Citation: | BAI Hongyu, LIU Qingbo, CUI Weiran, et al. Structure-Activity Relationship of Acrylamide Adsorption by Peptidoglycan of Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2025, 46(7): 60−69. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040136. |
[1] |
HEE P T E, LIANG Z J, ZHANG P Z, et al. Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products[J]. Food Control,2023,158:110236.
|
[2] |
MOLLAKHALILI-MEYBODI N, KHORSHIDIAN N, NEMATOLLAHI A, et al. Acrylamide in bread:A review on formation, health risk assessment, and determination by analytical techniques[J]. Environmental Science and Pollution Research,2021,28:15627−15645. doi: 10.1007/s11356-021-12775-3
|
[3] |
ZHANG B Y, ZHAO M Y, JI X G, et al. Acrylamide induces neurotoxicity in zebrafish (Danio rerio) via NLRP3-mediated pyroptosis[J]. Science of the Total Environment,2023,896:165208. doi: 10.1016/j.scitotenv.2023.165208
|
[4] |
BUŠOVÁ M, BENCKO V, LAKTIČOVÁ K V, et al. Risk of exposure to acrylamide[J]. Central European Journal of Public Health,2020,28:S43−S46. doi: 10.21101/cejph.a6177
|
[5] |
ZHANG L, YANG L Q, LUO Y H, et al. Acrylamide-induced hepatotoxicity through oxidative stress:mechanisms and interventions[J]. Antioxidants & Redox Signaling,2023,38(16):1122−1137.
|
[6] |
CRUDO F, HONG C, VARGA E, et al. Genotoxic and mutagenic effects of the Alternaria mycotoxin alternariol in combination with the process contaminant acrylamide[J]. Toxins,2023,15(12):670. doi: 10.3390/toxins15120670
|
[7] |
EGHAN K, LEE S, KIM W K. Cardiotoxicity and neurobehavioral effects induced by acrylamide in Daphnia magna[J]. Ecotoxicol Environ Saf,2022,242:113923. doi: 10.1016/j.ecoenv.2022.113923
|
[8] |
CHENG B X, XIA X H, HAN Z Q, et al. A ratiometric fluorescent “off-on” sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin[J]. Food Chemistry,2024,437:137878. doi: 10.1016/j.foodchem.2023.137878
|
[9] |
SHAO X F, XU B C, CHEN C G, et al. The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food:A review[J]. Critical Reviews in Food Science and Nutrition,2022,62(21):5950−5963. doi: 10.1080/10408398.2021.1895059
|
[10] |
RIVAS-JIMENEZ L, RAMíREZ-ORTIZ K, GONZÁLEZ-CÓRDOVA A, et al. Evaluation of acrylamide-removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system[J]. Microbiological Research,2016,190:19−26. doi: 10.1016/j.micres.2016.04.016
|
[11] |
ALBEDWAWI A S, AL SAKKAF R, OSAILI T M, et al. Investigating acrylamide mitigation by potential probiotics Bifidobacterium breve and Lactiplantibacillus plantarum:Optimization, in vitro gastrointestinal conditions, and mechanism[J]. LWT,2022,163:1135−1153.
|
[12] |
SHEN Y, ZHAO S J, LIU Q B, et al. Investigation on the interaction of acrylamide with soy protein isolate:Exploring the binding mechanism in vitro[J]. Journal of Food Science,2021,86(6):2766−2777. doi: 10.1111/1750-3841.15733
|
[13] |
SCHABACKER J, SCHWEND T, WINK M. Reduction of acrylamide uptake by dietary proteins in a Caco-2 gut model[J]. Journal of Agricultural and Food Chemistry,2004,52(12):4021−4025. doi: 10.1021/jf035238w
|
[14] |
SHEN Y, ZHAO S J, ZHAO X D, et al. In vitro adsorption mechanism of acrylamide by lactic acid bacteria[J]. LWT,2019,100:119−125. doi: 10.1016/j.lwt.2018.10.058
|
[15] |
VOLLMER W, BLANOT D, de PEDRO M A. Peptidoglycan structure and architecture[J]. FEMS Microbiology Reviews,2008,32(2):149−167. doi: 10.1111/j.1574-6976.2007.00094.x
|
[16] |
TURNER R D, VOLLMER W, FOSTER S J. Different walls for rods and balls:The diversity of peptidoglycan[J]. Molecular Microbiology,2014,91(5):862−874. doi: 10.1111/mmi.12513
|
[17] |
PORFíRIO S, CARLSON R W, AZADI P. Elucidating peptidoglycan structure:An analytical toolset[J]. Trends in Microbiology,2019,27(7):607−622. doi: 10.1016/j.tim.2019.01.009
|
[18] |
ZHANG D, LIU W, LI L, et al. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria[J]. Food Science and Biotechnology,2017,26:271−277. doi: 10.1007/s10068-017-0036-z
|
[19] |
LIU C, YE J Q, WANG H L, et al. Lactic acid bacteria reduce the toxicity of tetrodotoxin through peptidoglycan mediated binding[J]. Aquaculture and Fisheries, 2024.
|
[20] |
GUO Y D, WANG L L, LI L, et al. Characterization of polysaccharide fractions from Allii macrostemonis bulbus and assessment of their antioxidant[J]. LWT,2022,165:113687. doi: 10.1016/j.lwt.2022.113687
|
[21] |
赵思佳, 李蕊, 刘彤, 等. 5 株乳酸菌吸附丙烯酰胺稳定性的比较[J]. 食品科学,2019,40(24):151−156. [ZHAO S J, LI R, LIU T, et al. Comparative study on the stability of five strains of lactic acid bacteria adsorbing acrylamide[J]. Food Science,2019,40(24):151−156.] doi: 10.7506/spkx1002-6630-20181225-288
ZHAO S J, LI R, LIU T, et al. Comparative study on the stability of five strains of lactic acid bacteria adsorbing acrylamide[J]. Food Science, 2019, 40(24): 151−156. doi: 10.7506/spkx1002-6630-20181225-288
|
[22] |
杨媛, 潘道东, 曾小群, 等. 嗜酸乳杆菌胞壁肽聚糖的提取及结构分析[J]. 中国食品学报,2014,14(5):202−208. [YANG Y, PAN D D, ZENG X Q, et al. Extraction and structural analysis of wall peptidoglycan from Lactobacillus acidophilus[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(5):202−208.]
YANG Y, PAN D D, ZENG X Q, et al. Extraction and structural analysis of wall peptidoglycan from Lactobacillus acidophilus[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(5): 202−208.
|
[23] |
ZHANG X, YANG H, WANG T, et al. Bovine serum albumin plays an important role in the removal of acrylamide by Lactobacillus strains[J]. LWT,2023,174:114413. doi: 10.1016/j.lwt.2022.114413
|
[24] |
ZHAO L L, WEI J Y, PAN X, et al. Critical analysis of peptidoglycan structure of Lactobacillus acidophilus for phthalate removal[J]. Chemosphere,2021,282:130982. doi: 10.1016/j.chemosphere.2021.130982
|
[25] |
宁妍. 双歧杆菌肽聚糖吸附苯并芘的研究与应用[D]; 保定:河北农业大学, 2018. [NING Y. Study and application of Bifidobacterium peptidoglycan adsorbing benzopyrene[D]. Baoding:Hebei Agricultural University, 2018.]
NING Y. Study and application of Bifidobacterium peptidoglycan adsorbing benzopyrene[D]. Baoding: Hebei Agricultural University, 2018.
|
[26] |
UDOVIČIĆ M, BAŽDARIĆ K, BILIĆ-ZULLE L, et al. What we need to know when calculating the coefficient of correlation?[J]. Biochemia Medica,2007,17(1):10−15.
|
[27] |
RODRIGUES-OLIVEIRA T, BELMOK A, VASCONCELLOS D, et al. Archaeal S-layers:Overview and current state of the art[J]. Frontiers in Microbiology,2017,8:307635.
|
[28] |
GARDE S, CHODISETTI P K, REDDY M. Peptidoglycan:structure, synthesis, and regulation[J]. EcoSal Plus,2021,9(2):eESP−0010-2020.
|
[29] |
RESKO Z J, ANDERSON C M, FEDERLE M J, et al. A Staphylococcal glucosaminidase drives inflammatory responses by processing peptidoglycan chains to physiological lengths[J]. Infection and Immunity,2023,91(2):e00500−22.
|
[30] |
ZHOU M, BI J F, CHEN J X, et al. Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions:Comparison of water-soluble pectins extracted from different sources[J]. Food Hydrocolloids,2021,112:106350. doi: 10.1016/j.foodhyd.2020.106350
|
[31] |
GERBINO E, MOBILI P, TYMCZYSZYN E, et al. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions[J]. Journal of Molecular Structure,2011,987(1-3):186−192. doi: 10.1016/j.molstruc.2010.12.012
|
[32] |
FENG M, CHEN X, LI C, et al. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb (II) by its exopolysaccharide[J]. Journal of Food Science,2012,77(6):T111−T117.
|
[33] |
LI Z Y, GUO S Z, LI D, et al. Selective adsorption behavior of Cd2+ imprinted acrylamide-crosslinked-poly (alginic acid) magnetic polymers:fabrication, characterization, adsorption performance and mechanism[J]. Water Science and Technology,2021,83(2):449−462. doi: 10.2166/wst.2020.593
|
[34] |
VOLLMER W. Structural variation in the glycan strands of bacterial peptidoglycan[J]. FEMS Microbiology Reviews,2008,32(2):287−306. doi: 10.1111/j.1574-6976.2007.00088.x
|
[35] |
WANG X H, SONG R H, TENG S X, et al. Characteristics and mechanisms of Cu (II) biosorption by disintegrated aerobic granules[J]. Journal of Hazardous Materials,2010,179(1-3):431−437. doi: 10.1016/j.jhazmat.2010.03.022
|
[36] |
WANG L, YUE T L, YUAN Y H, et al. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells[J]. Food Control,2015,50:104−110. doi: 10.1016/j.foodcont.2014.08.041
|
[37] |
XU S P, HU E F, LI X C, et al. Quantitative analysis of pore structure and its impact on methane adsorption capacity of coal[J]. Natural Resources Research,2021,30:605−620. doi: 10.1007/s11053-020-09723-2
|
[38] |
HUANG M C, CHOU C H, TENG H. Pore-size effects on activated-carbon capacities for volatile organic compound adsorption[J]. AIChE Journal,2002,48(8):1804−1810. doi: 10.1002/aic.690480820
|
[1] | LUO Tingting, LI Jingjing, HU Haiyue, HE Yajun, LI Yuzhuo, ZHAO Lingxuan, WANG Lina, YANG Chen, WANG Jianming. Optimization of Flaxseed Meal Protein Extraction Process and Study of Protein Structure and Functional Properties[J]. Science and Technology of Food Industry, 2025, 46(3): 258-268. DOI: 10.13386/j.issn1002-0306.2024030161 |
[2] | LU Yunfeng, DAI Taotao, LI Zhaoying, HAN Jialong, LI Ti, LIU Chengmei, CHEN Jun. Effects on the Functionality and Structure of Rice-Pea Composite Protein by Industry-scale Microfluidizer Combined with pH Cycling Treatment[J]. Science and Technology of Food Industry, 2025, 46(2): 83-93. DOI: 10.13386/j.issn1002-0306.2024020218 |
[3] | LI Yizhen, SONG Xinxin, MA Kaiyang, ZHANG Jian, WAN Xinyi, FENG Jin, CHEN Xiaoe, LI Ying, FANG Xubo. Effects of Modification on the Structure and Functional Properties of Dietary Fiber in Burdock Root[J]. Science and Technology of Food Industry, 2024, 45(18): 63-71. DOI: 10.13386/j.issn1002-0306.2023100115 |
[4] | Jinge WANG, Yongjian CAI, Junmei LIU, Qiangzhong ZHAO. Effect of Homogenization Assisted with Enzymatic Treatment on the Structural and Functional Properties of Soybean Protein Nanoparticles[J]. Science and Technology of Food Industry, 2023, 44(13): 85-93. DOI: 10.13386/j.issn1002-0306.2022090179 |
[5] | SHI Jiayi, ZHANG Tai, LIANG Fuqiang, SHI Yumeng. Changes of Structure and Functional Properties of Glutelin during Rice Storage[J]. Science and Technology of Food Industry, 2021, 42(6): 29-34,42. DOI: 10.13386/j.issn1002-0306.2020100061 |
[6] | WANG Yi, LIU Fan, ZANG Meng-lu, FANG Shi-wen, LI Xuan, XUE Feng. Effects of Ultrasound Treatment on the Functional Properties and Structure of Royal Jelly Proteins[J]. Science and Technology of Food Industry, 2019, 40(10): 50-56. DOI: 10.13386/j.issn1002-0306.2019.10.009 |
[7] | ZHOU Xiang-jun, ZHU Min-tao, YUAN Yi-jun. Effects of erythritol on structural and functional properties of pea protein isolate[J]. Science and Technology of Food Industry, 2018, 39(8): 73-77,84. DOI: 10.13386/j.issn1002-0306.2018.08.014 |
[8] | GUAN Yi-xian, HE Miao, XIONG Shuang-li. Effects of ultra high pressure treatment on functional properties and structure of rice proteins[J]. Science and Technology of Food Industry, 2016, (20): 104-109. DOI: 10.13386/j.issn1002-0306.2016.20.012 |
[9] | YANG Yong, BI Shuang, WANG Zhong-jiang, LI Yang, JIANG Lian-zhou. Effect of ultrasonic treatment on the structure and functional properties of mung bean protein[J]. Science and Technology of Food Industry, 2016, (09): 69-73. DOI: 10.13386/j.issn1002-0306.2016.09.005 |
[10] | TAN Hui, HAN Jian-chun, ZHANG Yuan, HE Pan, CUI Xian, LIU Rong-xu. Effect of high pressure homogenization on the function properties of soybean protein isolate-polysaccharide mixtures[J]. Science and Technology of Food Industry, 2015, (22): 92-96. DOI: 10.13386/j.issn1002-0306.2015.22.010 |