239−1246. doi: 10.1016/j.foodchem.2006.03.028
|
[9] |
NIU P F, WANG F R, YUAN K, et al. Alkaline-extracted thinned young apple polyphenols as an effective scavenger against nitrite in pickles:A comparative study with ethanol-extracted polyphenols[J]. Food Control,2021,130:108387. doi: 10.1016/j.foodcont.2021.108387
|
[10] |
BERARDO A, DE MAERE H, STAVROPOULOU D A, et al. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages[J]. Meat Science,2016,121:359−364. doi: 10.1016/j.meatsci.2016.07.003
|
[11] |
XU L H, CHENG J R, LIU X M, et al. Effect of microencapsulated process on stability of mulberry polyphenol and oxidation property of dried minced pork slices during heat processing and storage[J]. LWT-Food Science and Technology,2019,100:62−68. doi: 10.1016/j.lwt.2018.10.025
|
[12] |
DAVIES K J, DELSIGNORE M E, LIN S W. Protein damage and degradation by oxygen radicals II. Modification of amino acids[J]. Journal of Biological Chemistry,1987,262(20):9902−9907. doi: 10.1016/S0021-9258(18)48019-2
|
[13] |
VOSSEN E, DE SMET S. Protein oxidation and protein nitration influenced by sodium nitrite in two different meat model systems[J]. Journal of Agricultural and Food Chemistry,2015,63(9):2550−2556. doi: 10.1021/jf505775u
|
[14] |
KEHM R, BALDENSPERGER T, RAUPBACH J, et al. Protein oxidation-Formation mechanisms, detection and relevance as biomarkers in human diseases[J]. Redox Biology,2021,42:101901. doi: 10.1016/j.redox.2021.101901
|
[15] |
FENG X L, WU D, YANG K, et al. Effect of sarcoplasmic proteins oxidation on the gel properties of myofibrillar proteins from pork muscles[J]. Journal of Food Science,2021,86(5):1835−1844. doi: 10.1111/1750-3841.15687
|
[16] |
GU R X, LI F, LI D P, et al. Effects of ferulic acid on the oxidation stability and nitrozation of myofibrillar proteins under oxidative stress[J]. Food Chemistry Advances,2022,1:100016. doi: 10.1016/j.focha.2022.100016
|
[17] |
CHENG J R, LIN Y S, TANG D B, et al. Structural and gelation properties of five polyphenols-modified pork myofibrillar protein exposed to hydroxyl radicals[J]. LWT-Food Science and Technology,2022,156:113073. doi: 10.1016/j.lwt.2022.113073
|
[18] |
LI B W, YANG Y H, DING Y Y, et al. Dityrosine in food:A review of its occurrence, health effects, detection methods, and mitigation strategies[J]. Comprehensive Reviews in Food Science and Food Safety,2023,22(1):355−379. doi: 10.1111/1541-4337.13071
|
[19] |
LEI Y D, DENG X R, ZHANG Z W, et al. Effects of oxidation on the physicochemical properties and degradation of mutton myofibrillar proteins[J]. Journal of Food Science,2022,87(7):2932−2942. doi: 10.1111/1750-3841.16166
|
[20] |
LI X, LIU C, WANG J, et al. Tea polyphenols affect oxidative modification and solution stability of myofibrillar protein from grass carp (Ctenopharyngodon idellus)[J]. Food Biophysics,2020,15(4):397−408. doi: 10.1007/s11483-020-09635-x
|
[21] |
EZE F N, TOLA A J. Protein glycation and oxidation inhibitory activity of Centella asiatica phenolics (CAP) in glucose-mediated bovine serum albumin glycoxidation[J]. Food Chemistry,2020,332:127302. doi: 10.1016/j.foodchem.2020.127302
|
[22] |
PARK D, XIONG Y L. Oxidative modification of amino acids in porcine myofibrillar protein isolates exposed to three oxidizing systems[J]. Food Chemistry,2007,103(2):607−616. doi: 10.1016/j.foodchem.2006.09.004
|
[23] |
候雨雪, 刘学铭, 程镜蓉, 等. 桑椹多酚对广式腊肠风味的影响[J]. 现代食品科技,2022,38(8):236−246,52. [HOU Y X, LIU X M, CHENG J R, et al. Effect of mulberry polyphenols on the flavor of Cantonese sausage[J]. Modern Food Science and Technology,2022,38(8):236−246,52.]
HOU Y X, LIU X M, CHENG J R, et al. Effect of mulberry polyphenols on the flavor of Cantonese sausage[J]. Modern Food Science and Technology, 2022, 38(8): 236−246,52.
|
[24] |
SOBRAL M M C, CASAL S, FARIA M A, et al. Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion[J]. Food and Chemical Toxicology,2020,141:111401. doi: 10.1016/j.fct.2020.111401
|
[25] |
GUYON C, LE VESSEL V, MEYNIER A, et al. Modifications of protein-related compounds of beef minced meat treated by high pressure[J]. Meat Science,2018,142:32−37. doi: 10.1016/j.meatsci.2018.03.019
|
[26] |
DRABIK-MARKIEWICZ G, VAN DEN MAAGDENBERG K, DE MEY E, et al. Role of proline and hydroxyproline in N-nitrosamine formation during heating in cured meat[J]. Meat Science,2009,81(3):479−486. doi: 10.1016/j.meatsci.2008.10.002
|
[27] |
FENG X C, LI C Y, ULLAH N, et al. Potential biomarker of myofibrillar protein oxidation in raw and cooked ham:3-Nitrotyrosine formed by nitrosation[J]. Journal of Agricultural and Food Chemistry,2015,63(51):10957−10964. doi: 10.1021/acs.jafc.5b04107
|
[28] |
VILLAVERDE A, PARRA V, ESTEVEZ M. Oxidative and nitrosative stress induced in myofibrillar proteins by a hydroxyl-radical-generating system:Impact of nitrite and ascorbate[J]. Journal of Agricultural and Food Chemistry,2014,62(10):2158−2164. doi: 10.1021/jf405705t
|
[29] |
BIXBY M, SPIELER L, MENINI T, et al. Ilex paraguariensis extracts are potent inhibitors of nitrosative stress:A comparative study with green tea and wines using a protein nitration model and mammalian cell cytotoxicity[J]. Life Sciences,2005,77(3):345−358. doi: 10.1016/j.lfs.2004.11.030
|
[30] |
LI L, JI H. Protective effects of epicatechin on the oxidation and N-nitrosamine formation of oxidatively stressed myofibrillar protein[J]. International Journal of Food Properties,2019,22(1):186−197. doi: 10.1080/10942912.2019.1578792
|