Citation: | LIU Haidi, MA Dongyue, JI Chenfeng, et al. Research Progress on Chemical Degradation of Fucoidan for Preparation of Low-molecular Weight Fucoidan and Fucooligosaccharide[J]. Science and Technology of Food Industry, 2025, 46(7): 385−395. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040031. |
[1] |
KYLIN H. Zur biochemie der meeresalgen[J]. Biological Chemistry,1913,83(3):171−197.
|
[2] |
柯悦, 孙闫小凡, 董鸿春, 等. 岩藻聚糖硫酸酯的研究进展[J]. 食品安全质量检测学报,2022,13(18):6057−6065. [KE Y, SUN Y X F, DONG H C, et al. Research progress of fucoidan[J]. Journal of Food Safety and Quality,2022,13(18):6057−6065.] doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218035
KE Y, SUN Y X F, DONG H C, et al. Research progress of fucoidan[J]. Journal of Food Safety and Quality, 2022, 13(18): 6057−6065. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218035
|
[3] |
JIN J O, YADAV D, MADHWANI K, et al. Seaweeds in the oncology arena:Anti-cancer potential of fucoidan as a drug-A review[J]. Molecules,2022,27(18):6032. doi: 10.3390/molecules27186032
|
[4] |
ZHANG J, SUN Z Z, LIN N, et al. Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy[J]. Biomedicine & Pharmacotherapy,2020,130:110534.
|
[5] |
台文静. 3种海藻中岩藻聚糖的提取分离、结构表征及其对纤溶系统影响的研究[D]. 青岛:中国海洋大学, 2013. [TAI W J. Extraction, isolation, structural characterization and effect on the fibrinolytic system of fucoidans from 3 kinds of algae[D]. Qingdao:Ocean University of China, 2013.]
TAI W J. Extraction, isolation, structural characterization and effect on the fibrinolytic system of fucoidans from 3 kinds of algae[D]. Qingdao: Ocean University of China, 2013.
|
[6] |
CHANG Y G, HU Y F, YU L, et al. Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa[J]. Carbohydrate Polymers,2016,136:1091−1097. doi: 10.1016/j.carbpol.2015.10.016
|
[7] |
YUGUCHI Y, BUI L M, TAKEBE S, et al. Primary structure, conformation in aqueous solution, and intestinal immunomodulating activity of fucoidan from two brown seaweed species Sargassum crassifolium and Padina australis[J]. Carbohydrate Polymers,2016,147:69−78. doi: 10.1016/j.carbpol.2016.03.101
|
[8] |
LI Q, JIANG S X, SHI W W, et al. Structure characterization, antioxidant and immunoregulatory properties of a novel fucoidan from the sea cucumber Stichopus chloronotus[J]. Carbohydrate Polymers,2020,231:115767. doi: 10.1016/j.carbpol.2019.115767
|
[9] |
RASIN A B, SILCHENKO A S, KUSAYKIN M I, et al. Enzymatic transformation and anti-tumor activity of Sargassum horneri fucoidan[J]. Carbohydrate Polymers,2020,246:116635. doi: 10.1016/j.carbpol.2020.116635
|
[10] |
MANSOUR M B, BALTI R, YACOUBI L, et al. Primary structure and anticoagulant activity of fucoidan from the sea cucumber Holothuria polii[J]. International Journal of Biological Macromolecules,2019,121:1145−1153. doi: 10.1016/j.ijbiomac.2018.10.129
|
[11] |
AHMAD T, EAPEN M S, ISHAQ M, et al. Anti-inflammatory activity of fucoidan extracts in vitro[J]. Marine Drugs,2021,19(12):702. doi: 10.3390/md19120702
|
[12] |
SUN Q L, LI Y, NI L Q, et al. Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum[J]. Carbohydrate Polymers,2020,229:115487. doi: 10.1016/j.carbpol.2019.115487
|
[13] |
XING M M, LI G Y, LIU Y, et al. Fucoidan from Fucus vesiculosus prevents the loss of dopaminergic neurons by alleviating mitochondrial dysfunction through targeting ATP5F1a[J]. Carbohydrate Polymers,2023,303:120470. doi: 10.1016/j.carbpol.2022.120470
|
[14] |
YANG Z X, YIN J Y, WANG Y F, et al. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice[J]. International Journal of Biological Macromolecules,2019,134:759−769. doi: 10.1016/j.ijbiomac.2019.05.070
|
[15] |
YIN J Y, WANG J, LI F H, et al. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice[J]. Food & Function,2019,10(8):5124−5139.
|
[16] |
ABE S, HIRAMATSU K, ICHIKAWA O, et al. Safety evaluation of excessive ingestion of mozuku fucoidan in human[J]. Journal of Food Science,2013,78(4):T648−T651.
|
[17] |
SONG M Y, KU S K, HAN J S. Genotoxicity testing of low molecular weight fucoidan from brown seaweeds[J]. Food and Chemical Toxicology,2012,50(3-4):790−796. doi: 10.1016/j.fct.2011.11.010
|
[18] |
SENTHILKUMAR K, MANIVASAGAN P, VENKATESAN J, et al. Brown seaweed fucoidan:Biological activity and apoptosis, growth signaling mechanism in cancer[J]. International Journal of Biological Macromolecules,2013,60:366−374. doi: 10.1016/j.ijbiomac.2013.06.030
|
[19] |
武晓琳, 常耀光, 王静凤, 等. 不同分子量海参岩藻聚糖硫酸酯的制备及消化吸收特性的初步研究[J]. 中国海洋药物,2011,30(3):20−24. [WU X L, CHANG Y G, WANG J F, et al. Preparation of different molecular weights of sea cucumber fucoidan and study on their absorptive characteristics in rats[J]. Chinese Journal of Marine Drugs,2011,30(3):20−24.]
WU X L, CHANG Y G, WANG J F, et al. Preparation of different molecular weights of sea cucumber fucoidan and study on their absorptive characteristics in rats[J]. Chinese Journal of Marine Drugs, 2011, 30(3): 20−24.
|
[20] |
王亚囡, 仇文峰, 杨毅, 等. 分子量对海参岩藻聚糖硫酸酯在体内吸收的影响[J]. 中国海洋药物,2020,39(2):42−49. [WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabolism of sea cucumber fucoidan[J]. Chinese Journal of Marine Drugs,2020,39(2):42−49.]
WANG Y N, QIU W F, YANG Y, et al. Effect of molecular weight on absorption and metabolism of sea cucumber fucoidan[J]. Chinese Journal of Marine Drugs, 2020, 39(2): 42−49.
|
[21] |
谢洁玲, 史晓翀, 史姣霞, 等. 人肠道微生物对海带岩藻聚糖硫酸酯及其寡糖的降解利用[J]. 海洋与湖沼,2017,48(1):50−56. [XIE J L, SHI X C, SHI J X, et al. Human gut microbes degrade and utilize fucoidan and its oligosaccharides from Laminaria japonica in vitro[J]. Oceanologia Et Limnologia Sinica,2017,48(1):50−56.]
XIE J L, SHI X C, SHI J X, et al. Human gut microbes degrade and utilize fucoidan and its oligosaccharides from Laminaria japonica in vitro[J]. Oceanologia Et Limnologia Sinica, 2017, 48(1): 50−56.
|
[22] |
彭谦, 周鹏程, 徐同成, 等. H2O2降解多糖的作用机制及降解产物构效关系研究进展[J]. 食品与发酵工业,2024,50(19):353−360. [PENG Q, ZHOU P C, XU T C, et al. Research progress on mechanism of polysaccharide degradation by H2O2 and structure-activity relationship of degradation products[J]. Food and Fermentation Industries,2024,50(19):353−360.]
PENG Q, ZHOU P C, XU T C, et al. Research progress on mechanism of polysaccharide degradation by H2O2 and structure-activity relationship of degradation products[J]. Food and Fermentation Industries, 2024, 50(19): 353−360.
|
[23] |
TØMMERAAS K, MELANDER C. Kinetics of hyaluronan hydrolysis in acidic solution at various pH values[J]. Biomacromolecules,2008,9(6):1535−1540. doi: 10.1021/bm701341y
|
[24] |
POMIN V H, VALENTE A P, PEREIRA M S, et al. Mild acid hydrolysis of sulfated fucans:A selective 2-desulfation reaction and an alternative approach for preparing tailored sulfated oligosaccharides[J]. Glycobiology,2005,15(12):1376−1385. doi: 10.1093/glycob/cwj030
|
[25] |
冯金华, 刘红英, 姜帅, 等. 微波辅助酸水解褐藻糖胶的研究[J]. 安徽农业科学,2022,50(11):154−158. [FENG J H, LIU H Y, JIANG S, et al. Study on microwave-assisted acid hydrolysis of fucoidan[J]. Journal of Anhui Agricultural Sciences,2022,50(11):154−158.] doi: 10.3969/j.issn.0517-6611.2022.11.040
FENG J H, LIU H Y, JIANG S, et al. Study on microwave-assisted acid hydrolysis of fucoidan[J]. Journal of Anhui Agricultural Sciences, 2022, 50(11): 154−158. doi: 10.3969/j.issn.0517-6611.2022.11.040
|
[26] |
BORAZJANI N J, TABARSA M, YOU S G, et al. Improved immunomodulatory and antioxidant properties of unrefined fucoidans from Sargassum angustifolium by hydrolysis[J]. Journal of Food Science and Technology,2017,54:4016−4025. doi: 10.1007/s13197-017-2867-2
|
[27] |
吴永沛, 刘明, 刘翼祥, 等. 制备低分子量岩藻聚糖的研究[J]. 食品工业科技,2007(9):151−154. [WU Y P, LIU M, LIU Y X, et al. Studies on the preparation of low molecular weight fucoidan[J]. Science and Technology of Food Industry,2007(9):151−154.] doi: 10.3969/j.issn.1002-0306.2007.09.043
WU Y P, LIU M, LIU Y X, et al. Studies on the preparation of low molecular weight fucoidan[J]. Science and Technology of Food Industry, 2007(9): 151−154. doi: 10.3969/j.issn.1002-0306.2007.09.043
|
[28] |
李晓旭, 刘舒, 洪滨, 等. 裙带菜岩藻聚糖硫酸酯酸解工艺优化及降解产物对巨噬细胞的抗炎活性[J]. 大连海洋大学学报,2022,37(1):166−173. [LI X X, LIU S, HONG B, et al. Optimization of preparation process of fucoidan from sea mustard Undaria pinnatifida Suringar by acid hydrolysis and anti-inflammatory activity of degradation products on macrophages[J]. Journal of Dalian Ocean University,2022,37(1):166−173.]
LI X X, LIU S, HONG B, et al. Optimization of preparation process of fucoidan from sea mustard Undaria pinnatifida Suringar by acid hydrolysis and anti-inflammatory activity of degradation products on macrophages[J]. Journal of Dalian Ocean University, 2022, 37(1): 166−173.
|
[29] |
刘雪, 任晨瑜, 刘新, 等. 羊栖菜褐藻糖胶寡糖组分分析及抗凝血活性[J]. 食品科学,2022,43(12):260−266. [LIU X, REN C Y, LIU X, et al. Structural characterization and anticoagulant activity of oligosaccharides derived from Sargassum fusiforme fucoidan[J]. Food Science,2022,43(12):260−266.] doi: 10.7506/spkx1002-6630-20210512-135
LIU X, REN C Y, LIU X, et al. Structural characterization and anticoagulant activity of oligosaccharides derived from Sargassum fusiforme fucoidan[J]. Food Science, 2022, 43(12): 260−266. doi: 10.7506/spkx1002-6630-20210512-135
|
[30] |
YANG C, CHUNG D, SHIN I S, et al. Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida[J]. International Journal of Biological Macromolecules,2008,43(5):433−437. doi: 10.1016/j.ijbiomac.2008.08.006
|
[31] |
COLLIEC S, BOISSON-VIDAL C, JOZEFONVICZ J. A low molecular weight fucoidan fraction from the brown seaweed Pelvetia canaliculata[J]. Phytochemistry,1994,35(3):697−700. doi: 10.1016/S0031-9422(00)90590-9
|
[32] |
BOISSON‐VIDAL C, CHAUBET F, CHEVOLOT L, et al. Relationship between antithrombotic acbotivities of fucans and their structure[J]. Drug Development Research,2000,51(4):216−224. doi: 10.1002/ddr.2
|
[33] |
钟思燕, 王维民, 谌素华, 等. 不同分子质量马尾藻岩藻聚糖硫酸酯的制备和化学组成分析[J]. 食品与发酵工业,2015,41(6):70−75. [ZHONG S Y, WANG W M, CHEN S H, et al. Preparation and chemical composition analysis of different molecular weight of fucoidan from Sargassum wightii[J]. Food and Fermentation Fndustries,2015,41(6):70−75.]
ZHONG S Y, WANG W M, CHEN S H, et al. Preparation and chemical composition analysis of different molecular weight of fucoidan from Sargassum wightii[J]. Food and Fermentation Fndustries, 2015, 41(6): 70−75.
|
[34] |
赵雪. 海带岩藻聚糖硫酸酯的化学组成及活性的研究[D]. 青岛:中国海洋大学, 2004. [ZHAO X. The study of chemical characters and biological activities of fucoidan from Laminaria japonica[D]. Qingdao:Ocean University of China, 2004.]
ZHAO X. The study of chemical characters and biological activities of fucoidan from Laminaria japonica[D]. Qingdao: Ocean University of China, 2004.
|
[35] |
耿丽华, 金维华, 王晶, 等. 海带褐藻多糖硫酸酯的降解与岩藻寡糖的制备[J]. 高等学校化学学报,2017,38(12):2193−2197. [GENG L H, JIN W H, WANG J, et al. Fucoidan degradation and dreparation of duco-oligosaccharides from Saccharina japonica[J]. Chemical Journal of Chinese Uniersities,2017,38(12):2193−2197.] doi: 10.7503/cjcu20170232
GENG L H, JIN W H, WANG J, et al. Fucoidan degradation and dreparation of duco-oligosaccharides from Saccharina japonica[J]. Chemical Journal of Chinese Uniersities, 2017, 38(12): 2193−2197. doi: 10.7503/cjcu20170232
|
[36] |
SINURAT E, SAEPUDIN E, HUDIYONO S, et al. Immunostimulatory activity of brown seaweed-derived fucoidans at different molecular weights and purity levels towards white spot syndrome virus (WSSV) in shrimp Litopenaeus vannamei[J]. Journal of Applied Pharmaceutical Science,2016,6(10):082−091.
|
[37] |
薛卫, 李玲翠, 祁明星, 等. 海蒿子岩藻聚糖结构特征及其抗流感病毒活性[J]. 上海海洋大学学报,2023,32(1):227−233. [XUE W, LI L C, QI M X, et al. Structural characteristic of fucoidans from Sargassum pallidum and their anti-influenza virus activities[J]. Journal of Shanghai Ocean University,2023,32(1):227−233.] doi: 10.12024/jsou.20211103619
XUE W, LI L C, QI M X, et al. Structural characteristic of fucoidans from Sargassum pallidum and their anti-influenza virus activities[J]. Journal of Shanghai Ocean University, 2023, 32(1): 227−233. doi: 10.12024/jsou.20211103619
|
[38] |
蔡跃飘. 海带岩藻聚糖硫酸酯的结构研究[D]. 青岛:中国海洋大学, 2005. [CAI Y P. The structure analysis of fucoidan extracted from Laminaria japonica[D]. Qingdao:Ocean University of China, 2005.]
CAI Y P. The structure analysis of fucoidan extracted from Laminaria japonica[D]. Qingdao: Ocean University of China, 2005.
|
[39] |
王培培, 吕友晶, 曹欢, 等. 杂合褐藻糖胶寡糖的制备及结构分析[J]. 高等学校化学学报,2012,33(8):1722−1726. [WANG B B, LÜ Y J, CAO H, et al. Preparation of hybrid hucoidan-derived oligosaccharides and their structural analysis by negative-ion electrospray tandem mass spectrometry[J]. Chemical Journal of Chinese Universities,2012,33(8):1722−1726.] doi: 10.3969/j.issn.0251-0790.2012.08.017
WANG B B, LÜ Y J, CAO H, et al. Preparation of hybrid hucoidan-derived oligosaccharides and their structural analysis by negative-ion electrospray tandem mass spectrometry[J]. Chemical Journal of Chinese Universities, 2012, 33(8): 1722−1726. doi: 10.3969/j.issn.0251-0790.2012.08.017
|
[40] |
GAO L, XU C, TAO X L, et al. Structure elucidation of fucan sulfate from sea cucumber Holothuria fuscopunctata through a bottom-up strategy and the antioxidant activity analysis[J]. International Journal of Molecular Sciences,2022,23(9):4488. doi: 10.3390/ijms23094488
|
[41] |
ROWLEY D A, HALLIWELL B. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide-and ascorbate-dependent mechanisms:Relevance to the pathology of rheumatoid disease[J]. Clinical Science,1983,64(6):649−653. doi: 10.1042/cs0640649
|
[42] |
CHEN X Y, SUN-WATERHOUSE D X, YAO W Z, et al. Free radical-mediated degradation of polysaccharides:Mechanism of free radical formation and degradation, influence factors and product properties[J]. Food Chemistry,2021,365:130524. doi: 10.1016/j.foodchem.2021.130524
|
[43] |
OVALLE R, CHEN L J, SOLL C E, et al. Regioselective degradation of [beta] 1,3 glucan by ferrous ion and hydrogen peroxide (Fenton oxidation)[J]. Carbohydrate Research,2020,497:108124. doi: 10.1016/j.carres.2020.108124
|
[44] |
CHEN X Y, ZHANG R F, LI Y Z, et al. Degradation of polysaccharides from Sargassum fusiforme using UV/H2O2 and its effects on structural characteristics[J]. Carbohydrate Polymers,2020,230:115647. doi: 10.1016/j.carbpol.2019.115647
|
[45] |
HOU Y, WANG J, JIN W H, et al. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights[J]. Carbohydrate Polymers,2012,87(1):153−159. doi: 10.1016/j.carbpol.2011.07.031
|
[46] |
CHEN C Y, WANG S H, HUANG C Y, et al. Effect of molecular mass and sulfate content of fucoidan from Sargassum siliquosum on antioxidant, anti-lipogenesis, and anti-inflammatory activity[J]. Journal of Bioscience and Bioengineering,2021,132(4):359−364. doi: 10.1016/j.jbiosc.2021.06.005
|
[47] |
TSAI L C, TSAI M L, LU K Y, et al. Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles[J]. Research on Chemical Intermediates,2018,44:4855−4871. doi: 10.1007/s11164-018-3341-0
|
[48] |
LAHRSEN E, LIEWERT I, ALBAN S. Gradual degradation of fucoidan from Fucus vesiculosus and its effect on structure, antioxidant and antiproliferative activities[J]. Carbohydrate Polymers,2018,192:208−216. doi: 10.1016/j.carbpol.2018.03.056
|
[49] |
CHEN Q, ZHENG Z L, HE X J, et al. A tumor-targeted theranostic nanomedicine with strong absorption in the NIR-II biowindow for image-guided multi-gradient therapy[J]. Journal of Materials Chemistry B,2020,8(41):9492−9501. doi: 10.1039/D0TB01915A
|
[50] |
NARDELLA A, CHAUBET F, BOISSON-VIDAL C, et al. Anticoagulant low molecular weight fucans produced by radical process and ion exchange chromatography of high molecular weight fucans extracted from the brown seaweed Ascophyllum nodosum[J]. Carbohydrate Research,1996,289:201−208. doi: 10.1016/0008-6215(96)00110-3
|
[51] |
ZHAO X, XUE C H, LI B F. Study of antioxidant activities of sulfated polysaccharides from Laminaria japonica[J]. Journal of Applied Phycology,2008,20:431−436. doi: 10.1007/s10811-007-9282-4
|
[52] |
CHANDÍA N P, MATSUHIRO B. Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties[J]. International Journal of Biological Macromolecules,2008,42(3):235−240. doi: 10.1016/j.ijbiomac.2007.10.023
|
[53] |
齐俊华, 王展, 石德玲, 等. 小有刺参硫酸软骨素和岩藻聚糖硫酸酯抗血小板聚集活性的比较[J]. 中国海洋药物,2019,38(1):42−48. [QI J H, WANG Z, SHI D L, et al. Comparison of anti-platelet aggregation activity of chondroitin sulfate and fucoidan from Holotoria floridona[J]. Chinese Journal of Marine Drugs,2019,38(1):42−48.]
QI J H, WANG Z, SHI D L, et al. Comparison of anti-platelet aggregation activity of chondroitin sulfate and fucoidan from Holotoria floridona[J]. Chinese Journal of Marine Drugs, 2019, 38(1): 42−48.
|
[54] |
CHEN A J, LAN Y, LIU J W, et al. The structure property and endothelial protective activity of fucoidan from Laminaria japonica[J]. International Journal of Biological Macromolecules,2017,105(2):1421−1429.
|
[55] |
于凡, 郭莹莹, 李娜, 等. 低分子量岩藻聚糖硫酸酯的分离纯化、结构表征及体外抗氧化活性[J/OL]. 食品科学, 1−12[2024-03-03]. http://kns.cnki.net/kcms/detail/11.2206.TS.20240207.1446.016.html. [YU F, GUO Y Y, LI N, et al. Separation, purification, structural characteristics and in vitro antioxidant activity of low molecular weight fucoidan[J/OL]. Food Science, 1−12[2024-03-03]. http://kns.cnki.net/kcms/detail/11.2206.TS.20240207.1446.016.html.]
YU F, GUO Y Y, LI N, et al. Separation, purification, structural characteristics and in vitro antioxidant activity of low molecular weight fucoidan[J/OL]. Food Science, 1−12[2024-03-03]. http://kns.cnki.net/kcms/detail/11.2206.TS.20240207.1446.016.html.
|
[56] |
NING Z M, WANG P, ZUO Z C, et al. A fucan sulfate with pentasaccharide repeating units from the sea cucumber Holothuria floridana and its anticoagulant activity[J]. Marine Drugs,2022,20(6):377. doi: 10.3390/md20060377
|
[57] |
HSIAO W C, HONG Y H, TSAI Y H, et al. Extraction, biochemical characterization, and health effects of native and degraded fucoidans from Sargassum crispifolium[J]. Polymers,2022,14(9):1812. doi: 10.3390/polym14091812
|
[58] |
ZOU M Y, NIE S P, YIN J Y, et al. Ascorbic acid induced degradation of polysaccharide from natural products:A review[J]. International Journal of Biological Macromolecules,2020,151:483−491. doi: 10.1016/j.ijbiomac.2020.02.193
|
[59] |
MA C L, BAI J W, SHAO C T, et al. Degradation of blue honeysuckle polysaccharides, structural characteristics and antiglycation and hypoglycemic activities of degraded products[J]. Food Research International,2021,143:110281. doi: 10.1016/j.foodres.2021.110281
|
[60] |
WU T C, HONG Y H, TSAI Y H, et al. Degradation of Sargassum crassifolium fucoidan by ascorbic acid and hydrogen peroxide, and compositional, structural, and in vitro anti-Lung cancer analyses of the degradation products[J]. Marine Drugs,2020,18(6):334. doi: 10.3390/md18060334
|
[61] |
HUANG C Y, KUO C H, LEE C H. Antibacterial and antioxidant capacities and attenuation of lipid accumulation in 3T3-L1 adipocytes by low-molecular-weight fucoidans prepared from compressional-puffing-pretreated Sargassum crassifolium[J]. Marine Drugs,2018,16(1):24. doi: 10.3390/md16010024
|
[62] |
WANG J, ZHANG Q B. Chemical modification of fucoidan and their application[M]. Elsevie:Seaweed Polysaccharides, 2017:157−173.
|
[63] |
LIU H D, WANG J, ZHANG Q B, et al. The effect of different substitute groups and molecular weights of fucoidan on neuroprotective and anticomplement activity[J]. International Journal of Biological Macromolecules,2018,113:82−89. doi: 10.1016/j.ijbiomac.2018.02.109
|
[64] |
TAN J J, WANG J, GENG L H, et al. Comparative study of fucoidan from Saccharina japonica and its depolymerized fragment on adriamycin-induced nephrotic syndrome in rats[J]. Marine Drugs,2020,18(3):137. doi: 10.3390/md18030137
|
[65] |
LUO B, WANG Z, CHEN J, et al. Physicochemical characterization and antitumor activity of fucoidan and its degraded products from Sargassum hemiphyllum (Turner) C. Agardh[J]. Molecules,2023,28(6):2610. doi: 10.3390/molecules28062610
|
[66] |
阙斐, 陶文靖, 冯文婕. 低分子量褐藻多糖的制备及其活性分析[J]. 食品工业科技,2022,43(2):226−232. [QUE F, TAO W J, FENG W J. Preparation and biological activities of low molecular weight brown algae[J]. Science and Technology of Food Industry,2022,43(2):226−232.]
QUE F, TAO W J, FENG W J. Preparation and biological activities of low molecular weight brown algae[J]. Science and Technology of Food Industry, 2022, 43(2): 226−232.
|
[67] |
李玉芹, 陈赛兰, 贾淑婷, 等. 岩藻多糖氧化降解工艺优化及其对多糖结构和抗氧化活性的影响[J]. 湘潭大学学报(自然科学版),2023,45(1):13−26. [LI Y Q, CHEN S L, JIA S T, et al. Process optimization of oxidative degradation and its effects on the structure and antioxidant activities of fucoidan[J]. Journal of Xiangtan University (Natural Science Edition),2023,45(1):13−26.]
LI Y Q, CHEN S L, JIA S T, et al. Process optimization of oxidative degradation and its effects on the structure and antioxidant activities of fucoidan[J]. Journal of Xiangtan University (Natural Science Edition), 2023, 45(1): 13−26.
|
[68] |
LI X S, WU N, CHEN Y Q, et al. Degradation of different molecular weight fucoidans and their inhibition of TGF-β1 induced epithelial-mesenchymal transition in mouse renal tubular epithelial cells[J]. International Journal of Biological Macromolecules,2020,151:545−553. doi: 10.1016/j.ijbiomac.2020.02.068
|
[69] |
ZHENG H, CUI S W, SUN B X, et al. Synergistic effect of discrete ultrasonic and H2O2 on physicochemical properties of chitosan[J]. Carbohydrate Polymers,2022,291:119598. doi: 10.1016/j.carbpol.2022.119598
|
[70] |
JO B W, CHOI S K. Degradation of fucoidans from Sargassum fulvellum and their biological activities[J]. Carbohydrate Polymers,2014,111:822−829. doi: 10.1016/j.carbpol.2014.05.049
|
[71] |
王健. 海带岩藻聚糖超滤提取技术及岩藻聚糖抗菌活性的研究[D]. 厦门:集美大学, 2013. [WANG J. Study on extraction technology of fucoidan with UF and its antibacterial activities[D]. Xiamen:Jimei University, 2013.]
WANG J. Study on extraction technology of fucoidan with UF and its antibacterial activities[D]. Xiamen: Jimei University, 2013.
|
[72] |
JEONG G W, CHOI Y S. Physicochemical properties and antioxidant effects of fucoidans degraded by hydrogen peroxide under electron beam at various irradiation doses[J]. Applied Chemistry for Engineering,2022,33(3):322−327.
|
[73] |
CHEN L W, CAI T M, CHENG C, et al. Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems:A comparative study[J]. Chemical Engineering Journal,2018,351:1137−1146. doi: 10.1016/j.cej.2018.06.107
|
[74] |
YAO W Z, LIU M M, CHEN X Y, et al. Effects of UV/H2O2 degradation and step gradient ethanol precipitation on Sargassum fusiforme polysaccharides:Physicochemical characterization and protective effects against intestinal epithelial injury[J]. Food Research International,2022,155:111093. doi: 10.1016/j.foodres.2022.111093
|
[75] |
CHEN X Y, YOU L J, MA Y X, et al. Influence of UV/H2O2 treatment on polysaccharides from Sargassum fusiforme:Physicochemical properties and RAW 264.7 cells responses[J]. Food and Chemical Toxicology,2021,153:112246. doi: 10.1016/j.fct.2021.112246
|
[76] |
GONG Y F, MA Y X, CHEUNG P C K, et al. Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis[J]. Food and Chemical Toxicology,2021,152:112157. doi: 10.1016/j.fct.2021.112157
|