Citation: | BAI Hongyu, LIU Qingbo, CUI Weiran, et al. Structure-Activity Relationship of Acrylamide Adsorption by Peptidoglycan of Lactic Acid Bacteria[J]. Science and Technology of Food Industry, 2025, 46(7): 60−69. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040136. |
[1] |
HEE P T E, LIANG Z J, ZHANG P Z, et al. Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products[J]. Food Control,2023,158:110236.
|
[2] |
MOLLAKHALILI-MEYBODI N, KHORSHIDIAN N, NEMATOLLAHI A, et al. Acrylamide in bread:A review on formation, health risk assessment, and determination by analytical techniques[J]. Environmental Science and Pollution Research,2021,28:15627−15645. doi: 10.1007/s11356-021-12775-3
|
[3] |
ZHANG B Y, ZHAO M Y, JI X G, et al. Acrylamide induces neurotoxicity in zebrafish (Danio rerio) via NLRP3-mediated pyroptosis[J]. Science of the Total Environment,2023,896:165208. doi: 10.1016/j.scitotenv.2023.165208
|
[4] |
BUŠOVÁ M, BENCKO V, LAKTIČOVÁ K V, et al. Risk of exposure to acrylamide[J]. Central European Journal of Public Health,2020,28:S43−S46. doi: 10.21101/cejph.a6177
|
[5] |
ZHANG L, YANG L Q, LUO Y H, et al. Acrylamide-induced hepatotoxicity through oxidative stress:mechanisms and interventions[J]. Antioxidants & Redox Signaling,2023,38(16):1122−1137.
|
[6] |
CRUDO F, HONG C, VARGA E, et al. Genotoxic and mutagenic effects of the Alternaria mycotoxin alternariol in combination with the process contaminant acrylamide[J]. Toxins,2023,15(12):670. doi: 10.3390/toxins15120670
|
[7] |
EGHAN K, LEE S, KIM W K. Cardiotoxicity and neurobehavioral effects induced by acrylamide in Daphnia magna[J]. Ecotoxicol Environ Saf,2022,242:113923. doi: 10.1016/j.ecoenv.2022.113923
|
[8] |
CHENG B X, XIA X H, HAN Z Q, et al. A ratiometric fluorescent “off-on” sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin[J]. Food Chemistry,2024,437:137878. doi: 10.1016/j.foodchem.2023.137878
|
[9] |
SHAO X F, XU B C, CHEN C G, et al. The function and mechanism of lactic acid bacteria in the reduction of toxic substances in food:A review[J]. Critical Reviews in Food Science and Nutrition,2022,62(21):5950−5963. doi: 10.1080/10408398.2021.1895059
|
[10] |
RIVAS-JIMENEZ L, RAMíREZ-ORTIZ K, GONZÁLEZ-CÓRDOVA A, et al. Evaluation of acrylamide-removing properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system[J]. Microbiological Research,2016,190:19−26. doi: 10.1016/j.micres.2016.04.016
|
[11] |
ALBEDWAWI A S, AL SAKKAF R, OSAILI T M, et al. Investigating acrylamide mitigation by potential probiotics Bifidobacterium breve and Lactiplantibacillus plantarum:Optimization, in vitro gastrointestinal conditions, and mechanism[J]. LWT,2022,163:1135−1153.
|
[12] |
SHEN Y, ZHAO S J, LIU Q B, et al. Investigation on the interaction of acrylamide with soy protein isolate:Exploring the binding mechanism in vitro[J]. Journal of Food Science,2021,86(6):2766−2777. doi: 10.1111/1750-3841.15733
|
[13] |
SCHABACKER J, SCHWEND T, WINK M. Reduction of acrylamide uptake by dietary proteins in a Caco-2 gut model[J]. Journal of Agricultural and Food Chemistry,2004,52(12):4021−4025. doi: 10.1021/jf035238w
|
[14] |
SHEN Y, ZHAO S J, ZHAO X D, et al. In vitro adsorption mechanism of acrylamide by lactic acid bacteria[J]. LWT,2019,100:119−125. doi: 10.1016/j.lwt.2018.10.058
|
[15] |
VOLLMER W, BLANOT D, de PEDRO M A. Peptidoglycan structure and architecture[J]. FEMS Microbiology Reviews,2008,32(2):149−167. doi: 10.1111/j.1574-6976.2007.00094.x
|
[16] |
TURNER R D, VOLLMER W, FOSTER S J. Different walls for rods and balls:The diversity of peptidoglycan[J]. Molecular Microbiology,2014,91(5):862−874. doi: 10.1111/mmi.12513
|
[17] |
PORFíRIO S, CARLSON R W, AZADI P. Elucidating peptidoglycan structure:An analytical toolset[J]. Trends in Microbiology,2019,27(7):607−622. doi: 10.1016/j.tim.2019.01.009
|
[18] |
ZHANG D, LIU W, LI L, et al. Key role of peptidoglycan on acrylamide binding by lactic acid bacteria[J]. Food Science and Biotechnology,2017,26:271−277. doi: 10.1007/s10068-017-0036-z
|
[19] |
LIU C, YE J Q, WANG H L, et al. Lactic acid bacteria reduce the toxicity of tetrodotoxin through peptidoglycan mediated binding[J]. Aquaculture and Fisheries, 2024.
|
[20] |
GUO Y D, WANG L L, LI L, et al. Characterization of polysaccharide fractions from Allii macrostemonis bulbus and assessment of their antioxidant[J]. LWT,2022,165:113687. doi: 10.1016/j.lwt.2022.113687
|
[21] |
赵思佳, 李蕊, 刘彤, 等. 5 株乳酸菌吸附丙烯酰胺稳定性的比较[J]. 食品科学,2019,40(24):151−156. [ZHAO S J, LI R, LIU T, et al. Comparative study on the stability of five strains of lactic acid bacteria adsorbing acrylamide[J]. Food Science,2019,40(24):151−156.] doi: 10.7506/spkx1002-6630-20181225-288
ZHAO S J, LI R, LIU T, et al. Comparative study on the stability of five strains of lactic acid bacteria adsorbing acrylamide[J]. Food Science, 2019, 40(24): 151−156. doi: 10.7506/spkx1002-6630-20181225-288
|
[22] |
杨媛, 潘道东, 曾小群, 等. 嗜酸乳杆菌胞壁肽聚糖的提取及结构分析[J]. 中国食品学报,2014,14(5):202−208. [YANG Y, PAN D D, ZENG X Q, et al. Extraction and structural analysis of wall peptidoglycan from Lactobacillus acidophilus[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(5):202−208.]
YANG Y, PAN D D, ZENG X Q, et al. Extraction and structural analysis of wall peptidoglycan from Lactobacillus acidophilus[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(5): 202−208.
|
[23] |
ZHANG X, YANG H, WANG T, et al. Bovine serum albumin plays an important role in the removal of acrylamide by Lactobacillus strains[J]. LWT,2023,174:114413. doi: 10.1016/j.lwt.2022.114413
|
[24] |
ZHAO L L, WEI J Y, PAN X, et al. Critical analysis of peptidoglycan structure of Lactobacillus acidophilus for phthalate removal[J]. Chemosphere,2021,282:130982. doi: 10.1016/j.chemosphere.2021.130982
|
[25] |
宁妍. 双歧杆菌肽聚糖吸附苯并芘的研究与应用[D]; 保定:河北农业大学, 2018. [NING Y. Study and application of Bifidobacterium peptidoglycan adsorbing benzopyrene[D]. Baoding:Hebei Agricultural University, 2018.]
NING Y. Study and application of Bifidobacterium peptidoglycan adsorbing benzopyrene[D]. Baoding: Hebei Agricultural University, 2018.
|
[26] |
UDOVIČIĆ M, BAŽDARIĆ K, BILIĆ-ZULLE L, et al. What we need to know when calculating the coefficient of correlation?[J]. Biochemia Medica,2007,17(1):10−15.
|
[27] |
RODRIGUES-OLIVEIRA T, BELMOK A, VASCONCELLOS D, et al. Archaeal S-layers:Overview and current state of the art[J]. Frontiers in Microbiology,2017,8:307635.
|
[28] |
GARDE S, CHODISETTI P K, REDDY M. Peptidoglycan:structure, synthesis, and regulation[J]. EcoSal Plus,2021,9(2):eESP−0010-2020.
|
[29] |
RESKO Z J, ANDERSON C M, FEDERLE M J, et al. A Staphylococcal glucosaminidase drives inflammatory responses by processing peptidoglycan chains to physiological lengths[J]. Infection and Immunity,2023,91(2):e00500−22.
|
[30] |
ZHOU M, BI J F, CHEN J X, et al. Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions:Comparison of water-soluble pectins extracted from different sources[J]. Food Hydrocolloids,2021,112:106350. doi: 10.1016/j.foodhyd.2020.106350
|
[31] |
GERBINO E, MOBILI P, TYMCZYSZYN E, et al. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions[J]. Journal of Molecular Structure,2011,987(1-3):186−192. doi: 10.1016/j.molstruc.2010.12.012
|
[32] |
FENG M, CHEN X, LI C, et al. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb (II) by its exopolysaccharide[J]. Journal of Food Science,2012,77(6):T111−T117.
|
[33] |
LI Z Y, GUO S Z, LI D, et al. Selective adsorption behavior of Cd2+ imprinted acrylamide-crosslinked-poly (alginic acid) magnetic polymers:fabrication, characterization, adsorption performance and mechanism[J]. Water Science and Technology,2021,83(2):449−462. doi: 10.2166/wst.2020.593
|
[34] |
VOLLMER W. Structural variation in the glycan strands of bacterial peptidoglycan[J]. FEMS Microbiology Reviews,2008,32(2):287−306. doi: 10.1111/j.1574-6976.2007.00088.x
|
[35] |
WANG X H, SONG R H, TENG S X, et al. Characteristics and mechanisms of Cu (II) biosorption by disintegrated aerobic granules[J]. Journal of Hazardous Materials,2010,179(1-3):431−437. doi: 10.1016/j.jhazmat.2010.03.022
|
[36] |
WANG L, YUE T L, YUAN Y H, et al. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells[J]. Food Control,2015,50:104−110. doi: 10.1016/j.foodcont.2014.08.041
|
[37] |
XU S P, HU E F, LI X C, et al. Quantitative analysis of pore structure and its impact on methane adsorption capacity of coal[J]. Natural Resources Research,2021,30:605−620. doi: 10.1007/s11053-020-09723-2
|
[38] |
HUANG M C, CHOU C H, TENG H. Pore-size effects on activated-carbon capacities for volatile organic compound adsorption[J]. AIChE Journal,2002,48(8):1804−1810. doi: 10.1002/aic.690480820
|