WANG Xiaoyao, ZHONG Siyao, SHENTU Xuping, et al. Research Progress on Rapid Detection of Pyrethroid Pesticide Residues[J]. Science and Technology of Food Industry, 2025, 46(5): 415−424. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040030.
Citation: WANG Xiaoyao, ZHONG Siyao, SHENTU Xuping, et al. Research Progress on Rapid Detection of Pyrethroid Pesticide Residues[J]. Science and Technology of Food Industry, 2025, 46(5): 415−424. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040030.

Research Progress on Rapid Detection of Pyrethroid Pesticide Residues

More Information
  • Received Date: April 02, 2024
  • Available Online: January 02, 2025
  • Pyrethroids (PYRs) are widely used pesticides due to their stability and high efficiency, while the problem of its residue is becoming more and more serious, posing a threat to human life safety. Traditional laboratory detection has been faced with the challenges such as expensive equipment, complex operation, and lengthy procedures. Therefore, it is urgent to develop efficient and sensitive rapid detection technology for PYRs to realize its on-site detection in food and agricultural products. In this review, the technologies for rapid detection of PYRs, including enzyme linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA), fluorescence sensing and electrochemical sensing, are summarized, the prospects and advantages of the combination of these methods with novel nanomaterials and technologies are reviewed, and the development trend of becoming high sensitive, intelligent and portable is forecasted, aiming to provide scientific references for the further development of rapid detection technology for PYRs.
  • [1]
    贺顺喜, 周师军. 应重视食品残留农药的监测[J]. 解放军健康,2002(2):17. [HE S X, ZHOU S J. Attention should be paid to the monitoring of pesticide residues in food[J]. PLA Health,2002(2):17.]

    HE S X, ZHOU S J. Attention should be paid to the monitoring of pesticide residues in food[J]. PLA Health, 2002(2): 17.
    [2]
    TANG W, WANG D, WANG J, et al. Pyrethroid pesticide residues in the global environment:An overview[J]. Chemosphere,2018,191:990−1007. doi: 10.1016/j.chemosphere.2017.10.115
    [3]
    STELLMAN S D, STELLMAN J M. Pyrethroid insecticides-time for a closer look[J]. JAMA Internal Medicine,2020,180(3):374−375. doi: 10.1001/jamainternmed.2019.6093
    [4]
    PATHAK P N, PANDE S G, SUKHADEVE A A, et al. Ultrasonication assisted development of new greener method for extraction of cypermethrin and transfluthrin from various samples:A forensic approach[J]. Asian Journal of Chemistry,2018,30(4):817−820. doi: 10.14233/ajchem.2018.21058
    [5]
    HOLYNSKA-IWAN I, SZEWCZYK-GOLEC K. Pyrethroids:How they affect human and animal health?[J]. Medicina,2020,56(11):582. doi: 10.3390/medicina56110582
    [6]
    罗苹. 农产食品中菊酯类农药残留量的气相色谱快速分析方法[J]. 化学研究与应用,1999(6):691−693. [LUO P. Rapid gas chromatographic method for the determination of pyrethroid pesticide residues in foods[J]. Chemical Research and Application,1999(6):691−693.]

    LUO P. Rapid gas chromatographic method for the determination of pyrethroid pesticide residues in foods[J]. Chemical Research and Application, 1999(6): 691−693.
    [7]
    TIAN F, QIAO C, LUO J, et al. Method development and validation of ten pyrethroid insecticides in edible mushrooms by modified QuEChERS and gas chromatography-tandem mass spectrometry[J]. Scientific Reports,2020,10(1):7042. doi: 10.1038/s41598-020-64056-7
    [8]
    JABOT C, FIEU M, GIROUD B, et al. Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. International Journal of Environmental Analytical Chemistry,2015,95(3):240−257. doi: 10.1080/03067319.2015.1016011
    [9]
    WU L, LI G, XU X, et al. Application of nano-ELISA in food analysis:Recent advances and challenges[J]. Trends in Analytical Chemistry,2019,113:140−156. doi: 10.1016/j.trac.2019.02.002
    [10]
    ZHAO Q, LU D, ZHANG G, et al. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials[J]. Talanta,2021,223(P1):121722.
    [11]
    HUA X, LIU X, YIN W, et al. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the detection of bifenthrin in a chemical soil barrier[J]. Science of the Total Environment,2015,502:246−251. doi: 10.1016/j.scitotenv.2014.09.032
    [12]
    SONG Y, LU Y, LIU B, et al. A sensitivity-improved enzyme-linked immunosorbent assay for fenvalerate:A new approach for hapten synthesis and application to tea samples[J]. Journal of the Science of Food and Agriculture, 2011:2210-6.
    [13]
    CHEN X, XU L, MA W, et al. Development of an enzyme-linked immunosorbent assay for cyhalothrin[J]. Immunological Investigations,2013,42(6):493−503. doi: 10.3109/08820139.2013.797909
    [14]
    FRUHMANN P, SANCHIS A, MAYERHUBER L, et al. Immunoassay and amperometric biosensor approaches for the detection of deltamethrin in seawater[J]. Analytical and Bioanalytical Chemistry,2018,410(23):5923−5930. doi: 10.1007/s00216-018-1209-1
    [15]
    SHI H Y, ZHANG B H, YE Y H, et al. Development of an enzyme-linked immunosorbent assay for the pyrethroid fenpropathrin[J]. Food and Agricultural Immunology,2011,22(1):69−76. doi: 10.1080/09540105.2010.527926
    [16]
    WATANABE T, SHAN G, STOUTAMIRE D W, et al. Development of a class-specific immunoassay for the type I pyrethroid insecticides[J]. Analytica Chimica Acta,2001,444:119−129. doi: 10.1016/S0003-2670(01)01163-1
    [17]
    MAK S K, SHAN G, LEE H J, et al. Development of a class selective immunoassay for the type II pyrethroid insecticides[J]. Analytica Chimica Acta,2005,534(1):109−120. doi: 10.1016/j.aca.2004.11.021
    [18]
    XIAO X, HU S, LAI X, et al. Developmental trend of immunoassays for monitoring hazards in food samples:A review[J]. Trends in Food Science & Technology,2021,111:68−88.
    [19]
    QI X, XU H, LIU W, et al. Development of a rapid FLISA detection of Salmonella spp. based on CdTe/ZnS quantum dots[J]. Journal of Food Safety,2020,40(5):e12830. doi: 10.1111/jfs.12830
    [20]
    LIAO Y, CUI X, CHEN G, et al. Simple and sensitive detection of triazophos pesticide by using quantum dots nanobeads based on immunoassay[J]. Food and Agricultural Immunology,2019,30(1):522−532. doi: 10.1080/09540105.2019.1597022
    [21]
    LIU J, ZHANG Q, ZHANG W, et al. Development of a fluorescence-linked immunoassay based on quantum dots for fenvalerate[J]. Food and Agricultural Immunology,2013,25(1):82−93.
    [22]
    LIU S, SHU R, NIE C, et al. Bioresource-derived tannic acid-supported immuno-network in lateral flow immunoassay for sensitive clenbuterol monitoring[J]. Food Chemistry,2022,382:132390. doi: 10.1016/j.foodchem.2022.132390
    [23]
    WANG X, SUN T, SHEN W, et al. A lateral flow immunochromatographic assay based on nanobody-oriented coupling strategy for aflatoxin B1 detection[J]. Sensors and Actuators B:Chemical,2023,394:134419. doi: 10.1016/j.snb.2023.134419
    [24]
    ZHU J, DOU L, MI J, et al. Production of highly sensitive monoclonal antibody and development of lateral flow assays for phallotoxin detection in urine[J]. Analytical and Bioanalytical Chemistry,2021,413(20):4979−4987. doi: 10.1007/s00216-021-03457-7
    [25]
    CHEN X, LIU L, KUANG H, et al. A strip-based immunoassay for rapid determination of fenpropathrin[J]. Analytical Methods,2013,5(21):6234−6239. doi: 10.1039/c3ay41030g
    [26]
    HUANG L, ZHANG F, LI F, et al. Development of IC-ELISA and colloidal gold lateral flow immunoassay for the determination of cypermethrin in agricultural samples[J]. Biosensors,2022,12(11):1058. doi: 10.3390/bios12111058
    [27]
    YAO J, XU X, LIU L, et al. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables[J]. Food Additives & Contaminants:Part A, 2022, 39(3):531-541.
    [28]
    吴小胜, 贾芳芳, 崔海峰. 一种苯醚氰菊酯胶体金免疫快速检测试纸条的研制[J]. 湖北农业科学,2020,59(7):196−198. [WU X S, JIA F F, CUI H F. Study on gold immunochromatography assay for rapid detection of cypermethrin[J]. Hubei Agricultural Sciences,2020,59(7):196−198.]

    WU X S, JIA F F, CUI H F. Study on gold immunochromatography assay for rapid detection of cypermethrin[J]. Hubei Agricultural Sciences, 2020, 59(7): 196−198.
    [29]
    LIN L, SONG S, WU X, et al. Ultrasensitive immunochromatographic strip for the detection of cyhalothrin in foods[J]. Analytical Methods,2021,13(27):3040−3049. doi: 10.1039/D1AY00609F
    [30]
    KRANTHI K R, DAVIS M, MAYEE C D, et al. Development of a colloidal-gold based lateral-flow immunoassay kit for ‘quality-control’ assessment of pyrethroid and endosulfan formulations in a novel single strip format[J]. Crop Protection,2009,28(5):428−434. doi: 10.1016/j.cropro.2009.01.003
    [31]
    DI NARDO F, ANFOSSI L, GIOVANNOLI C, et al. A fluorescent immunochromatographic strip test using quantum dots for fumonisins detection[J]. Talanta,2016,150:463−468. doi: 10.1016/j.talanta.2015.12.072
    [32]
    GONG X, CAI J, ZHANG B, et al. A review of fluorescent signal-based lateral flow immunochromatographic strips[J]. Journal of Materials Chemistry B,2017,5(26):5079−5091. doi: 10.1039/C7TB01049D
    [33]
    BANERJEE M, BHOSLE A A, CHATTERJEE A, et al. Mechanochemical synthesis of organic dyes and fluorophores[J]. The Journal of Organic Chemistry,2021,86(20):13911−13923. doi: 10.1021/acs.joc.1c01540
    [34]
    COSTA E, CLIMENT E, AST S, et al. Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials[J]. The Analyst,2020,145(10):3490−3494. doi: 10.1039/D0AN00319K
    [35]
    ZHAO Y, SONG Q, LIN Y, et al. Improving the photostability of fluorescent dyes by polymer nano-insulating layer[J]. Journal of Applied Polymer Science,2021,139(6):51625.
    [36]
    TUERHONG M, XU Y, YIN X B. Review on carbon dots and their applications[J]. Chinese Journal of Analytical Chemistry,2017,45(1):139−150. doi: 10.1016/S1872-2040(16)60990-8
    [37]
    ZHAO Y, RUAN X, SONG Y, et al. Smartphone-based dual-channel immunochromatographic test strip with polymer quantum dot labels for simultaneous detection of cypermethrin and 3-phenoxybenzoic acid[J]. Analytical Chemistry,2021,93(40):13658−13666. doi: 10.1021/acs.analchem.1c03085
    [38]
    周芳, 窦彩云. 时间分辨荧光免疫层析快速检测牛奶中地塞米松[J]. 食品安全质量检测学报,2022,13(22):7331−7338. [ZHOU F, DOU C Y. Rapid detection of dexamethasone in milk by time-resolved fluorescence immunochromatography[J]. Journal of Food Safety and Quality,2022,13(22):7331−7338.]

    ZHOU F, DOU C Y. Rapid detection of dexamethasone in milk by time-resolved fluorescence immunochromatography[J]. Journal of Food Safety and Quality, 2022, 13(22): 7331−7338.
    [39]
    PENG T, PEI X, ZHENG Y, et al. Performance of fluorescence microspheres-based immunochromatography in simultaneous monitoring of five quinoxalines[J]. Food and Agricultural Immunology,2017,28(6):1544−1554. doi: 10.1080/09540105.2017.1354357
    [40]
    LIU Y, JI J, CUI F, et al. Development of a two-step immunochromatographic assay for microcystin-LR based on fluorescent microspheres[J]. Food Control,2019,95:34−40. doi: 10.1016/j.foodcont.2018.07.036
    [41]
    ZHANG L, ZHENG Y, SHAO H, et al. Development of a time-resolved fluorescence microsphere Eu lateral flow test strip based on a molecularly imprinted electrospun nanofiber membrane for determination of fenvalerate in vegetables[J]. Frontiers in Nutrition,2022,9:957745. doi: 10.3389/fnut.2022.957745
    [42]
    XU Z H, WANG J K, YE Q X, et al. Highly selective monoclonal antibody-based fluorescence immunochromatographic assay for the detection of fenpropathrin in vegetable and fruit samples[J]. Analytica Chimica Acta,2023,1246:340898. doi: 10.1016/j.aca.2023.340898
    [43]
    WANG X, HUANG H, ZHONG S, et al. Carboxymethyl chitosan-modified UiO-66 for the rapid detection of fenpropathrin in grains[J]. International Journal of Biological Macromolecules,2024,265:131032. doi: 10.1016/j.ijbiomac.2024.131032
    [44]
    WANG W, OUYANG H. Luminol-reduced Au nanoparticles-based dual-signal immunochromatographic test strip for pesticide residues[J]. Microchemical Journal,2019,149:104055. doi: 10.1016/j.microc.2019.104055
    [45]
    LI X, YANG T, SONG Y, et al. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors and Actuators B:Chemical,2019,283:230−238. doi: 10.1016/j.snb.2018.11.112
    [46]
    NOORI J S, MORTENSEN J, GETO A. Recent development on the electrochemical detection of selected pesticides:A focused review[J]. Sensors,2020,20(8):2221. doi: 10.3390/s20082221
    [47]
    SUN Y, WATERHOUSE G I N, QIAO X, et al. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-a review[J]. Food Chemistry,2023,410:135434. doi: 10.1016/j.foodchem.2023.135434
    [48]
    白静, 朱冰. 三维氮掺杂石墨烯分子印迹传感器在联苯菊酯检测中的应用[J]. 分析科学学报,2022,38(5):658−662. [BAI J, ZHU B. Three-dimensional nitrogen-doped graphene molecular imprinting sensor for bifenthrin detection[J]. Journal of Analytical Science,2022,38(5):658−662.]

    BAI J, ZHU B. Three-dimensional nitrogen-doped graphene molecular imprinting sensor for bifenthrin detection[J]. Journal of Analytical Science, 2022, 38(5): 658−662.
    [49]
    LI Y, ZHANG L, DANG Y, et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin[J]. Biosensors and Bioelectronics,2019,127:207−214. doi: 10.1016/j.bios.2018.12.002
    [50]
    CIROCKA A, ZARZECZAŃSKA D, WCISŁO A. Good choice of electrode material as the key to creating electrochemical sensors-characteristics of carbon materials and transparent conductive oxides (TCO)[J]. Materials,2021,14(16):4743. doi: 10.3390/ma14164743
    [51]
    田利, 李慧玲, 张鑫, 等. 基于CdTe@ZIF-7复合材料的电化学发光传感器检测氯菊酯[J]. 分析试验室,2024,43(10):1479−1483. [TIAN L, LI H L, ZHANG X, et al. Determination of permethrin by electrochemiluminescence sensor based on CdTe@ZIF-7 composite material[J]. Chinese Journal of Analysis Laboratory,2024,43(10):1479−1483.]

    TIAN L, LI H L, ZHANG X, et al. Determination of permethrin by electrochemiluminescence sensor based on CdTe@ZIF-7 composite material[J]. Chinese Journal of Analysis Laboratory, 2024, 43(10): 1479−1483.
    [52]
    SUN Z, LU J, ZHANG X, et al. Electrospun nanofibres containing Zn-MOF for electrochemiluminescent determination of fenpropathrin residues in fruit juices[J]. Food Chemistry,2023,405:134950. doi: 10.1016/j.foodchem.2022.134950
    [53]
    WU Y, FENG J, HU G, et al. Colorimetric sensors for chemical and biological sensing applications[J]. Sensors,2023,23(5):2749. doi: 10.3390/s23052749
    [54]
    NGUYEN H H, LEE S H, LEE U J, et al. Immobilized enzymes in biosensor applications[J]. Materials,2019,12(1):121. doi: 10.3390/ma12010121
    [55]
    BUCUR B, MUNTEANU F D, MARTY J L, et al. Advances in enzyme-based biosensors for pesticide detection[J]. Biosensors,2018,8(2):27. doi: 10.3390/bios8020027
    [56]
    何丽媛, 倪树标, 武悦俊, 等. 基于分光光度法快速检测果蔬中的拟除虫菊酯类农药残留[J]. 现代食品,2021(24):175−180,184. [HE L Y, NI S B, WU Y J, et al. Based on the spectrophotometric method for the rapid determination of pyrethroid pesticide residues in fruits and vegetables[J]. Analysis and Testing,2021(24):175−180,184.]

    HE L Y, NI S B, WU Y J, et al. Based on the spectrophotometric method for the rapid determination of pyrethroid pesticide residues in fruits and vegetables[J]. Analysis and Testing, 2021(24): 175−180,184.
    [57]
    DOWD A J, MOROU E, STEVEN A, et al. Development of a colourimetric pH assay for the quantification of pyrethroids based on glutathione-S-transferase[J]. International Journal of Environmental Analytical Chemistry,2010,90(12):922−933. doi: 10.1080/03067310903359526
    [58]
    MO T, LIU X, LUO Y, et al. Aptamer-based biosensors and application in tumor theranostics[J]. Cancer Science,2021,113(1):7−16.
    [59]
    YANG Y, TANG Y, WANG C, et al. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food[J]. Analytica Chimica Acta, 2021, 1179.
    [60]
    WANG Z, HUANG Y, WANG D, et al. A rapid colorimetric method for the detection of deltamethrin based on gold nanoparticles modified with 2-mercapto-6-nitrobenzothiazole[J]. Analytical Methods,2018,10(15):1774−1780. doi: 10.1039/C8AY00137E
    [61]
    LI Y, CUI Z, LI D, et al. Colorimetric determination of pyrethroids based on core-shell Ag@SiO2 nanoparticles[J]. Sensors and Actuators B:Chemical,2011,155(2):878−883. doi: 10.1016/j.snb.2011.01.064
    [62]
    ZHU J, YIN X, ZHANG W, et al. Simultaneous and sensitive detection of three pesticides using a functional poly(sulfobetaine methacrylate)-coated paper-based colorimetric sensor[J]. Biosensors,2023,13(3):309. doi: 10.3390/bios13030309
    [63]
    PENGPUMKIAT S, NAMMOONNOY J, WONGSAKOONKAN W, et al. A microfluidic paper-based analytical device for type-II pyrethroid targets in an environmental water sample[J]. Sensors,2020,20(15):4107. doi: 10.3390/s20154107
    [64]
    RASHEED S, UL HAQ M A, AHMAD N, et al. Smartphone-integrated colorimetric and microfluidic paper-based analytical devices for the trace-level detection of permethrin[J]. Food Chemistry,2023,429:136925. doi: 10.1016/j.foodchem.2023.136925
    [65]
    YAN F, SUN X, ZU F, et al. Fluorescent probes for detecting cysteine[J]. Methods Appl Fluoresc,2018,6(4):042001. doi: 10.1088/2050-6120/aad580
    [66]
    WILHELM S. Perspectives for upconverting nanoparticles[J]. ACS Nano,2017,11(11):10644−10653. doi: 10.1021/acsnano.7b07120
    [67]
    LIU M, ZHANG L, JIANG S, et al. A facile luminescence resonance energy transfer method for detecting cyano-containing pesticides in herbal medicines[J]. Microchemical Journal,2020,152:104451. doi: 10.1016/j.microc.2019.104451
    [68]
    SONG Y, JIN J, HU L, et al. Core-shell-shell upconversion nanomaterials applying for simultaneous immunofluorescent detection of fenpropathrin and procymidone[J]. Foods,2023,12(18):3445. doi: 10.3390/foods12183445
    [69]
    HUA L, HAN H, ZHANG X. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine[J]. Talanta,2009,77(5):1654−1659. doi: 10.1016/j.talanta.2008.09.061
    [70]
    LI X, JIAO H F, SHI X Z, et al. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin[J]. Biosensors and Bioelectronics,2018,99:268−273. doi: 10.1016/j.bios.2017.07.071
    [71]
    LIU Y, HUANG H, CAO W, et al. Advances in carbon dots:From the perspective of traditional quantum dots[J]. Materials Chemistry Frontiers,2020,4(6):1586−1613. doi: 10.1039/D0QM00090F
    [72]
    李满秀, 任光明, 胡文欣, 等. 碳量子点/银复合材料的制备及其在溴氰菊酯检测中的应用[J]. 分析科学学报,2020,36(1):154−158. [LI X M, REN G M, HU W X, et al. Preparation of carbon quantum dots/Ag composites and its application for deltamethrin detection[J]. Journal of Analytical Science,2020,36(1):154−158.]

    LI X M, REN G M, HU W X, et al. Preparation of carbon quantum dots/Ag composites and its application for deltamethrin detection[J]. Journal of Analytical Science, 2020, 36(1): 154−158.
    [73]
    ZHU X, HAN L, LIU H, et al. A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots[J]. Food Chemistry,2022,379:132154. doi: 10.1016/j.foodchem.2022.132154
    [74]
    HAN X, ZHANG W, CHEN Z, et al. The future of metal-organic frameworks and covalent organic frameworks:Rational synthesis and customized applications[J]. Mater Horiz,2023,10(12):5337−5342. doi: 10.1039/D3MH01396K
    [75]
    魏子奇, 张涵瑜, 杨昌颖. 金属有机框架传感器在农药检测中的应用研究进展[J]. 分析试验室,2023,42(9):1267−1278. [WEI Z Q, ZHANG H Y, YANG C Y. Review on the application of metal-organic framework sensor for pesticides detection[J]. Chinese Journal of Analysis Laboratory,2023,42(9):1267−1278.]

    WEI Z Q, ZHANG H Y, YANG C Y. Review on the application of metal-organic framework sensor for pesticides detection[J]. Chinese Journal of Analysis Laboratory, 2023, 42(9): 1267−1278.
    [76]
    ZHANG Y, CHEN Y, ZHANG D, et al. Peptide nanodots-bridged metal-organic framework (PNMOF):Intelligently design a cascade amplification platform for smartphone-facilitated mobile fluorescence imaging detection of pyrethroids[J]. Chemical Engineering Journal,2023,468:143690. doi: 10.1016/j.cej.2023.143690
    [77]
    JIANG W, ZHAO Y, ZHANG D, et al. Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework[J]. Biosensors & Bioelectronics,2021,194:113582.
    [78]
    ZHANG Y, ZHU X, LI M, et al. Temperature-responsive covalent organic framework-encapsulated carbon dot-based sensing platform for pyrethroid detection via fluorescence response and smartphone readout[J]. Journal of Agricultural and Food Chemistry,2022,70(20):6059−6071. doi: 10.1021/acs.jafc.2c01568
  • Other Related Supplements

  • Cited by

    Periodical cited type(3)

    1. 郭新颖. 柱前衍生-高效液相色谱法测定鱼类中组胺. 化学分析计量. 2024(01): 12-16 .
    2. 王建凤,冯月超,王颖,刘艳,周阳,刘佳. 鱼露中章鱼胺含量分析及衍生化产物结构推断. 分析仪器. 2024(04): 64-69 .
    3. 卢竹阳,邵彪,王琳琳,许晶晶,张霞,李玲玉,沈蕾. 冷藏时间对大黄鱼、鲳鱼中生物胺含量变化的影响. 肉类研究. 2024(11): 41-46 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (53) PDF downloads (19) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return