Citation: | WANG Xiaoyao, ZHONG Siyao, SHENTU Xuping, et al. Research Progress on Rapid Detection of Pyrethroid Pesticide Residues[J]. Science and Technology of Food Industry, 2025, 46(5): 415−424. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040030. |
[1] |
贺顺喜, 周师军. 应重视食品残留农药的监测[J]. 解放军健康,2002(2):17. [HE S X, ZHOU S J. Attention should be paid to the monitoring of pesticide residues in food[J]. PLA Health,2002(2):17.]
HE S X, ZHOU S J. Attention should be paid to the monitoring of pesticide residues in food[J]. PLA Health, 2002(2): 17.
|
[2] |
TANG W, WANG D, WANG J, et al. Pyrethroid pesticide residues in the global environment:An overview[J]. Chemosphere,2018,191:990−1007. doi: 10.1016/j.chemosphere.2017.10.115
|
[3] |
STELLMAN S D, STELLMAN J M. Pyrethroid insecticides-time for a closer look[J]. JAMA Internal Medicine,2020,180(3):374−375. doi: 10.1001/jamainternmed.2019.6093
|
[4] |
PATHAK P N, PANDE S G, SUKHADEVE A A, et al. Ultrasonication assisted development of new greener method for extraction of cypermethrin and transfluthrin from various samples:A forensic approach[J]. Asian Journal of Chemistry,2018,30(4):817−820. doi: 10.14233/ajchem.2018.21058
|
[5] |
HOLYNSKA-IWAN I, SZEWCZYK-GOLEC K. Pyrethroids:How they affect human and animal health?[J]. Medicina,2020,56(11):582. doi: 10.3390/medicina56110582
|
[6] |
罗苹. 农产食品中菊酯类农药残留量的气相色谱快速分析方法[J]. 化学研究与应用,1999(6):691−693. [LUO P. Rapid gas chromatographic method for the determination of pyrethroid pesticide residues in foods[J]. Chemical Research and Application,1999(6):691−693.]
LUO P. Rapid gas chromatographic method for the determination of pyrethroid pesticide residues in foods[J]. Chemical Research and Application, 1999(6): 691−693.
|
[7] |
TIAN F, QIAO C, LUO J, et al. Method development and validation of ten pyrethroid insecticides in edible mushrooms by modified QuEChERS and gas chromatography-tandem mass spectrometry[J]. Scientific Reports,2020,10(1):7042. doi: 10.1038/s41598-020-64056-7
|
[8] |
JABOT C, FIEU M, GIROUD B, et al. Trace-level determination of pyrethroid, neonicotinoid and carboxamide pesticides in beeswax using dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. International Journal of Environmental Analytical Chemistry,2015,95(3):240−257. doi: 10.1080/03067319.2015.1016011
|
[9] |
WU L, LI G, XU X, et al. Application of nano-ELISA in food analysis:Recent advances and challenges[J]. Trends in Analytical Chemistry,2019,113:140−156. doi: 10.1016/j.trac.2019.02.002
|
[10] |
ZHAO Q, LU D, ZHANG G, et al. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials[J]. Talanta,2021,223(P1):121722.
|
[11] |
HUA X, LIU X, YIN W, et al. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the detection of bifenthrin in a chemical soil barrier[J]. Science of the Total Environment,2015,502:246−251. doi: 10.1016/j.scitotenv.2014.09.032
|
[12] |
SONG Y, LU Y, LIU B, et al. A sensitivity-improved enzyme-linked immunosorbent assay for fenvalerate:A new approach for hapten synthesis and application to tea samples[J]. Journal of the Science of Food and Agriculture, 2011:2210-6.
|
[13] |
CHEN X, XU L, MA W, et al. Development of an enzyme-linked immunosorbent assay for cyhalothrin[J]. Immunological Investigations,2013,42(6):493−503. doi: 10.3109/08820139.2013.797909
|
[14] |
FRUHMANN P, SANCHIS A, MAYERHUBER L, et al. Immunoassay and amperometric biosensor approaches for the detection of deltamethrin in seawater[J]. Analytical and Bioanalytical Chemistry,2018,410(23):5923−5930. doi: 10.1007/s00216-018-1209-1
|
[15] |
SHI H Y, ZHANG B H, YE Y H, et al. Development of an enzyme-linked immunosorbent assay for the pyrethroid fenpropathrin[J]. Food and Agricultural Immunology,2011,22(1):69−76. doi: 10.1080/09540105.2010.527926
|
[16] |
WATANABE T, SHAN G, STOUTAMIRE D W, et al. Development of a class-specific immunoassay for the type I pyrethroid insecticides[J]. Analytica Chimica Acta,2001,444:119−129. doi: 10.1016/S0003-2670(01)01163-1
|
[17] |
MAK S K, SHAN G, LEE H J, et al. Development of a class selective immunoassay for the type II pyrethroid insecticides[J]. Analytica Chimica Acta,2005,534(1):109−120. doi: 10.1016/j.aca.2004.11.021
|
[18] |
XIAO X, HU S, LAI X, et al. Developmental trend of immunoassays for monitoring hazards in food samples:A review[J]. Trends in Food Science & Technology,2021,111:68−88.
|
[19] |
QI X, XU H, LIU W, et al. Development of a rapid FLISA detection of Salmonella spp. based on CdTe/ZnS quantum dots[J]. Journal of Food Safety,2020,40(5):e12830. doi: 10.1111/jfs.12830
|
[20] |
LIAO Y, CUI X, CHEN G, et al. Simple and sensitive detection of triazophos pesticide by using quantum dots nanobeads based on immunoassay[J]. Food and Agricultural Immunology,2019,30(1):522−532. doi: 10.1080/09540105.2019.1597022
|
[21] |
LIU J, ZHANG Q, ZHANG W, et al. Development of a fluorescence-linked immunoassay based on quantum dots for fenvalerate[J]. Food and Agricultural Immunology,2013,25(1):82−93.
|
[22] |
LIU S, SHU R, NIE C, et al. Bioresource-derived tannic acid-supported immuno-network in lateral flow immunoassay for sensitive clenbuterol monitoring[J]. Food Chemistry,2022,382:132390. doi: 10.1016/j.foodchem.2022.132390
|
[23] |
WANG X, SUN T, SHEN W, et al. A lateral flow immunochromatographic assay based on nanobody-oriented coupling strategy for aflatoxin B1 detection[J]. Sensors and Actuators B:Chemical,2023,394:134419. doi: 10.1016/j.snb.2023.134419
|
[24] |
ZHU J, DOU L, MI J, et al. Production of highly sensitive monoclonal antibody and development of lateral flow assays for phallotoxin detection in urine[J]. Analytical and Bioanalytical Chemistry,2021,413(20):4979−4987. doi: 10.1007/s00216-021-03457-7
|
[25] |
CHEN X, LIU L, KUANG H, et al. A strip-based immunoassay for rapid determination of fenpropathrin[J]. Analytical Methods,2013,5(21):6234−6239. doi: 10.1039/c3ay41030g
|
[26] |
HUANG L, ZHANG F, LI F, et al. Development of IC-ELISA and colloidal gold lateral flow immunoassay for the determination of cypermethrin in agricultural samples[J]. Biosensors,2022,12(11):1058. doi: 10.3390/bios12111058
|
[27] |
YAO J, XU X, LIU L, et al. Gold nanoparticle-based immunoassay for the detection of bifenthrin in vegetables[J]. Food Additives & Contaminants:Part A, 2022, 39(3):531-541.
|
[28] |
吴小胜, 贾芳芳, 崔海峰. 一种苯醚氰菊酯胶体金免疫快速检测试纸条的研制[J]. 湖北农业科学,2020,59(7):196−198. [WU X S, JIA F F, CUI H F. Study on gold immunochromatography assay for rapid detection of cypermethrin[J]. Hubei Agricultural Sciences,2020,59(7):196−198.]
WU X S, JIA F F, CUI H F. Study on gold immunochromatography assay for rapid detection of cypermethrin[J]. Hubei Agricultural Sciences, 2020, 59(7): 196−198.
|
[29] |
LIN L, SONG S, WU X, et al. Ultrasensitive immunochromatographic strip for the detection of cyhalothrin in foods[J]. Analytical Methods,2021,13(27):3040−3049. doi: 10.1039/D1AY00609F
|
[30] |
KRANTHI K R, DAVIS M, MAYEE C D, et al. Development of a colloidal-gold based lateral-flow immunoassay kit for ‘quality-control’ assessment of pyrethroid and endosulfan formulations in a novel single strip format[J]. Crop Protection,2009,28(5):428−434. doi: 10.1016/j.cropro.2009.01.003
|
[31] |
DI NARDO F, ANFOSSI L, GIOVANNOLI C, et al. A fluorescent immunochromatographic strip test using quantum dots for fumonisins detection[J]. Talanta,2016,150:463−468. doi: 10.1016/j.talanta.2015.12.072
|
[32] |
GONG X, CAI J, ZHANG B, et al. A review of fluorescent signal-based lateral flow immunochromatographic strips[J]. Journal of Materials Chemistry B,2017,5(26):5079−5091. doi: 10.1039/C7TB01049D
|
[33] |
BANERJEE M, BHOSLE A A, CHATTERJEE A, et al. Mechanochemical synthesis of organic dyes and fluorophores[J]. The Journal of Organic Chemistry,2021,86(20):13911−13923. doi: 10.1021/acs.joc.1c01540
|
[34] |
COSTA E, CLIMENT E, AST S, et al. Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials[J]. The Analyst,2020,145(10):3490−3494. doi: 10.1039/D0AN00319K
|
[35] |
ZHAO Y, SONG Q, LIN Y, et al. Improving the photostability of fluorescent dyes by polymer nano-insulating layer[J]. Journal of Applied Polymer Science,2021,139(6):51625.
|
[36] |
TUERHONG M, XU Y, YIN X B. Review on carbon dots and their applications[J]. Chinese Journal of Analytical Chemistry,2017,45(1):139−150. doi: 10.1016/S1872-2040(16)60990-8
|
[37] |
ZHAO Y, RUAN X, SONG Y, et al. Smartphone-based dual-channel immunochromatographic test strip with polymer quantum dot labels for simultaneous detection of cypermethrin and 3-phenoxybenzoic acid[J]. Analytical Chemistry,2021,93(40):13658−13666. doi: 10.1021/acs.analchem.1c03085
|
[38] |
周芳, 窦彩云. 时间分辨荧光免疫层析快速检测牛奶中地塞米松[J]. 食品安全质量检测学报,2022,13(22):7331−7338. [ZHOU F, DOU C Y. Rapid detection of dexamethasone in milk by time-resolved fluorescence immunochromatography[J]. Journal of Food Safety and Quality,2022,13(22):7331−7338.]
ZHOU F, DOU C Y. Rapid detection of dexamethasone in milk by time-resolved fluorescence immunochromatography[J]. Journal of Food Safety and Quality, 2022, 13(22): 7331−7338.
|
[39] |
PENG T, PEI X, ZHENG Y, et al. Performance of fluorescence microspheres-based immunochromatography in simultaneous monitoring of five quinoxalines[J]. Food and Agricultural Immunology,2017,28(6):1544−1554. doi: 10.1080/09540105.2017.1354357
|
[40] |
LIU Y, JI J, CUI F, et al. Development of a two-step immunochromatographic assay for microcystin-LR based on fluorescent microspheres[J]. Food Control,2019,95:34−40. doi: 10.1016/j.foodcont.2018.07.036
|
[41] |
ZHANG L, ZHENG Y, SHAO H, et al. Development of a time-resolved fluorescence microsphere Eu lateral flow test strip based on a molecularly imprinted electrospun nanofiber membrane for determination of fenvalerate in vegetables[J]. Frontiers in Nutrition,2022,9:957745. doi: 10.3389/fnut.2022.957745
|
[42] |
XU Z H, WANG J K, YE Q X, et al. Highly selective monoclonal antibody-based fluorescence immunochromatographic assay for the detection of fenpropathrin in vegetable and fruit samples[J]. Analytica Chimica Acta,2023,1246:340898. doi: 10.1016/j.aca.2023.340898
|
[43] |
WANG X, HUANG H, ZHONG S, et al. Carboxymethyl chitosan-modified UiO-66 for the rapid detection of fenpropathrin in grains[J]. International Journal of Biological Macromolecules,2024,265:131032. doi: 10.1016/j.ijbiomac.2024.131032
|
[44] |
WANG W, OUYANG H. Luminol-reduced Au nanoparticles-based dual-signal immunochromatographic test strip for pesticide residues[J]. Microchemical Journal,2019,149:104055. doi: 10.1016/j.microc.2019.104055
|
[45] |
LI X, YANG T, SONG Y, et al. Surface-enhanced Raman spectroscopy (SERS)-based immunochromatographic assay (ICA) for the simultaneous detection of two pyrethroid pesticides[J]. Sensors and Actuators B:Chemical,2019,283:230−238. doi: 10.1016/j.snb.2018.11.112
|
[46] |
NOORI J S, MORTENSEN J, GETO A. Recent development on the electrochemical detection of selected pesticides:A focused review[J]. Sensors,2020,20(8):2221. doi: 10.3390/s20082221
|
[47] |
SUN Y, WATERHOUSE G I N, QIAO X, et al. Determination of chloramphenicol in food using nanomaterial-based electrochemical and optical sensors-a review[J]. Food Chemistry,2023,410:135434. doi: 10.1016/j.foodchem.2023.135434
|
[48] |
白静, 朱冰. 三维氮掺杂石墨烯分子印迹传感器在联苯菊酯检测中的应用[J]. 分析科学学报,2022,38(5):658−662. [BAI J, ZHU B. Three-dimensional nitrogen-doped graphene molecular imprinting sensor for bifenthrin detection[J]. Journal of Analytical Science,2022,38(5):658−662.]
BAI J, ZHU B. Three-dimensional nitrogen-doped graphene molecular imprinting sensor for bifenthrin detection[J]. Journal of Analytical Science, 2022, 38(5): 658−662.
|
[49] |
LI Y, ZHANG L, DANG Y, et al. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin[J]. Biosensors and Bioelectronics,2019,127:207−214. doi: 10.1016/j.bios.2018.12.002
|
[50] |
CIROCKA A, ZARZECZAŃSKA D, WCISŁO A. Good choice of electrode material as the key to creating electrochemical sensors-characteristics of carbon materials and transparent conductive oxides (TCO)[J]. Materials,2021,14(16):4743. doi: 10.3390/ma14164743
|
[51] |
田利, 李慧玲, 张鑫, 等. 基于CdTe@ZIF-7复合材料的电化学发光传感器检测氯菊酯[J]. 分析试验室,2024,43(10):1479−1483. [TIAN L, LI H L, ZHANG X, et al. Determination of permethrin by electrochemiluminescence sensor based on CdTe@ZIF-7 composite material[J]. Chinese Journal of Analysis Laboratory,2024,43(10):1479−1483.]
TIAN L, LI H L, ZHANG X, et al. Determination of permethrin by electrochemiluminescence sensor based on CdTe@ZIF-7 composite material[J]. Chinese Journal of Analysis Laboratory, 2024, 43(10): 1479−1483.
|
[52] |
SUN Z, LU J, ZHANG X, et al. Electrospun nanofibres containing Zn-MOF for electrochemiluminescent determination of fenpropathrin residues in fruit juices[J]. Food Chemistry,2023,405:134950. doi: 10.1016/j.foodchem.2022.134950
|
[53] |
WU Y, FENG J, HU G, et al. Colorimetric sensors for chemical and biological sensing applications[J]. Sensors,2023,23(5):2749. doi: 10.3390/s23052749
|
[54] |
NGUYEN H H, LEE S H, LEE U J, et al. Immobilized enzymes in biosensor applications[J]. Materials,2019,12(1):121. doi: 10.3390/ma12010121
|
[55] |
BUCUR B, MUNTEANU F D, MARTY J L, et al. Advances in enzyme-based biosensors for pesticide detection[J]. Biosensors,2018,8(2):27. doi: 10.3390/bios8020027
|
[56] |
何丽媛, 倪树标, 武悦俊, 等. 基于分光光度法快速检测果蔬中的拟除虫菊酯类农药残留[J]. 现代食品,2021(24):175−180,184. [HE L Y, NI S B, WU Y J, et al. Based on the spectrophotometric method for the rapid determination of pyrethroid pesticide residues in fruits and vegetables[J]. Analysis and Testing,2021(24):175−180,184.]
HE L Y, NI S B, WU Y J, et al. Based on the spectrophotometric method for the rapid determination of pyrethroid pesticide residues in fruits and vegetables[J]. Analysis and Testing, 2021(24): 175−180,184.
|
[57] |
DOWD A J, MOROU E, STEVEN A, et al. Development of a colourimetric pH assay for the quantification of pyrethroids based on glutathione-S-transferase[J]. International Journal of Environmental Analytical Chemistry,2010,90(12):922−933. doi: 10.1080/03067310903359526
|
[58] |
MO T, LIU X, LUO Y, et al. Aptamer-based biosensors and application in tumor theranostics[J]. Cancer Science,2021,113(1):7−16.
|
[59] |
YANG Y, TANG Y, WANG C, et al. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food[J]. Analytica Chimica Acta, 2021, 1179.
|
[60] |
WANG Z, HUANG Y, WANG D, et al. A rapid colorimetric method for the detection of deltamethrin based on gold nanoparticles modified with 2-mercapto-6-nitrobenzothiazole[J]. Analytical Methods,2018,10(15):1774−1780. doi: 10.1039/C8AY00137E
|
[61] |
LI Y, CUI Z, LI D, et al. Colorimetric determination of pyrethroids based on core-shell Ag@SiO2 nanoparticles[J]. Sensors and Actuators B:Chemical,2011,155(2):878−883. doi: 10.1016/j.snb.2011.01.064
|
[62] |
ZHU J, YIN X, ZHANG W, et al. Simultaneous and sensitive detection of three pesticides using a functional poly(sulfobetaine methacrylate)-coated paper-based colorimetric sensor[J]. Biosensors,2023,13(3):309. doi: 10.3390/bios13030309
|
[63] |
PENGPUMKIAT S, NAMMOONNOY J, WONGSAKOONKAN W, et al. A microfluidic paper-based analytical device for type-II pyrethroid targets in an environmental water sample[J]. Sensors,2020,20(15):4107. doi: 10.3390/s20154107
|
[64] |
RASHEED S, UL HAQ M A, AHMAD N, et al. Smartphone-integrated colorimetric and microfluidic paper-based analytical devices for the trace-level detection of permethrin[J]. Food Chemistry,2023,429:136925. doi: 10.1016/j.foodchem.2023.136925
|
[65] |
YAN F, SUN X, ZU F, et al. Fluorescent probes for detecting cysteine[J]. Methods Appl Fluoresc,2018,6(4):042001. doi: 10.1088/2050-6120/aad580
|
[66] |
WILHELM S. Perspectives for upconverting nanoparticles[J]. ACS Nano,2017,11(11):10644−10653. doi: 10.1021/acsnano.7b07120
|
[67] |
LIU M, ZHANG L, JIANG S, et al. A facile luminescence resonance energy transfer method for detecting cyano-containing pesticides in herbal medicines[J]. Microchemical Journal,2020,152:104451. doi: 10.1016/j.microc.2019.104451
|
[68] |
SONG Y, JIN J, HU L, et al. Core-shell-shell upconversion nanomaterials applying for simultaneous immunofluorescent detection of fenpropathrin and procymidone[J]. Foods,2023,12(18):3445. doi: 10.3390/foods12183445
|
[69] |
HUA L, HAN H, ZHANG X. Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine[J]. Talanta,2009,77(5):1654−1659. doi: 10.1016/j.talanta.2008.09.061
|
[70] |
LI X, JIAO H F, SHI X Z, et al. Development and application of a novel fluorescent nanosensor based on FeSe quantum dots embedded silica molecularly imprinted polymer for the rapid optosensing of cyfluthrin[J]. Biosensors and Bioelectronics,2018,99:268−273. doi: 10.1016/j.bios.2017.07.071
|
[71] |
LIU Y, HUANG H, CAO W, et al. Advances in carbon dots:From the perspective of traditional quantum dots[J]. Materials Chemistry Frontiers,2020,4(6):1586−1613. doi: 10.1039/D0QM00090F
|
[72] |
李满秀, 任光明, 胡文欣, 等. 碳量子点/银复合材料的制备及其在溴氰菊酯检测中的应用[J]. 分析科学学报,2020,36(1):154−158. [LI X M, REN G M, HU W X, et al. Preparation of carbon quantum dots/Ag composites and its application for deltamethrin detection[J]. Journal of Analytical Science,2020,36(1):154−158.]
LI X M, REN G M, HU W X, et al. Preparation of carbon quantum dots/Ag composites and its application for deltamethrin detection[J]. Journal of Analytical Science, 2020, 36(1): 154−158.
|
[73] |
ZHU X, HAN L, LIU H, et al. A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots[J]. Food Chemistry,2022,379:132154. doi: 10.1016/j.foodchem.2022.132154
|
[74] |
HAN X, ZHANG W, CHEN Z, et al. The future of metal-organic frameworks and covalent organic frameworks:Rational synthesis and customized applications[J]. Mater Horiz,2023,10(12):5337−5342. doi: 10.1039/D3MH01396K
|
[75] |
魏子奇, 张涵瑜, 杨昌颖. 金属有机框架传感器在农药检测中的应用研究进展[J]. 分析试验室,2023,42(9):1267−1278. [WEI Z Q, ZHANG H Y, YANG C Y. Review on the application of metal-organic framework sensor for pesticides detection[J]. Chinese Journal of Analysis Laboratory,2023,42(9):1267−1278.]
WEI Z Q, ZHANG H Y, YANG C Y. Review on the application of metal-organic framework sensor for pesticides detection[J]. Chinese Journal of Analysis Laboratory, 2023, 42(9): 1267−1278.
|
[76] |
ZHANG Y, CHEN Y, ZHANG D, et al. Peptide nanodots-bridged metal-organic framework (PNMOF):Intelligently design a cascade amplification platform for smartphone-facilitated mobile fluorescence imaging detection of pyrethroids[J]. Chemical Engineering Journal,2023,468:143690. doi: 10.1016/j.cej.2023.143690
|
[77] |
JIANG W, ZHAO Y, ZHANG D, et al. Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework[J]. Biosensors & Bioelectronics,2021,194:113582.
|
[78] |
ZHANG Y, ZHU X, LI M, et al. Temperature-responsive covalent organic framework-encapsulated carbon dot-based sensing platform for pyrethroid detection via fluorescence response and smartphone readout[J]. Journal of Agricultural and Food Chemistry,2022,70(20):6059−6071. doi: 10.1021/acs.jafc.2c01568
|