WANG Shaoyang, LI Ziyuan, QIN Lina, et al. Preparation and Controlled Release Properties of Probiotic Hydrogel Carrier Based on Citrus Cellulose[J]. Science and Technology of Food Industry, 2025, 46(5): 153−159. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040044.
Citation: WANG Shaoyang, LI Ziyuan, QIN Lina, et al. Preparation and Controlled Release Properties of Probiotic Hydrogel Carrier Based on Citrus Cellulose[J]. Science and Technology of Food Industry, 2025, 46(5): 153−159. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040044.

Preparation and Controlled Release Properties of Probiotic Hydrogel Carrier Based on Citrus Cellulose

More Information
  • Received Date: April 02, 2024
  • Available Online: January 03, 2025
  • To enhance the survival rate and release rate of probiotics in gastrointestinal fluids, hydrogels were prepared using citrus cellulose and sodium carboxymethylcellulose as embedding materials, with citric acid as the cross-linking agent. Lactiplantibacillus plantarum B5 was adsorbed and embedded in the hydrogels to evaluate the embedding rate, controlled release performance, bile salt tolerance, and storage stability. Results demonstrated that hydrogels with varying ratios exhibited favorable embedding effects, with an embedding rate exceeding 79%. The hydrogel with a citrus cellulose to sodium carboxymethylcellulose ratio of 1:4 showed optimal controlled release performance, achieving a release rate of 89.25% in simulated intestinal fluid. The bacteriophage-carrying hydrogel significantly enhanced the survival rate of L. plantarum B5 in bile salt solution, reaching 87.09%. The hydrogel maintained a storage stability of 30 days at 4 ℃, with the survival rate of embedded L. plantarum B5 exceeding 60% after 30 days, particularly reaching 70.66% with the 1:4 ratio of citrus cellulose to sodium carboxymethylcellulose, and maintaining viable bacteria levels above 7 lg CFU/mL. Studies have shown that citrus cellulose-sodium carboxymethylcellulose hydrogels are effective in reducing the exposure of probiotics to unfavorable factors in the external environment, thus significantly improving their survival in various environments.
  • [1]
    薛志朋, 王哲, 潘登, 等. 益生菌治疗和缓解便秘的机制及研究进展[J]. 食品研究与开发,2022,43(12):204−209. [XUE Z P, WANG Z, PAN D, et al. Mechanism and research progress of probiotics used to treat constipation[J]. Food Research and Development,2022,43(12):204−209.] doi: 10.12161/j.issn.1005-6521.2022.12.027

    XUE Z P, WANG Z, PAN D, et al. Mechanism and research progress of probiotics used to treat constipation[J]. Food Research and Development, 2022, 43(12): 204−209. doi: 10.12161/j.issn.1005-6521.2022.12.027
    [2]
    LIU Y W, SU Y W, ONG W K, et al. Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities[J]. International Immunopharmacology,2011,11(12):2159−2166. doi: 10.1016/j.intimp.2011.09.013
    [3]
    SONG J J, TIAN W J, KWOK L Y, et al. Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats[J]. British Journal of Nutrition,2017,118(7):481−492. doi: 10.1017/S0007114517002380
    [4]
    PARK S, JI Y, JUNG H Y, et al. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model[J]. Applied Microbiology and Biotechnology,2017,101(4):1605−1614. doi: 10.1007/s00253-016-7953-2
    [5]
    LI X, WANG N, YIN B, et al. Effects of Lactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance in high-fat and streptozotocin-induced type 2 diabetic mice[J]. Journal of Applied Microbiology,2016,121(6):1727−1736. doi: 10.1111/jam.13276
    [6]
    常诗晗, 乌日娜, 方海田, 等. 负载2种益生菌的多核微胶囊制备方法及特性研究[J]. 食品科学技术学报,2023,41(6):127−138. [CHANG S H, WU R N, FANG H T, et al. Study on preparation method and characteristics of multi-core microcapsules loaded with two probiotics[J]. Journal of Food Science and Technology,2023,41(6):127−138.]

    CHANG S H, WU R N, FANG H T, et al. Study on preparation method and characteristics of multi-core microcapsules loaded with two probiotics[J]. Journal of Food Science and Technology, 2023, 41(6): 127−138.
    [7]
    黄雅萍, 叶景芬, 邓凯波, 等. 抗性淀粉用于微胶囊制备的研究进展[J]. 食品研究与开发,2019,40(7):218−224. [HUANG Y P, YE J F, DENG K B, et al. Research progress of resistant starch for microencapsulation[J]. Food Research and Development,2019,40(7):218−224.] doi: 10.3969/j.issn.1005-6521.2019.07.037

    HUANG Y P, YE J F, DENG K B, et al. Research progress of resistant starch for microencapsulation[J]. Food Research and Development, 2019, 40(7): 218−224. doi: 10.3969/j.issn.1005-6521.2019.07.037
    [8]
    GAO Y X, WANG X, XUE C H, et al. Latest developments in food-grade delivery systems for probiotics:A systematic review[J]. Critical Reviews in Food Science and Nutrition,2023,63(20):4371−4388. doi: 10.1080/10408398.2021.2001640
    [9]
    李月婵, 操俊, 庄林, 等. 三联益生菌复合发酵枸杞泡腾片的工艺优化及质量检测[J]. 食品研究与开发,2022,43(19):109−116. [LI Y C, CAO J, ZHUANG L, et al. Process optimization and quality inspection of triple probiotics-fermented wolfberry effervescent tablets[J]. Food Research and Development,2022,43(19):109−116.] doi: 10.12161/j.issn.1005-6521.2022.19.014

    LI Y C, CAO J, ZHUANG L, et al. Process optimization and quality inspection of triple probiotics-fermented wolfberry effervescent tablets[J]. Food Research and Development, 2022, 43(19): 109−116. doi: 10.12161/j.issn.1005-6521.2022.19.014
    [10]
    袁琦, 王玉珑, 韩俊源, 等. 羧甲基纤维素钠/己二酸二酰肼水凝胶的制备及其重金属离子吸附性能研究[J]. 中国造纸学报,2021,36(4):38−47. [YUAN Q, WANG Y L, HAN J Y, et al. Study on preparation of sodium carboxymethyl cellulose/adipic dihydrazide hydrogel and its adsorption performance for heavy metal ions[J]. Transactions of China Pulp and Paper,2021,36(4):38−47.] doi: 10.11981/j.issn.1000-6842.2021.04.38

    YUAN Q, WANG Y L, HAN J Y, et al. Study on preparation of sodium carboxymethyl cellulose/adipic dihydrazide hydrogel and its adsorption performance for heavy metal ions[J]. Transactions of China Pulp and Paper, 2021, 36(4): 38−47. doi: 10.11981/j.issn.1000-6842.2021.04.38
    [11]
    田振华, 赵文杰, 杜倩瑶, 等. 胶原/氧化羧甲基纤维素钠/纳米氧化锌复合水凝胶的构建[J]. 中国皮革,2022,51(5):9−17,21. [TIAN Z H, ZHAO W J, DU Q Y, et al. Construction of collagen/oxidized sodium carboxymethy cellulose/nano ZnO composite hydrogel[J]. China Leather,2022,51(5):9−17,21.]

    TIAN Z H, ZHAO W J, DU Q Y, et al. Construction of collagen/oxidized sodium carboxymethy cellulose/nano ZnO composite hydrogel[J]. China Leather, 2022, 51(5): 9−17,21.
    [12]
    PEREZ-BURILLO S, MEHTA T, PASTORIZA S, et al. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short chain fatty acid production and gut microbiota community structure[J]. LWT-Food Science and Technology,2019,105:355−362. doi: 10.1016/j.lwt.2019.02.006
    [13]
    PEREZ-BURILLO S, PASTORIZA S, GIRONES A, et al. Potential probiotic salami with dietary fiber modulates metabolism and gut microbiota in a human intervention study[J]. Journal of Functional Foods,2020,66:103790. doi: 10.1016/j.jff.2020.103790
    [14]
    马航宇, 张士凯, 吴澎. 复配益生元微胶囊的制备及其消化耐受性[J]. 食品研究与开发,2023,44(3):152−161. [MA H Y, ZHANG S K, WU P. Preparation and digestive tolerance of compound prebiotic microcapsules[J]. Food Research and Development,2023,44(3):152−161.] doi: 10.12161/j.issn.1005-6521.2023.03.022

    MA H Y, ZHANG S K, WU P. Preparation and digestive tolerance of compound prebiotic microcapsules[J]. Food Research and Development, 2023, 44(3): 152−161. doi: 10.12161/j.issn.1005-6521.2023.03.022
    [15]
    肖雨, 王刚, 于潇萧, 等. 保加利亚乳杆菌微胶囊化工艺研究[J]. 中国微生态学杂志,2018,30(6):654−658. [XIAO Y, WANG G, YU X X, et al. Microencapsulation of Lactobacillus bulgaricus[J]. Chinese Journal of Microecology,2018,30(6):654−658.]

    XIAO Y, WANG G, YU X X, et al. Microencapsulation of Lactobacillus bulgaricus[J]. Chinese Journal of Microecology, 2018, 30(6): 654−658.
    [16]
    DEMITRI C, DEL SOLE R, SCALERA F, et al. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid[J]. Journal of Applied Polymer Science,2008,110(4):2453−2460. doi: 10.1002/app.28660
    [17]
    XU D, ZHAO X, MAHSA G C, et al. Controlled release of Lactiplantibacillus plantarum by colon-targeted adhesive pectin microspheres:Effects of pectin methyl esterification degrees[J]. Carbohydrate Polymers,2023,313:120874. doi: 10.1016/j.carbpol.2023.120874
    [18]
    姚泽晨, 张根义. 植物乳杆菌微胶囊包载效果、物化性质及其胃肠道性能[J]. 食品工业科技,2019,40(14):112−117,133. [YAO Z C, ZHANG G Y. Encapsulation effect, physicochemical and gastrointestinal properties of Lactobacillus plantarum microcapsules[J]. Science and Technology of Food Industry,2019,40(14):112−117,133.]

    YAO Z C, ZHANG G Y. Encapsulation effect, physicochemical and gastrointestinal properties of Lactobacillus plantarum microcapsules[J]. Science and Technology of Food Industry, 2019, 40(14): 112−117,133.
    [19]
    KAMALIAN N, MIRHOSSEINI H, MUSTAFA S, et al. Effect of alginate and chitosan on viability and release behavior of Bifidobacterium pseudocatenulatum G4 in simulated gastrointestinal fluid[J]. Carbohydrate Polymers,2014,111:700−706. doi: 10.1016/j.carbpol.2014.05.014
    [20]
    CHEN L, YANG T, SONG Y J, et al. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt[J]. LWT-Food Science and Technology,2017,81:274−280. doi: 10.1016/j.lwt.2017.04.005
    [21]
    DAFE A, ETEMADI H, DILMAGHANI A, et al. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria[J]. International Journal of Biological Macromolecules,2017,97:536−543. doi: 10.1016/j.ijbiomac.2017.01.060
    [22]
    ZHOU Y J, LUNER P, CALUWE P. Mechanism of cross-linking of papers with polyfunctional carboxylic-acids[J]. Journal of Applied Polymer Science,1995,58(9):1523−1534. doi: 10.1002/app.1995.070580915
    [23]
    SINGH P, MAGALHAES S, ALVES L, et al. Cellulose-based edible films for probiotic entrapment[J]. Food Hydrocolloids,2019,88:68−74. doi: 10.1016/j.foodhyd.2018.08.057
    [24]
    HU X, LIU C, ZHANG H, et al. In vitro digestion of sodium alginate/pectin co-encapsulated Lactobacillus bulgaricus and its application in yogurt bilayer beads[J]. International Journal of Biological Macromolecules,2021,193:1050−1058. doi: 10.1016/j.ijbiomac.2021.11.076
    [25]
    CHEN P, TIAN J, REN Y, et al. Enhance the resistance of probiotics by microencapsulation and biofilm construction based on rhamnogalacturonan I rich pectin[J]. International Journal of Biological Macromolecules,2024,258:128777. doi: 10.1016/j.ijbiomac.2023.128777
    [26]
    MANDAVINIA G R, MOSALLANEZHAD A, SOLEYMANI M, et al. Magnetic-and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug[J]. International Journal of Biological Macromolecules,2017,97:209−2017. doi: 10.1016/j.ijbiomac.2017.01.012
    [27]
    WU Y, ZHANG G. Synbiotic encapsulation of probiotic Latobacillus plantarum by alginate-arabinoxylan composite microspheres[J]. LWT-Food Science and Technology,2018,93:135−141. doi: 10.1016/j.lwt.2018.03.034
    [28]
    SANIANI M, NATEGHI L, HSHEMIRAVAN M. Investigation of microencapsulated Lactobacillus plantarum survival in alginate microsphere incorporated with inulin and dextran in order to produce a novel probiotic whey beverage[J]. Journal of Food Measurement and Characterization,2023,17(4):3683−3694. doi: 10.1007/s11694-023-01902-y
    [29]
    SHI L E, LI Z H, ZHANG Z L, et al. Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure[J]. LWT-Food Science and Technology,2013,54(1):147−151. doi: 10.1016/j.lwt.2013.05.027
    [30]
    YASMIN I, SAEED M, PASHA I, et al. Development of whey protein concentrate-pectin-alginate based delivery system to improve survival of B. longum BL-05 in simulated gastrointestinal conditions[J]. Probiotics and Antimicrobial Proteins,2019,11(2):413−426. doi: 10.1007/s12602-018-9407-x
    [31]
    MURATA Y, TONIWA S, MIYAMOTO E, et al. Preparation of alginate gel beads containing chitosan salt and their function[J]. International Journal of Pharmaceutics,1999,176(2):265−268. doi: 10.1016/S0378-5173(98)00308-1
    [32]
    FAREEZ I M, LIM S M, ZULKEFLI N A A, et al. Cellulose derivatives enhanced stability of alginate-based beads loaded with Lactobacillus plantarum LAB12 against low pH, high temperature and prolonged storage[J]. Probiotics and Antimicrobial Proteins,2018,10(3):543−557. doi: 10.1007/s12602-017-9284-8
    [33]
    DUSSO D, SALOMON C J J. Solving the delivery of Lactococcus lactis:Improved survival and storage stability through the bioencapsulation with different carriers[J]. Journal of Food Science,2023,88(4):1495−1505. doi: 10.1111/1750-3841.16538
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (46) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return