Citation: | LIU Tian, XU Zhihan, CHAI Qingtian, et al. Effects of Ball-milling Treatment on the Structural Properties of Rice Protein and Its Improvement on the Production of Antioxidant Peptides using Enzymatic Hydrolysis[J]. Science and Technology of Food Industry, 2025, 46(8): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040105. |
[1] |
孔祥智, 何欣玮. 粮食安全背景下早稻生产的战略价值与发展路径[J]. 农村经济,2022(10):37−46. [KONG X Z, HE X W. Strategic value and development path of early rice production in the context of food security[J]. Rural Economy,2022(10):37−46.]
KONG X Z, HE X W. Strategic value and development path of early rice production in the context of food security[J]. Rural Economy, 2022(10): 37−46.
|
[2] |
唐诚业, 秦琴, 颜正飞, 等. 产大米蛋白水解酶的菌株筛选、酶学性质及制备大米寡肽[J]. 微生物学报,2021,61(5):1200−1210. [TANG C Y, QIN Q, YAN Z F, et al. Screening of rice proteolytic protease-producing strain for preparing rice oligopeptides[J]. Acta Microbiologica Sinica,2021,61(5):1200−1210.]
TANG C Y, QIN Q, YAN Z F, et al. Screening of rice proteolytic protease-producing strain for preparing rice oligopeptides[J]. Acta Microbiologica Sinica, 2021, 61(5): 1200−1210.
|
[3] |
马晓雨, 陈先鑫, 胡振瀛, 等. 限制性酶解对大米蛋白结构、功能特性及体外抗氧化活性的影响[J]. 中国食品学报,2020,20(11):53−62. [MA X Y, CHEN X X, HU Z Y, et al. Effects of restrictive enzymatic hydrolysis on the structural and functional properties and in vitro antioxidant activity of rice protein[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(11):53−62.]
MA X Y, CHEN X X, HU Z Y, et al. Effects of restrictive enzymatic hydrolysis on the structural and functional properties and in vitro antioxidant activity of rice protein[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(11): 53−62.
|
[4] |
熊喆, 赵钰, 秦子波, 等. 超声辅助酶解促进草鱼鳞胶原肽水解进程的内在机制解析[J]. 农业工程学报,2022,38(16):313−321. [XIONG Z, ZHAO Y, QIN Z B, et al. Analysis of the internal mechanism for ultrasound-assisted enzymatic hydrolysis for promoting the hydrolysis of grass carp scale collagen peptide[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(16):313−321.] doi: 10.11975/j.issn.1002-6819.2022.16.034
XIONG Z, ZHAO Y, QIN Z B, et al. Analysis of the internal mechanism for ultrasound-assisted enzymatic hydrolysis for promoting the hydrolysis of grass carp scale collagen peptide[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 313−321. doi: 10.11975/j.issn.1002-6819.2022.16.034
|
[5] |
YU C P, CHA Y, WU F, et al. Effects of ball‐milling treatment on mussel (Mytilus edulis) protein:Structure, functional properties and in vitro digestibility[J]. International Journal of Food Science & Technology,2018,53(3):683−691.
|
[6] |
CHEN X Y, GUO M Z, SANG Y X, et al. Effect of ball-milling treatment on the structure, physicochemical properties and allergenicity of proteins from oyster (Crassostrea gigas)[J]. LWT,2022,166:113803. doi: 10.1016/j.lwt.2022.113803
|
[7] |
LI C X, LI W Y, ZHANG X, et al. The changed structures of Cyperus esculentus protein decide its modified physicochemical characters:Effects of ball-milling, high pressure homogenization and cold plasma treatments on structural and functional properties of the protein[J]. Food Chemistry,2024,430:137042. doi: 10.1016/j.foodchem.2023.137042
|
[8] |
RAHIM F N A, IBADULLAH W Z W, SAARI N, et al. The effect of alkaline extraction and drying techniques on the physicochemical, structural properties and functionality of rice bran protein concentrates[J]. International Journal of Biological Macromolecules,2023,242:124908. doi: 10.1016/j.ijbiomac.2023.124908
|
[9] |
JAN S, GHOROI C, SAXENA D C. Effect of particle size, shape and surface roughness on bulk and shear properties of rice flour[J]. Journal of Cereal Science,2017,76:215−221. doi: 10.1016/j.jcs.2017.04.015
|
[10] |
LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680−685. doi: 10.1038/227680a0
|
[11] |
ALAVI F, MOMEN S, EMAM-DJOMEH Z, et al. Radical cross-linked whey protein aggregates as building blocks of non-heated cold-set gels[J]. Food Hydrocolloids,2018,81:429−441. doi: 10.1016/j.foodhyd.2018.03.016
|
[12] |
CHELH I, GATELLIER P, SANTÉ-LHOUTELLIER V. Technical note:A simplified procedure for myofibril hydrophobicity determination[J]. Meat Science,2006,74(4):681−683. doi: 10.1016/j.meatsci.2006.05.019
|
[13] |
WAN Y, LIN C, LI Y N, et al. Tuning the electrostatic interaction between rice protein and carboxymethyl cellulose toward hydrophilic composites with enhanced functional properties[J]. International Journal of Biological Macromolecules,2023,235:123918. doi: 10.1016/j.ijbiomac.2023.123918
|
[14] |
张敏. 大米蛋白水解物对小麦淀粉及面团的影响研究[D]. 合肥:安徽农业大学, 2020. [ZHANG M. Effect of rice protein hydrolysate on wheat starch and dough[D]. Hefei:Anhui Agricultural University, 2020.]
ZHANG M. Effect of rice protein hydrolysate on wheat starch and dough[D]. Hefei: Anhui Agricultural University, 2020.
|
[15] |
NIELSEN P, PETERSEN D, DAMBMANN C. Improved method for determining food protein degree of hydrolysis[J]. Journal of Food Science,2001,66(5):642−646. doi: 10.1111/j.1365-2621.2001.tb04614.x
|
[16] |
AMAGLIANI L, SASSI E B, BUCZKOWSKI J, et al. Influence of protein source on the morphology, physicochemical and flow properties of protein-based emulsion particles to be used as texture modulators[J]. Food Hydrocolloids,2020,101:105581. doi: 10.1016/j.foodhyd.2019.105581
|
[17] |
SUN C C, LIU R, NI K, et al. Reduction of particle size based on superfine grinding:Effects on structure, rheological and gelling properties of whey protein concentrate[J]. Journal of Food Engineering,2016,186:69−76. doi: 10.1016/j.jfoodeng.2016.03.002
|
[18] |
LIU Z Q, ZHENG Z, ZHU G B, et al. Modification of the structural and functional properties of wheat gluten protein using a planetary ball mill[J]. Food Chemistry,2021,363:130251. doi: 10.1016/j.foodchem.2021.130251
|
[19] |
FADDA S, CINCOTTI A, CONCAS A, et al. Modelling breakage and reagglomeration during fine dry grinding in ball milling devices[J]. Powder Technology,2009,194(3):207−216. doi: 10.1016/j.powtec.2009.04.009
|
[20] |
WEN T N, LUTHE D S. Biochemical characterization of rice glutelin[J]. Plant Physiology,1985,78(1):172−177. doi: 10.1104/pp.78.1.172
|
[21] |
AMAGLIANI L, O’REGAN J, KELLY A L, et al. Composition and protein profile analysis of rice protein ingredients[J]. Journal of Food Composition and Analysis,2017,59:18−26. doi: 10.1016/j.jfca.2016.12.026
|
[22] |
SUN C C, LIU R, WU T, et al. Effect of superfine grinding on the structural and physicochemical properties of whey protein and applications for microparticulated proteins[J]. Food Science and Biotechnology,2015,24:1637−1643. doi: 10.1007/s10068-015-0212-y
|
[23] |
LIU B H, WANG H, HU T, et al. Ball-milling changed the physicochemical properties of SPI and its cold-set gels[J]. Journal of Food Engineering,2017,195:158−165. doi: 10.1016/j.jfoodeng.2016.10.006
|
[24] |
MANZOOR M, GANI A, JAGLAN S, et al. Modulation of native structural architecture and hydrodynamic properties of apple seed protein isolates[J]. Innovative Food Science & Emerging Technologies,2022,80:103083.
|
[25] |
WANG T, WANG L, WANG R, et al. Effects of freeze-milling on the physicochemical properties of rice protein isolates[J]. LWT-Food Science and Technology,2016,65:832−839. doi: 10.1016/j.lwt.2015.09.016
|
[26] |
LI M, LI M M, TAN W, et al. Effects of ball-milling treatment on physicochemical and foaming activities of egg ovalbumin[J]. Journal of Food Engineering,2019,261:158−164. doi: 10.1016/j.jfoodeng.2019.06.015
|
[27] |
WANG T, ZHANG H, WANG L, et al. Mechanistic insights into solubilization of rice protein isolates by freeze–milling combined with alkali pretreatment[J]. Food Chemistry,2015,178:82−88. doi: 10.1016/j.foodchem.2015.01.057
|
[28] |
TOWNSEND A A N N, NAKAI S. Relationships between hydrophobicity and foaming characteristics of food proteins[J]. Journal of Food Science,1983,48(2):588−594. doi: 10.1111/j.1365-2621.1983.tb10796.x
|
[29] |
JARPA-PARRA M, BAMDAD F, TIAN Z, et al. Impact of pH on molecular structure and surface properties of lentil legumin-like protein and its application as foam stabilizer[J]. Colloids and Surfaces B:Biointerfaces,2015,132:45−53. doi: 10.1016/j.colsurfb.2015.04.065
|
[30] |
NISOV A, ERCILI-CURA D, NORDLUND E. Limited hydrolysis of rice endosperm protein for improved techno-functional properties[J]. Food Chemistry,2020,302:125274. doi: 10.1016/j.foodchem.2019.125274
|
[31] |
LIU Y Q, HUANG Y Y, DENG X Q, et al. Effect of enzymatic hydrolysis followed after extrusion pretreatment on the structure and emulsibility of soybean protein[J]. Process Biochemistry,2022,116:173−184. doi: 10.1016/j.procbio.2022.03.012
|
[32] |
LI S Y, YANG X, ZHANG Y Y, et al. Effects of ultrasound and ultrasound assisted alkaline pretreatments on the enzymolysis and structural characteristics of rice protein[J]. Ultrasonics Sonochemistry,2016,31:20−28. doi: 10.1016/j.ultsonch.2015.11.019
|
[33] |
GOMES M H G, KUROZAWA L E. Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil[J]. Journal of Food Engineering,2020,267:109761. doi: 10.1016/j.jfoodeng.2019.109761
|
[34] |
RAWDKUEN S, RODZI N, PINIJSUWAN S. Characterization of sacha inchi protein hydrolysates produced by crude papain and Calotropis proteases[J]. LWT,2018,98:18−24. doi: 10.1016/j.lwt.2018.08.008
|
[35] |
颉宇. 柠条籽蛋白抗氧化肽的制备及其延缓油脂氧化机制研究[D]. 北京:北京林业大学, 2020. [JIE Y. Novel insights to antioxidant peptides manufactured from Caragana ambigua seed’s protein which are available for retarding lipid oxidation[D]. Beijing:Beijing Forestry University, 2020.]
JIE Y. Novel insights to antioxidant peptides manufactured from Caragana ambigua seed’s protein which are available for retarding lipid oxidation[D]. Beijing: Beijing Forestry University, 2020.
|
[36] |
XIE H X, HUANG J M, WOO M W, et al. Effect of cold and hot enzyme deactivation on the structural and functional properties of rice dreg protein hydrolysates[J]. Food Chemistry,2021,345:128784. doi: 10.1016/j.foodchem.2020.128784
|
[37] |
SHAHI Z, SAYYED-ALANGI S Z, NAJAFIAN L. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake[J]. Heliyon, 2020, 6(2).
|
[38] |
THAMMASENA R, LIU D C. Antioxidant and antimicrobial activities of different enzymatic hydrolysates from desalted duck egg white[J]. Asian-Australasian Journal of Animal Sciences,2020,33(9):1487. doi: 10.5713/ajas.19.0361
|
[39] |
赵原, 金艳, 张民. 酶解麦胚制备风味活性肽的研究[J/OL]. 食品研究与开发, 2022, 43(14):42-51. [ZHAO Y, JIN Y, ZHANG M. Enzymatic Production of Wheat Germ Peptides with Flavor and Activity[J/OL]. Food Research and Development, 2022, 43(14):42-51.]
ZHAO Y, JIN Y, ZHANG M. Enzymatic Production of Wheat Germ Peptides with Flavor and Activity[J/OL]. Food Research and Development, 2022, 43(14): 42-51.
|
[40] |
GARCÍA-MORENO P J, BATISTA I, PIRES C, et al. Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species[J]. Food Research International,2014,65:469−476. doi: 10.1016/j.foodres.2014.03.061
|
[41] |
孙年振. 适度超声辅助酶解制备微拟球藻抗氧化肽[D]. 镇江:江苏大学, 2021. [SUN N Z. Moderate ultrasound-assisted enzymolysis to prepare antioxidant peptides from Nannochloropsis oceanica[D]. Zhenjiang:Jiangsu University, 2021.]
SUN N Z. Moderate ultrasound-assisted enzymolysis to prepare antioxidant peptides from Nannochloropsis oceanica[D]. Zhenjiang: Jiangsu University, 2021.
|
1. |
高阿波,李留安,胡鹏程,刘佳琦,魏怡,刘鼎阔. 高产苯乳酸菌株的筛选及发酵条件的优化. 中国饲料. 2024(09): 45-52 .
![]() |