Citation: | ZOU Yaqian, CHEN Liang, MU Jia, et al. Effect of Cyclocarya paliurus on Glucose Metabolism and Intestinal GLP-1 Secretion in Type 2 Diabetic Rats[J]. Science and Technology of Food Industry, 2025, 46(7): 337−345. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040157. |
[1] |
HARREITER J, RODEN M. Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019)[J]. Wien Klin Wochenschr,2019,131(Suppl 1):6−15.
|
[2] |
BERBUDI A, RAHMADIKA N, TJAHJADI A I, et al. Type 2 diabetes and its impact on the immune system[J]. Current Diabetes Reviews,2020,16(5):442−449.
|
[3] |
CHEW N W S, NG C H, TAN J H, et al. The global burden of metabolic disease:Data from 2000 to 2019[J]. Cell Metabolism,2023,35(3):414−428. doi: 10.1016/j.cmet.2023.02.003
|
[4] |
陈靓, 田星, 邹雅倩, 等. 青钱柳水提物对果糖诱导的代谢综合征大鼠糖脂代谢的影响[J]. 食品与发酵工业,2023,49(18):232−241. [CHEN L, TIAN X, ZOU Y Q, et al. Effect and mechanism of aqueous extract of Cyclocarya paliurus on fructose-induced metabolic syndrome with glucolipid metabolism disorders in rats[J]. Food and Fermentation Industries,2023,49(18):232−241.]
CHEN L, TIAN X, ZOU Y Q, et al. Effect and mechanism of aqueous extract of Cyclocarya paliurus on fructose-induced metabolic syndrome with glucolipid metabolism disorders in rats[J]. Food and Fermentation Industries, 2023, 49(18): 232−241.
|
[5] |
陈絮蒙, 王雅靖, 陈靓, 等. 青钱柳活性物质及其代谢调节作用的研究与应用进展[J]. 食品与发酵工业,2023,49(12):336−344. [CHEN X M, WANG Y J, CHEN L, et al. Research and application progress of active substances and their metabolic regulatory effects of Cyclocarya paliurus[J]. Food and Fermentation Industries,2023,49(12):336−344.]
CHEN X M, WANG Y J, CHEN L, et al. Research and application progress of active substances and their metabolic regulatory effects of Cyclocarya paliurus[J]. Food and Fermentation Industries, 2023, 49(12): 336−344.
|
[6] |
PATEL S, SESHADRI S, DALAI S. Chapter seven-Gut microbiome and type 2 diabetes[J]. Progress in Molecular Biology and Translational Science,2022,191(1):175−185.
|
[7] |
FANG X, MIAO R, WEI J, et al. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder[J]. Comput Struct Biotechnol J,2022,25(20):5935−5951.
|
[8] |
王雅靖, 陈靓, 邹雅倩, 等. 甜味植物调节胰高血糖素样肽-1防治糖尿病的研究进展[J]. 食品与发酵工业,2024,50(15):374−383. [WANG Y J, CHEN L, ZOU Y Q, et al. Progress of sweet-taste plants regulating glucagon-like peptide-1 against diabetes[J]. Food and Fermentation Industries,2024,50(15):374−383.]
WANG Y J, CHEN L, ZOU Y Q, et al. Progress of sweet-taste plants regulating glucagon-like peptide-1 against diabetes[J]. Food and Fermentation Industries, 2024, 50(15): 374−383.
|
[9] |
ZHANG B, YU Z, ZHAO X, et al. Foodborne carbon dots aggravate high-fat-diet-induced glucose homeostasis imbalance by disrupting the gut-liver axis[J]. ACS Applied Materials & Interfaces,2024,16(10):12263−12276.
|
[10] |
SMITH N K, HACKETT T A, GALLI A, et al. GLP-1:Molecular mechanisms and outcomes of a complex signaling system[J]. Neurochemistry International,2019,128(9):94−105.
|
[11] |
TOULIS K A, NIRANTHARAKUMAR K, POURZITAKI C, et al. Glucokinase activators for type 2 diabetes:Challenges and future developments[J]. Drugs,2020,80(5):467−475. doi: 10.1007/s40265-020-01278-z
|
[12] |
CHAO P C, LI Y, CHANG C H, et al. Investigation of insulin resistance in the popularly used four rat models of type-2 diabetes[J]. Biomed Pharmacother,2018,101(2):155−161.
|
[13] |
肖瑶. 甜味受体介导代谢综合征形成及其风险标志物研究[D]. 武汉:武汉大学, 2020. [XIAO Y. The formation and biomarkers of metabolic syndrome mediated by sweet receptors[D]. Wuhan:Wuhan University, 2020.]
XIAO Y. The formation and biomarkers of metabolic syndrome mediated by sweet receptors[D]. Wuhan: Wuhan University, 2020.
|
[14] |
LIU F L, SHI K J, DONG J J, et al. Ganoderic acid attenuates high-fat-diet-induced liver injury in rats by regulating the lipid oxidation and liver inflammation[J]. Archives of Pharmacal Research,2020,43(7):744−754. doi: 10.1007/s12272-020-01256-9
|
[15] |
LONGO S, RIZZA S, FEDERICI M. Microbiota-gut-brain axis:Relationships among the vagus nerve, gut microbiota, obesity, and diabetes[J]. Acta Diabetol,2023,60(8):1007−1017. doi: 10.1007/s00592-023-02088-x
|
[16] |
WANG M, LI S, ZHANG X, et al. Association between hemoglobin glycation index and non-alcoholic fatty liver disease in the patients with type 2 diabetes mellitus[J]. Journal of Diabetes Investigation,2023,14(11):1303−1311. doi: 10.1111/jdi.14066
|
[17] |
JAGANNATHAN R, NEVES J S, DORCELY B, et al. The oral glucose tolerance test:100 years later[J]. Diabetes, Metabolic Syndrome and Obesity,2020,19(13):3787−3805.
|
[18] |
TONG Y, XU S, HUANG L, et al. Obesity and insulin resistance:Pathophysiology and treatment[J]. Drug Discovery Today,2022,27(3):822−830. doi: 10.1016/j.drudis.2021.11.001
|
[19] |
SEINO Y, YAMAZAKI Y. Roles of glucose-dependent insulinotropic polypeptide in diet-induced obesity[J]. Journal of Diabetes Investigation,2022,13(7):1122−1128. doi: 10.1111/jdi.13816
|
[20] |
TAN X, DIVINO V, AMAMOO J, et al. Real-world effectiveness of once-weekly glucagon-like peptide-1 receptor agonists (OW GLP-1RAs) in comparison with dipeptidyl peptidase-4 (DPP-4) inhibitors for glycemic control and weight outcomes in type 2 diabetes mellitus[J]. Clinical Drug Investigation,2024,44(4):271−284. doi: 10.1007/s40261-024-01354-2
|
[21] |
周曦冉, 焦格娜, 曾己, 等. 萸精降糖方对2型糖尿病大鼠血糖血脂及血清氧化应激有关指标的影响[J]. 食品工业科技,2023,44(19):433−439. [ZHOU X, JIAO G N, ZENG J, et al. Effect of Yujing Jiangtang Recipe on blood glucose, lipid and serum oxidative stress related indexes in type 2 diabetes rats[J]. Science and Technology of Food Industry,2023,44(19):433−439.]
ZHOU X, JIAO G N, ZENG J, et al. Effect of Yujing Jiangtang Recipe on blood glucose, lipid and serum oxidative stress related indexes in type 2 diabetes rats[J]. Science and Technology of Food Industry, 2023, 44(19): 433−439.
|
[22] |
黄盼玲, 肖颖梅, 李泊村, 等. 罗汉果皂苷改善糖尿病小鼠血糖的作用研究[J]. 食品研究与开发,2022,43(5):8−13. [HUANG P P, XIAO Y M, LI B C, et al. Mogroside improves glycemic control in diabetic mice[J]. Food Research and Development,2022,43(5):8−13.] doi: 10.12161/j.issn.1005-6521.2022.05.002
HUANG P P, XIAO Y M, LI B C, et al. Mogroside improves glycemic control in diabetic mice[J]. Food Research and Development, 2022, 43(5): 8−13. doi: 10.12161/j.issn.1005-6521.2022.05.002
|
[23] |
BAI L, GAO J, WEI F, et al. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes[J]. Frontiers in Pharmacology,2018,5(9):423−437.
|
[24] |
FENG Z, FANG Z, CHEN C, et al. Anti-hyperglycemic effects of refined fractions from Cyclocarya paliurus leaves on streptozotocin-induced diabetic mice[J]. Molecules,2021,26(22):68−86.
|
[25] |
王依婷, 赵梦鸽, 盛雪萍, 等. 青钱柳三萜酸对高糖所致的胰岛α细胞胰岛素抵抗的影响[J]. 中国药科大学学报,2018,49(2):215−221. [WANG Y T, ZHAO M G, SHENG X P, et al. Effect of triterpenic acid-enriched fraction from Cyclocarya paliurus on high glucose-induced pancreatic α-cells insulin resistance[J]. China Pharm Univ,2018,49(2):215−221.] doi: 10.11665/j.issn.1000-5048.20180212
WANG Y T, ZHAO M G, SHENG X P, et al. Effect of triterpenic acid-enriched fraction from Cyclocarya paliurus on high glucose-induced pancreatic α-cells insulin resistance[J]. China Pharm Univ, 2018, 49(2): 215−221. doi: 10.11665/j.issn.1000-5048.20180212
|
[26] |
CAO J J, ZHENG R D, CHANG X Y, et al. Cyclocarya paliurus triterpenoids suppress hepatic gluconeogenesis via AMPK-mediated cAMP/PKA/CREB pathway[J]. Phytomedicine,2022,102(7):154−175.
|
[27] |
SUN E W, MARTIN A M, FONTGALLAND D D, et al. Evidence for glucagon secretion and function within the human gut[J]. Endocrinology,2021,162(4):1−12.
|
[28] |
GRAU-BOVÉ C, GONZÁLEZ-QUILEN C, CANTINI G, et al. GLP-1 exerts paracrine activity in the intestinal lumen of human colon[J]. International Journal of Molecular Sciences,2022,23(7):3523−3536. doi: 10.3390/ijms23073523
|
[29] |
MCLEAN B A, WONG C K, CAMPBELL J E, et al. Revisiting the complexity of GLP-1 action from sites of synthesis to receptor activation[J]. Endocrine Reviews,2021,42(2):101−132. doi: 10.1210/endrev/bnaa032
|
[30] |
MILOSEVIC I, VUJOVIC A, BARAC A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases:A review of the literature[J]. International Journal of Molecular Sciences,2019,20(2):395−411. doi: 10.3390/ijms20020395
|
[31] |
KIM E R, PARK J S, KIM J H, et al. A GLP-1/GLP-2 receptor dual agonist to treat NASH:Targeting the gut-liver axis and microbiome[J]. Hepatology,2022,75(6):1523−1538. doi: 10.1002/hep.32235
|
[32] |
李杰, 钱丽, 施晓卉, 等. 葡萄糖激酶激活剂研究进展可视化分析[J]. 中国药业,2023,32(20):50−55. [LI J, QIAN L, SHI X H, et al. Visual analysis of research progress on glucokinase activators[J]. China Pharmaceuticals,2023,32(20):50−55.] doi: 10.3969/j.issn.1006-4931.2023.12.013
LI J, QIAN L, SHI X H, et al. Visual analysis of research progress on glucokinase activators[J]. China Pharmaceuticals, 2023, 32(20): 50−55. doi: 10.3969/j.issn.1006-4931.2023.12.013
|
[33] |
REN Y, LI L, WAN L, et al. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2022,37(1):606−615. doi: 10.1080/14756366.2021.2025362
|
[34] |
GREWAL A S, LATHER V, CHARAYA N, et al. Recent developments in medicinal chemistry of allosteric activators of human glucokinase for type 2 diabetes mellitus therapeutics[J]. Current Pharmaceutical Design,2020,26(21):2510−2552. doi: 10.2174/1381612826666200414163148
|
[35] |
CHOW E, WANG K, LIM C K P, et al. Dorzagliatin, a dual-acting glucokinase activator, increases insulin secretion and glucose sensitivity in glucokinase maturity-onset diabetes of the young and recent-onset type 2 diabetes[J]. Diabetes,2023,72(2):299−308. doi: 10.2337/db22-0708
|
[36] |
YAO C X, QIAN Z, QIAO J H, et al. Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition[J]. Acta Pharmaceutica Sinica B,2023,13(6):2383−2402. doi: 10.1016/j.apsb.2022.11.008
|
[37] |
曹静静. 基于胰高血糖素/AMPK 途径研究青钱柳三萜酸干预糖异生的作用及机制[D]. 南京:南京中医药大学, 2021. [CAO J J. Study on the effect and mechanism of triterpenoid acid of Cyclocarya paliurus on gluconeogenesis based on glucagon/AMPK pathway[D]. Nanjing:Nanjing University of Traditional Chinese Medicine, 2021.]
CAO J J. Study on the effect and mechanism of triterpenoid acid of Cyclocarya paliurus on gluconeogenesis based on glucagon/AMPK pathway[D]. Nanjing: Nanjing University of Traditional Chinese Medicine, 2021.
|
[38] |
李楠. 青钱柳多糖对大鼠抗氧化及脂代谢相关基因表达的研究[D]. 南昌:江西农业大学, 2015. [LI N. Study on the effect of Cyclocarya paliurus polysaccharide on the expression of genes related to antioxidation and lipid metabolism in rats[D]. Nanchang:Jiangxi Agricultural University, 2015.]
LI N. Study on the effect of Cyclocarya paliurus polysaccharide on the expression of genes related to antioxidation and lipid metabolism in rats[D]. Nanchang: Jiangxi Agricultural University, 2015.
|
[39] |
EKBERG K, LANDAU B R, WAJNGOT A, et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting[J]. Diabetes,1999,48(2):292−298. doi: 10.2337/diabetes.48.2.292
|
[40] |
FEBBRAIO M A, KARIN M. "Sweet death":Fructose as a metabolic toxin that targets the gut-liver axis[J]. Cell Metabolism,2021,33(12):2316−2328. doi: 10.1016/j.cmet.2021.09.004
|