Citation: | SU Hui, ZENG Yaoying, ZHANG Jiaming, et al. Post-harvest Epidermal Wax of Grapes and Fruit Storage Quality[J]. Science and Technology of Food Industry, 2025, 46(5): 318−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040162. |
[1] |
付镇芳, 何博, 顾群英. 塑料大棚夏黑葡萄早熟丰产栽培技术[J]. 农业科技与信息,2022(14):5−7. [FU Z F, HE B, GU Q Y. Plastic greenhouse Summer Black grape early maturity and yield cultivation technology[J]. Agricultural Science-Technology and Information,2022(14):5−7.]
FU Z F, HE B, GU Q Y. Plastic greenhouse Summer Black grape early maturity and yield cultivation technology[J]. Agricultural Science-Technology and Information, 2022(14): 5−7.
|
[2] |
孙明明, 丁玮琳, 常大勇, 等. 阳光玫瑰葡萄的果锈问题及防治措施[J]. 果树实用技术与信息,2023(8):43−45. [SUN M M, DING W L, CHANG D Y, et al. Fruit rust problems and control measures in Shine Muscat grapes[J]. Applied Technology and Information for Fruit Tree,2023(8):43−45.]
SUN M M, DING W L, CHANG D Y, et al. Fruit rust problems and control measures in Shine Muscat grapes[J]. Applied Technology and Information for Fruit Tree, 2023(8): 43−45.
|
[3] |
LIU G S, LI H L, PENG Z Z, et al. Composition, metabolism and postharvest function and regulation of fruit cuticle:A review[J]. Food Chemistry,2023,411:135449. doi: 10.1016/j.foodchem.2023.135449
|
[4] |
GABLER F M, SMILANICK J L, MANSOUR M, et al. Correlations of morphological, anatomical, and chemical features of grape berries with resistance to botrytis cinerea[J]. Phytopathology,2003,93(10):1263−1273. doi: 10.1094/PHYTO.2003.93.10.1263
|
[5] |
SILVA-MORENO E, BRITO-ECHEVERRÍA J, LÓPEZ M, et al. Effect of cuticular waxes compounds from table grapes on growth, germination and gene expression in botrytis cinerea[J]. World Journal of Microbiology and Biotechnology,2016,32(5):74. doi: 10.1007/s11274-016-2041-4
|
[6] |
ZHANG M, ZHANG P, LU S, et al. Comparative analysis of cuticular wax in various grape cultivars during berry development and after storage[J]. Frontiers in Nutrition,2021,8:817796. doi: 10.3389/fnut.2021.817796
|
[7] |
YANG M, LUO Z, LI D, et al. Role of epicuticular wax involved in quality maintenance of table grapes:Evidence from transcriptomic data[J]. Postharvest Biology and Technology,2023,196:112155. doi: 10.1016/j.postharvbio.2022.112155
|
[8] |
王雨菲. 木纳格葡萄表皮蜡质组分分析及其对果实耐贮性的影响[D]. 石河子:石河子大学, 2023. [WANG Y F. Analysis of the wax fractions of the epidermal skin of Munake grapes and their influence on the storage resistance of the fruit[D]. Shihezi:Shihezi University, 2023.]
WANG Y F. Analysis of the wax fractions of the epidermal skin of Munake grapes and their influence on the storage resistance of the fruit[D]. Shihezi: Shihezi University, 2023.
|
[9] |
楚文靖. 蓝莓蜡质对果实采后衰老的影响及机理研究[D]. 南京:南京农业大学, 2017. [CHU W J. Study on the effect and mechanism of blueberry wax on postharvest fruit senescence[D]. Nanjing:Nanjing Agricultural University, 2017.]
CHU W J. Study on the effect and mechanism of blueberry wax on postharvest fruit senescence[D]. Nanjing: Nanjing Agricultural University, 2017.
|
[10] |
曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社, 2007. [CAO J K, JIANG M W, ZHAO Y M. Experimental guidance on postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing:China Light Industry Press, 2007.]
CAO J K, JIANG M W, ZHAO Y M. Experimental guidance on postharvest physiology and biochemistry of fruits and vegetables[M]. Beijing: China Light Industry Press, 2007.
|
[11] |
RIEDERER M, SCHNEIDER G. The effect of the environment on the permeability and composition of citrus leaf cuticles:II. Composition of soluble cuticular lipids and correlation with transport properties[J]. Planta,1990,180(2):154−165.
|
[12] |
YANG L, HU W, LIU D, et al. Comparative analysis of the crystal morphology, chemical composition and key gene expression between two kumquat fruit cuticular waxes during postharvest cold storage[J]. Postharvest Biology and Technology,2023,206:112550. doi: 10.1016/j.postharvbio.2023.112550
|
[13] |
CHAI Y, LI A, CHIT WAI S, et al. Cuticular wax composition changes of 10 apple cultivars during postharvest storage[J]. Food Chemistry,2020,324:126903. doi: 10.1016/j.foodchem.2020.126903
|
[14] |
GE S, WANG R, YANG L, et al. Transcriptomics and gas chromatography-mass spectrometry metabolomics reveal the mechanism of heat shock combined with 1-methylcyclopropene to regulate the cuticle wax of jujube fruit during storage[J]. Food Chemistry,2023,408:135187. doi: 10.1016/j.foodchem.2022.135187
|
[15] |
黄世安. 李果实贮藏过程中蜡质变化规律及与耐贮性的关系[D]. 贵阳:贵州大学, 2023. [HUANG S A. Changes of wax regularity during storage of plum fruits and its relationship with storage resistance[D]. Guiyang:Guizhou University, 2023.]
HUANG S A. Changes of wax regularity during storage of plum fruits and its relationship with storage resistance[D]. Guiyang: Guizhou University, 2023.
|
[16] |
LIU D, MA Q, YANG L, et al. Comparative analysis of the cuticular waxes and related gene expression between ‘Newhall’ and ‘Ganqi 3’ navel orange during long-term cold storage[J]. Plant Physiology and Biochemistry,2021,167:1049−1060. doi: 10.1016/j.plaphy.2021.09.032
|
[17] |
HUANG H, WANG L, XU X, et al. Morphological, chemical, and biosynthetic changes in pericarp waxes in response to the browning of litchi fruit during storage[J]. Postharvest Biology and Technology,2022,191:111968. doi: 10.1016/j.postharvbio.2022.111968
|
[18] |
LARA I, BELGE B, GOULAO L F. The fruit cuticle as a modulator of postharvest quality[J]. Postharvest Biology and Technology,2014,87:103−112. doi: 10.1016/j.postharvbio.2013.08.012
|
[19] |
WANG M, WANG Y, WU H, et al. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum[J]. Scientific Reports,2016,6(1):25008. doi: 10.1038/srep25008
|
[20] |
张群. 欧亚种提子类葡萄贮藏期间果实能量亏损与品质劣变机理研究[D]. 长沙:中南林业科技大学, 2019. [ZHANG Q. Study on mechanism of energy loss on quality deterioration of Vitis vinifera L. grape fruit during storage[D]. Changsha:Central South University of Forestry and Technology, 2019.]
ZHANG Q. Study on mechanism of energy loss on quality deterioration of Vitis vinifera L. grape fruit during storage[D]. Changsha: Central South University of Forestry and Technology, 2019.
|
[21] |
CHAI J, LIAO B, LI R, et al. Changes in taste and volatile compounds and ethylene production determined the eating window of ‘Xuxiang’ and ‘Cuixiang’ kiwifruit cultivars[J]. Postharvest Biology and Technology,2022,194:112093. doi: 10.1016/j.postharvbio.2022.112093
|
[22] |
ZHU S, HUANG S, LIN X, et al. The relationships between waxes and storage quality indexes of fruits of three plum cultivars[J]. Foods,2023,12(8):1717. doi: 10.3390/foods12081717
|
[23] |
HUANG H, BURGHARDT M, SCHUSTER A C, et al. Chemical composition and water permeability of fruit and leaf cuticles of Olea europaea L.[J]. Journal of Agricultural and Food Chemistry,2017,65(40):8790−8797. doi: 10.1021/acs.jafc.7b03049
|
[24] |
王晓晶, 吴昊, 胡盼盼. 红枣多酚预涂膜对葡萄贮藏品质的影响[J]. 北方园艺,2023(24):89−95. [WANG X J, WU H, HU P P. The effect of red date polyphenol precoating film on grape storage quality[J]. Northern Horticulture,2023(24):89−95.] doi: 10.11937/bfyy.20232367
WANG X J, WU H, HU P P. The effect of red date polyphenol precoating film on grape storage quality[J]. Northern Horticulture, 2023(24): 89−95. doi: 10.11937/bfyy.20232367
|
[25] |
SHI H, ZHOU W H, XU Y Y, et al. Effect of calcium spray at flowering combined with post-harvest 1-MCP treatment on the preservation of grapes[J]. Heliyon,2023,9(9):e19918. doi: 10.1016/j.heliyon.2023.e19918
|
[26] |
海龙飞. 软/硬肉葡萄果实发育中细胞壁变化及VvPME19基因在果实软化中的功能分析[D]. 郑州:河南农业大学, 2023. [HAI L F. Cell wall changes in fruit development and the function of VvPME19 gene in fruit softening in soft/hard-fleshed grapes[D]. Zhengzhou:Henan Agricultural University, 2023.]
HAI L F. Cell wall changes in fruit development and the function of VvPME19 gene in fruit softening in soft/hard-fleshed grapes[D]. Zhengzhou: Henan Agricultural University, 2023.
|
[27] |
帅良, 林德胜, 廖玲燕, 等. 不同贮藏温度对百香果果实糖酸组分变化的影响[J]. 核农学报,2023,37(12):2408−2416. [SHUAI L, LIN D S, LIAO L Y, et al. Effect of different storage temperatures on the changes of sugar and acid components of passion fruit[J]. Journal of Nuclear Agricultural Sciences,2023,37(12):2408−2416.] doi: 10.11869/j.issn.1000-8551.2023.12.2408
SHUAI L, LIN D S, LIAO L Y, et al. Effect of different storage temperatures on the changes of sugar and acid components of passion fruit[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(12): 2408−2416. doi: 10.11869/j.issn.1000-8551.2023.12.2408
|
[28] |
谭沙, 朱仁威. 不同保鲜处理方式对刺葡萄贮藏效果的影响[J]. 广东化工,2022,49(16):54−57,50. [TAN S, ZHU R W. Effect of different preservation treatments on the storage effect of Thorn grapes[J]. Guangdong Chemical Industry,2022,49(16):54−57,50.] doi: 10.3969/j.issn.1007-1865.2022.16.018
TAN S, ZHU R W. Effect of different preservation treatments on the storage effect of Thorn grapes[J]. Guangdong Chemical Industry, 2022, 49(16): 54−57,50. doi: 10.3969/j.issn.1007-1865.2022.16.018
|
[29] |
ZHANG Z, XU J, CHEN Y, et al. Nitric oxide treatment maintains postharvest quality of table grapes by mitigation of oxidative damage[J]. Postharvest Biology and Technology,2019,152:9−18. doi: 10.1016/j.postharvbio.2019.01.015
|
[30] |
许蕙金兰, 吴培文, 陈仁驰, 等. 贮藏温度对巨峰葡萄采后生理和贮藏品质的影响[J]. 食品研究与开发,2018,39(21):192−197. [XU H L J, WU P W, CHEN R C, et al. Effects of storage temperature on postharvest physiology and storage quality of Kyoho grapes[J]. Food Research and Development,2018,39(21):192−197.]
XU H L J, WU P W, CHEN R C, et al. Effects of storage temperature on postharvest physiology and storage quality of Kyoho grapes[J]. Food Research and Development, 2018, 39(21): 192−197.
|
[31] |
冯叙桥, 关筱歆, 张鹏, 等. 1-MCP结合CIO2处理对冰温贮藏玫瑰香葡萄生理和品质的影响[J]. 食品工业科技,2012,33(17):333−338. [FENG X Q, GUAN Y Y, ZHANG P, et al. Effects of 1-MCP combined with CIO2 treatment on physiology and quality of grapes stored at ice temperature[J]. Food Industry Science and Technology,2012,33(17):333−338.]
FENG X Q, GUAN Y Y, ZHANG P, et al. Effects of 1-MCP combined with CIO2 treatment on physiology and quality of grapes stored at ice temperature[J]. Food Industry Science and Technology, 2012, 33(17): 333−338.
|
[32] |
孙思胜, 覃成, 张晓娟, 等. 不同浓度的川芎复方提取物对“夏黑”葡萄贮藏品质的影响[J]. 北方园艺,2024(16):80−86. [SUN S S, QIN C, ZHANG X J, et al. The effect of different concentrations of Chuanxiong compound extract on the storage quality of ‘Summer Black’ grapes[J]. Northern Horticulture,2024(16):80−86.]
SUN S S, QIN C, ZHANG X J, et al. The effect of different concentrations of Chuanxiong compound extract on the storage quality of ‘Summer Black’ grapes[J]. Northern Horticulture, 2024(16): 80−86.
|
[33] |
栗温新. 葡萄VvPGs/VvPLs基因家族鉴定及VvPL11在果实软化中的功能分析[D]. 郑州:河南农业大学, 2024. [LI W X. Identification of grapevine VvPGs/VvPLs gene family and functional analysis of VvPL11 in fruit softening[D]. Zhengzhou:Henan Agricultural University, 2024.]
LI W X. Identification of grapevine VvPGs/VvPLs gene family and functional analysis of VvPL11 in fruit softening[D]. Zhengzhou: Henan Agricultural University, 2024.
|
[34] |
WANG J, HAO H, LIU R, et al. Comparative analysis of surface wax in mature fruits between satsuma mandarin (Citrus unshiu) and ‘Newhall’ navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression[J]. Food Chemistry,2014,153:177−185. doi: 10.1016/j.foodchem.2013.12.021
|
[35] |
THOMAI T, SFAKIOTAKIS E, DIAMANTIDIS G, et al. Effects of low preharvest temperature on scald susceptibility and biochemical changes in ‘Granny Smith’ apple peel[J]. Scientia Horticulturae,1998,76(1):1−15.
|
[36] |
LI Z, HUANG J, CHEN H, et al. Sulfur dioxide maintains storage quality of table grape (Vitis vinifera cv ‘Kyoho’) by altering cuticular wax composition after simulated transportation[J]. Food Chemistry,2023,408:135188. doi: 10.1016/j.foodchem.2022.135188
|
[37] |
CHU W J, GAO H Y, CHEN H J, et al. Effects of cuticular wax on the postharvest quality of blueberry fruit[J]. Food Chemistry,2018,239:68−74. doi: 10.1016/j.foodchem.2017.06.024
|
[38] |
DOMÍNGUEZ E, HEREDIA-GUERRERO J A, HEREDIA A. The biophysical design of plant cuticles:An overview[J]. New Phytologist,2011,189(4):938−949. doi: 10.1111/j.1469-8137.2010.03553.x
|
[39] |
LIU R, SHANG F, NIU B, et al. Melatonin treatment delays the softening of blueberry fruit by modulating cuticular wax metabolism and reducing cell wall degradation[J]. Food Research International,2023,173:113357. doi: 10.1016/j.foodres.2023.113357
|
[1] | QIN Su-ni, HUANG Jun-jie, QUAN Xi-qiang, TAO Xin, QIN Cui-yun. Determination of 46 elements in Siraitia grosvenorii by ICP-OES/ICP-MS[J]. Science and Technology of Food Industry, 2017, (18): 242-246. DOI: 10.13386/j.issn1002-0306.2017.18.046 |
[2] | ZHANG Gao-qiang, YUAN Jian, JU Xing-rong, HE Rong, XING Chang-rui. Study on the characteristics of elements content and the discrimination of the origin of rice in different producing areas[J]. Science and Technology of Food Industry, 2017, (14): 61-70. DOI: 10.13386/j.issn1002-0306.2017.14.013 |
[3] | ZHENG Jie, WU Wen-lin, WAN Yu-ping, LIANG Heng-xing, XIAO Quan-wei, ZHU Xia-ping. Study on discrimination of four Chinese brand spirits based on ICP-AES coupled the principal component and decision tree analysis[J]. Science and Technology of Food Industry, 2016, (24): 74-77. DOI: 10.13386/j.issn1002-0306.2016.24.006 |
[4] | XIA Li-ya, GAO Wei, LI Ya-ping, YIN Jie-xuan, ZHANG Xiao-yu, LI Xiao-yang. Identification of Ziziphus jujuba origin by multi-element analysis[J]. Science and Technology of Food Industry, 2016, (24): 49-52. DOI: 10.13386/j.issn1002-0306.2016.24.001 |
[5] | TAN Kai-yan, LIANG Xiao-lin, MIAO Lu, LI De-yong, LI Quan-yang. Determination of milk powder geographical origin based on multi-element analysis[J]. Science and Technology of Food Industry, 2015, (02): 52-56. DOI: 10.13386/j.issn1002-0306.2015.02.002 |
[6] | MA Xiao-ning, MAO Xiao-ying, CHEN Ji-luan, HE Yu-feng. Determination of eight metal elements in safflower seed and safflower meal by FAAS method[J]. Science and Technology of Food Industry, 2014, (23): 308-310. DOI: 10.13386/j.issn1002-0306.2014.23.056 |
[7] | XIONG Hua-long, YAO Jun-jie, JIANG Zuo-yu, FENG Ya-nan, ZHU Jun-hua. Analysis on ten kinds of elements in the bones and muscles of F2generation of Andrias davidianus cultured in Guizhou[J]. Science and Technology of Food Industry, 2014, (18): 71-73. DOI: 10.13386/j.issn1002-0306.2014.18.006 |
[8] | YANG Ting-ting, DENG Ze-yuan, HU Xiao-fei, CHEN Fu-sheng, FAN Ya-wei, LIU Rong. Effect of N and P regulating exogenetic Se and Zn on elements content and antioxidant ability in tea[J]. Science and Technology of Food Industry, 2014, (06): 125-128. DOI: 10.13386/j.issn1002-0306.2014.06.025 |
[9] | CHEN Wen, WANG Xiang-jun, ZHAO Yang, SHAO Dong-xu, WANG Yu-jie, LIN Fang-song, WEN Guang-lie. Determination of propolis nutritive elements in honey by MWD-ICP-AES[J]. Science and Technology of Food Industry, 2013, (20): 56-59. DOI: 10.13386/j.issn1002-0306.2013.20.009 |